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Abstract Time is an important aspect of health economic

evaluation, as the timing and duration of clinical events,

healthcare interventions and their consequences all affect

estimated costs and effects. These issues should be reflec-

ted in the design of health economic models. This article

considers three important aspects of time in modelling: (1)

which cohorts to simulate and how far into the future to

extend the analysis; (2) the simulation of time, including

the difference between discrete-time and continuous-time

models, cycle lengths, and converting rates and probabili-

ties; and (3) discounting future costs and effects to their

present values. We provide a methodological overview of

these issues and make recommendations to help inform

both the conduct of cost-effectiveness analyses and the

interpretation of their results. For choosing which cohorts

to simulate and how many, we suggest analysts carefully

assess potential reasons for variation in cost effectiveness

between cohorts and the feasibility of subgroup-specific

recommendations. For the simulation of time, we recom-

mend using short cycles or continuous-time models to

avoid biases and the need for half-cycle corrections, and

provide advice on the correct conversion of transition

probabilities in state transition models. Finally, for dis-

counting, analysts should not only follow current guidance

and report how discounting was conducted, especially in

the case of differential discounting, but also seek to

develop an understanding of its rationale. Our overall

recommendations are that analysts explicitly state and

justify their modelling choices regarding time and consider

how alternative choices may impact on results.

Key Points for Decision Makers

Time is an important aspect of the accurate

modelling of cost effectiveness in ways that are not

always obvious or made explicit in cost-

effectiveness analyses.

The choice of cohorts and time horizons in the model

should depend on which cohorts will be affected by

the policy decision and how long that policy will

apply.

Cost-effectiveness estimates can be very sensitive to

discounting; therefore, not only should discounting

be applied correctly but alternatives to the standard

discounting model should not be adopted without

careful consideration.

1 Introduction

Time is a continuous measure used to order sequences of

events and to quantify the periods between them. It is an

important aspect of health economic evaluation, as the
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timing and duration of clinical events, healthcare inter-

ventions and their consequences all have implications for

estimated costs and effects [1, 2]. In addition, the policy

questions informed by health economic analyses can vary

in their scope in time. Some policy choices only have

short-term implications, whereas the outcomes of others

may be felt decades later, either because the effects are not

realised immediately or because they affect both current

and future cohorts. Therefore, health economic models

need to simulate time appropriately if they are to reliably

inform resource allocation. Despite their central impor-

tance the choices regarding time in modelling are often not

explicitly stated. Consequently, it is often unclear how time

influences both the technical adequacy of models and their

correspondence to the policy choices they seek to inform.

This article reviews three principal methodological

issues in the modelling of time in cost-effectiveness anal-

ysis (CEA). First, we address the structure of models with

respect to time, including which cohorts to simulate and the

implications this has for how far into the future to extend

the analysis. Second, we address time with respect to the

running of simulation models, including the difference

between discrete-time and continuous-time models, how to

choose the cycle length and how to accurately convert rates

to probabilities. Finally, we address the theory and practice

of discounting future costs and effects to their present

values to account for time preference and intertemporal

opportunity costs.

The purpose of this article is to provide both a guide to

the concept of time for those conducting health economic

evaluations and an aid to those interpreting findings from

the literature. It considers time primarily in the context of

simulation modelling for CEA. However, the issues dis-

cussed are also relevant for related forms of evaluation,

such as budget impact analysis and comparative effec-

tiveness analysis. Although this article cannot be exhaus-

tive in scope or detail, it seeks to provide an accessible

overview and an introduction to the relevant literature. It is

hoped that this article will encourage analysts to consider

time carefully and write more explicitly about how time

relates to the modelling of decision problems.

2 Cohort Selection and Time Horizons

An important modelling choice is how long to simulate the

implementation of an intervention and its consequent

effects. This choice largely depends on whether the inter-

vention’s effects are transitory or permanent, how many

cohorts are simulated and whether the intervention has any

shared effects. A number of factors that influence cost

effectiveness vary with both age and calendar time,

therefore these questions of how long to simulate an

intervention’s implementation and over how many cohorts

are important for model estimates. For example, rates of

disease progression vary with age and health technologies

and epidemiological characteristics change over time.

Consequently, an intervention’s cost effectiveness should

not be considered a fixed property, but specific to the

population and time period in question. The following

sections further describe cohort selection before consider-

ing the implications for model time horizons.

2.1 Cohort Selection

A cohort is a number of intervention recipients grouped

together for analytical purposes. Many CEAs use single-

cohort models [3], which simulate one cohort of patients

over time. By contrast, multi-cohort models simulate

multiple recipient cohorts. Although cohorts can be dif-

ferentiated by other factors, such as sex, race and year of

diagnosis, this article focuses on cohorts that are differ-

entiated by their birth year. Closed models are defined as

models that simulate only those cohorts present in the

initial period, whereas open models allow new cohorts to

enter over time [4, 5]. Some refer to such open models as

population models [6, 7].

The policy choices facing decision makers are usually

not for a single cohort of intervention recipients. Never-

theless, single-cohort models have the benefit of conceptual

simplicity and can be adequate to answer the resource

allocation decision in certain circumstances. Indeed, the

widespread use of single-cohort models may reflect an

often implicit assumption that the cost effectiveness

demonstrated in a given cohort is representative for other

cohorts, both now and in the future. Such an assumption is

reasonable if there are no relevant differences between

cohorts, there are no (relevant) shared effects between

cohorts and if large real price changes or technological

innovations are not anticipated in the near future.

In some cases there will be important differences in cost

effectiveness between cohorts; therefore, it can be helpful

to differentiate between types of cohorts. We can define the

new recipient cohorts in any given year as the incident

cohorts and the cohorts already eligible for the intervention

as the prevalent cohorts. For example, the introduction of

an age-based prevention programme such as screening will

affect three principal categories of cohorts: (1) the current

incident cohort with current age equal to the screening start

age; (2) the prevalent cohorts already aged within the

screening age range; and (3) future incident cohorts that

will age into the screening age range as time progresses.

These three categories are represented in Fig. 1 in a

hypothetical intervention that takes 3 years per patient to

complete as cohorts 3, 1 and 2, and 4–7, respectively. The

distinction between incident and prevalent cohorts only
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applies to interventions that take a long time to complete

per cohort. This example can be contrasted with infant

bloodspot screening. Since infant bloodspot screening only

occurs once and the duration of intervention for a given

cohort is short, such an intervention will only have one

eligible cohort in any given year.

Differences between the current incident cohort and

future incident cohorts are one obvious reason for using a

multi-cohort model [8]. For example, in the context of

screening for the prevention of cervical cancer, the vacci-

nation of teenage girls against human papillomavirus

(HPV) means that the expected incidence of disease in

future cohorts is lower, with the result that screening is

anticipated to be less cost effective than in the current

incident cohort of unvaccinated women [9]. Multi-cohort

models that include future incident cohorts can account for

such differences.

A second, but less obvious, reason for using multi-co-

hort models is the differences between the current incident

and prevalent cohorts [10]. For example, in an aged-based

screening programme the prevalent cohorts start screening

part-way through the eligible screening age range, and thus

only receive what remains of the screening schedule. The

cost effectiveness of this remaining portion of the inter-

vention will likely differ from the complete screening

schedule. Multi-cohort models can be used to account for

such differences.

A third and important reason for using multi-cohort

models is to simulate shared effects between cohorts, such

as herd immunity due to vaccination against an infectious

disease. These simulations often involve multiple cohorts

and employ transmission dynamic models, in which the

risk of infection varies with the proportion of the popula-

tion infectious at a given time [11]. Such shared effects

models typically simulate all individuals in whom trans-

mission may be affected rather than only those who receive

the intervention in question. For example, in the case of

childhood influenza vaccination the entire population will

often be modelled, as transmission can take place across all

age groups [12].

When using multi-cohort models, analysts should con-

sider whether to report estimates aggregated over all

cohorts, or to report disaggregated results for specific

subgroups [9, 13]. This choice largely depends on whether

subgroup-specific policy choices are feasible. Cohort-

specific estimates are less meaningful where there are

shared effects between cohorts, such as in infectious dis-

eases, as it is not possible to isolate cohort-specific effects.

If estimates for multiple cohorts are aggregated together,

the number of cohorts modelled and the consequences this

has for incremental cost-effectiveness ratios (ICERs) and

the correspondence to policy questions should be carefully

considered [9].

We recommend that analysts explicitly define the sim-

ulated cohorts and describe how they relate to the policy

choices faced by decision makers with respect to the

patient population and time period in question. If none of

the reasons for including multiple cohorts apply, we rec-

ommend using single-cohort models in the interests of

parsimony. For multi-cohort models we recommend that

the choice of reporting aggregate or disaggregated esti-

mates is justified.

2.2 Intervention Duration, Implementation Period

and Analytic Horizon

The number of cohorts modelled and the simulation of

shared effects have implications for how long an inter-

vention should be simulated and how long to assess its

effects. There is a lack of consensus terminology regarding

time horizons in CEA modelling. To address this we define

and then provide advice around three important choices.

The first is the intervention duration, which we define as

the length of time over which the intervention is applied

per person or cohort. This may be short in the case of infant

bloodspot screening or be lifelong where a medication is

taken daily until death. The intervention duration is

inherent to the intervention itself and generally we rec-

ommend modelling until the completion of the intervention

duration for all recipient cohorts. Curtailing the interven-

tion duration, therefore, is to model a shorter course of an

intervention than would be expected in reality, and, hence,

may be unrepresentative of actual costs and effects.

Fig. 1 A multi-cohort model illustrating a 3-year intervention

duration, a 5-year implementation period and a lifetime analytic time

horizon. Each bar represents the lifespan of a cohort with a life

expectancy of 80 years. The oldest cohort is born in 1943 and dies in

2023. The intervention starts at age 70 years and implementation

begins in 2015; consequently, the two oldest cohorts start the

intervention after age 70 years. If the implementation period were

sufficiently long, all cohorts would complete the intervention.

However, imposing a 5-year implementation period will censor some

implementation for the youngest two cohorts. If effects are assessed

until the death of the youngest cohorts then the analytic horizon is the

year 2029
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Next, we define the implementation period as the period

over which the intervention is applied over all simulated

cohorts. This is identical to the intervention duration in a

single-cohort model. In a multi-cohort model it is typically

the time between the start of the intervention for the first

cohort and the end of the intervention for the last cohort.

However, in some cases analysts constrain the implemen-

tation period to some point in time before the conclusion of

the intervention for all cohorts [14, 15]. For example, in

Fig. 1 a five year implementation horizon would curtail

implementation for some cohorts at year 2020. Whereas

some cohorts (cohorts 3–5) complete the full intervention,

other cohorts (cohorts 6 and 7) are constrained from

completing the full course. To avoid curtailing the inter-

vention duration we recommend specifying a sufficiently

long implementation period.

Finally, we define the analytic horizon as the period

over which costs and effects are assessed. The time horizon

should generally be long enough to capture all meaningful

differences in costs and effects between alternatives con-

sidered [16], which in many cases will be the lifetime of

the cohorts modelled. Analyses with analytic horizons

shorter than the cohorts’ lifetimes potentially omit relevant

outcomes and therefore may provide incorrect results [13].

Some modellers adopt a cross-sectional approach that

imposes a common implementation and analytic horizon

over multiple cohorts; in some cases, this horizon is shorter

than the cohorts’ lifetimes [17]. This cross-sectional

interpretation contrasts with the more conventional longi-

tudinal approach that appraises outcomes over the lifetime

of the modelled individuals [18]. The cross-sectional

approach has been recognised as less useful for appraising

cost effectiveness and more relevant for assessing popu-

lation health and budget impact [19, 20]. Such cross-sec-

tional models are sometimes described as population

models, although this is not necessarily the same inter-

pretation that population models are open models.

There are some common issues that apply to these three

aspects of models. Models are typically used only to sim-

ulate a finite period of implementation and consequent

effects [21], whereas the actual period of implementation

and effects is often open-ended. For example, the inter-

vention itself may be implemented permanently (e.g.

having a continuous implementation period) or the result-

ing effects may be unending (e.g. with the eradication of an

infectious disease). While decision models can be extended

to include additional incident cohorts and the scope of

appraisal may extend long into the future, this inevitably

comes at the costs of increasingly uncertain estimates.

Therefore, it is often appropriate to limit the analysis to the

most immediate cohorts for which policy decisions are

required, provided that the intervention has no shared

effects.

In the case of interventions with shared effects, the choice

of the number of cohorts to simulate, the implementation

period and the analytic horizon all require particular con-

sideration. Infectious disease models often apply a long

implementation period simulating multiple future cohorts

[22]. This is to capture the changes in disease incidence and

transmission dynamics over time following the introduction

of the intervention. Since some of the effects of the inter-

vention may occur in cohorts other than the intervention’s

direct recipients, there is often no natural lifetime horizon to

apply [23]; however, the simulation still needs to cease

somewhere. Accordingly, the cross-sectional approach

described above is sometimes used. While this inevitably

censors some implementation and effects, the omission of

future outcomes can become negligible when the model is

run far into the future due to discounting (simulating

100 years of vaccination is not uncommon [22]). Current

practice formost of suchmodels is to halt the simulation once

infection rates stabilise [22]; alternatively, the time horizon

may be selected using the near-stabilisation of ICERs as a

criterion. Although the uncertainty of estimates for the dis-

tant future may be high, a long timeframe seems to be the

only way to obtain unbiased cost-effectiveness estimates for

many interventions with shared effects.

Analyses typically assume that the intervention and

related technologies remain stable over the period mod-

elled. This is a pragmatic assumption as the emergence of

new technologies typically cannot be anticipated. There-

fore, it is advisable that all simulated cohorts complete

their intervention duration, even though in actuality the

intervention may become obsolete before the model’s

implementation horizon [9]. This is preferable to assuming

the intervention ceases, as that knowingly introduces bias

by arbitrarily curtailing implementation. Similarly, a

pragmatic approach commonly adopted is that prices are

held constant [24]. The cost year from which prices are

taken or inflated to should be as recent as possible and

clearly stated [25]. Although the assumption that real prices

remain constant is unlikely to hold, relatively small price

changes are unlikely to alter the conclusions of most

analyses. However, abrupt price reductions occurring on

patent expiry of either the intervention of interest or its

comparators might be relevant for reimbursement decisions

[26, 27]. Nevertheless, the consequences of such future

price changes are complex and it is unclear how they

should be best handled in CEA modelling.

3 Simulating Time in Economic Evaluations

An important modelling consideration in CEA is exactly

how the timing of clinical events is simulated. The level of

realism used to simulate the timing of events also
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determines how accurately amounts of time (durations) are

estimated. The main outcomes of CEAs are often defined

in terms of amounts of time, such as the duration of a

disease, quality-adjusted life-years (QALYs) and the

duration (and thus costs) of an intervention. An incorrect

assessment of these durations can therefore lead to inac-

curate cost-effectiveness estimates.

3.1 Modelling Techniques

There are several possible modelling techniques for

CEAs, the choice of which affects the way time is sim-

ulated. These modelling techniques can generally be

divided into (1) decision tree models [28, 29]; (2) Markov

and other state transition models [1, 16, 30]; and (3)

discrete-event simulation models [31]. Decision trees

simulate which clinical events will occur and in what

order, to calculate expected costs and effects. They typi-

cally do not simulate the timing of events (i.e. time is not

modelled explicitly). In state transition models, cohorts of

patients are followed over time as they transition between

a finite number of mutually exclusive possible health

states. Most state transition models are discrete-time

models, in which state membership (i.e. the number of

individuals in a given health state) is only simulated at

the beginning and end of each cycle and so is unknown

between cycles. In discrete-event simulation models the

timing of clinical events is simulated, rather than the

transitions between states over fixed cycles. Therefore,

such models are not restricted to pre-defined paths

between health states. Many discrete-event simulations

are continuous-time models that simulate the exact timing

of each event, but a discrete-time approach is also pos-

sible. Note that the distinctions between modelling tech-

niques are not always clear-cut, e.g. Markov models and

state transition models can also be evaluated using dis-

crete-event simulation.

Recommendations on when to use which modelling

technique have been published previously [32–34]. How-

ever, as a general rule, for interventions with a short

duration and only short-term effects (e.g. painkillers for a

transient migraine), a model that does not explicitly sim-

ulate time, such as a decision tree, may be sufficient.

Decision trees may also suffice for one-off treatments with

long-term effects (e.g. a life-saving appendectomy), pro-

vided that the pay-offs at the end of the decision tree can be

readily appraised and are adjusted to their present value

(see Sect. 4). For interventions with complex long-term

effects (e.g. gastric bypass surgery which may prevent or

delay the onset of diabetes mellitus) or a long duration (e.g.

a cancer screening programme with multiple screening

rounds), it is necessary to use a model that explicitly

models time [1].

3.2 Cycle Lengths and Half-Cycle Corrections

Modelling in discrete time can yield inaccurate cost-ef-

fectiveness estimates. This is because time is inherently

continuous; treating it as discrete within simulation models

leads to an approximation error in the estimation of state

membership, because state membership (and thus treat-

ments and patient characteristics) are then assumed to

remain constant during cycles. Figure 2 shows a continu-

ous survival function, the area under which represents the

total time spent in a state over many individuals. The

discrete approximation of that survival curve is shown by

the step function. The resulting discrete-time approxima-

tion error is given by the lightly-shaded area between the

step function and the continuous survival function. A

continuous-time model best represents reality and is thus

the most accurate approach. A practical reason for discrete-

time modelling is that state membership after each cycle is

easily calculated, whereas continuous-time modelling

requires more advanced modeling techniques, such as

discrete-event simulation.

Discrete-time models generally give sufficient realism

regarding the timing of events, provided that the cycle

length is short enough to ensure that the approximation

error is small. Figures 2a and b show discrete-time

approximations of the same continuous survival function

with long and short cycles, respectively. The figure shows

that the approximation error is larger with the long cycle

length and that the short cycle model better approximates

the continuous-time reality. However, even with a shorter

cycle length the time spent in the state is underestimated.

Furthermore, the solution of using short cycles is not

always practical, as shorter cycles impose larger compu-

tational burdens and very short cycles may be required to

make the approximation error negligible.

To reduce the approximation error without employing

very short cycles, analysts often apply a half-cycle cor-

rection (HCC) or another type of continuity correction in

state transition models [35]. The standard HCC consists of

adding half a cycle of the state membership at the begin-

ning of the first cycle and subtracting half a cycle of the

membership at the end of the last cycle (see Fig. 2) [36].

While a HCC may substantially reduce the approximation

error, the accuracy of the standard HCC has been debated

[37–40], leading to agreement among these authors that the

standard HCC is flawed and the recommendation to use the

cycle-tree HCC (also known as the life table method),

which calculates state membership as the average of state

membership at the beginning and end of each cycle [40].

The cycle-tree HCC is visible in Fig. 2a as the sum of

the lightly and darkly-shaded areas between the discrete-

time step function and the piecewise linear function that

joins state membership at the beginning and the end of each

Time in Health Economic Evaluation 1259



cycle. In the case of this convex survival function the HCC

slightly overestimates total state membership, and the

approximation error with a cycle-tree HCC shown by the

darkly shaded area. In this example the standard HCC and

the cycle-tree HCC are equivalent. This is illustrated by

summing the cycle-tree HCCs from each cycle, yielding

the area of the grey column, which represents half a cycle

of state membership at the beginning of the first cycle.

Although an HCC can reduce the discrete-time

approximation error, it cannot fully correct it if the cycle

length is too long. While the remaining approximation

error is small when a short cycle length is used as in

Fig. 2b (it is too small to be visible in the figure), this error

can remain large if the cycle length is long. In Fig 2a for

example, although the HCC reasonably approximates the

survival function in cycles 2 and 3, it overestimates sur-

vival in the first cycle due to the large per-cycle transition

probability. Consequently, the HCC is not sufficient in a

model with a long cycle. Unfortunately, this dependence of

the adequacy of the HCC on the cycle length is not always

reflected in existing guidelines [41]. So, although a cycle-

tree HCC will generally improve accuracy, analysts should

be aware both that the gain in accuracy may be negligible if

the cycle length is already short and that estimates may

remain biased if the cycle length is too long.

When choosing the cycle length, modellers should take

into account the accuracy of the results as well as the

computation time and complexity of the analysis. As

computation time increases with the inverse of the cycle

length, using short cycles may result in impractically long

run times in some models. However, advances in com-

puting power have generally alleviated this concern. Given

this, we recommend not choosing the cycle length simply

based on data availability (e.g. the interval between mea-

surements in a longitudinal study) or using default values

(e.g. 1 year). If the computation time is acceptable, we

recommend using a cycle length that is sufficiently short

that a HCC is not required. Such a cycle length may be

much shorter than is considered clinically relevant, e.g.

chronic diseases that take years to progress may be simu-

lated using a cycle as short as 1 week.

The size of the discrete-time approximation error, and

thus the accuracy of the model results, depend on whether

an HCC is applied and on the size of the transition prob-

abilities in the model, which in turn depends on the cycle

length. An analysis of how the approximation error varies

with these two factors is given in the Appendix, using an

example of a state transition model with two states. To

assess whether a given cycle length is short enough, we

recommend checking the largest probability of leaving the

current state per cycle (i.e. the sum of the transition

probabilities out of the current state). An HCC is likely not

necessary if this probability is lower than 5 % for all states

and time periods, as the relative approximation error must

be smaller than 2.5 % in that case. If this probability

exceeds 40 % for some states, then it is possible that the

results will be inaccurate even with an HCC. In such cases,

we recommend reducing the cycle length or performing a

sensitivity analysis on the cycle length to prove that the

approximation error does not substantially affect the

Fig. 2 The half-cycle correction (HCC) applied in two discrete-time

models approximating a continuous survival function with long

(a) and short (b) cycle lengths. The discrete-time approximation error

is the lightly shaded area between the continuous survival curve and

its discrete approximation represented by the step function. This error

is larger in the model with a longer cycle length (a). The standard

HCC is shown as the sum of the lightly and darkly shaded areas

between the step function and a piecewise linear function joining state

membership at the beginning and end of each cycle. a Shows how the

HCC from each cycle of length t can be gathered, as represented by

the column of shaded triangles, and then summed to yield an area

equivalent to half a cycle of state membership at the start of the first

cycle, represented by the shaded column
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results. In models with a maximum per-cycle probability

between 5 and 40 %, an HCC is probably necessary. An

adequately implemented HCC (we recommend the cycle-

tree HCC) should be sufficient for accurate estimates in

that case.

Note that it is also possible to evaluate a state transition

model as a continuous-time model, so that the approxi-

mation error disappears and no HCC is needed. This is

typically done using discrete-event simulation, but analytic

approaches are sometimes also possible [42].

3.3 Changing the Cycle Length

Calculating the transition probabilities associated with

different cycle lengths in state transition models can be

difficult. For transition probabilities where there is only one

possible transition (and no reverse transitions), the calcu-

lations are relatively straightforward; a transition proba-

bility Pt2 using a cycle of t2 years can be transformed into a

transition probability Pt1 with a cycle of t1 years using

Pt1 ¼ 1� ð1� Pt2Þ
t1=t2 , and the transition probability Pt1

can be calculated from a transition rate r as Pt1 ¼ 1� e�rt1

[43, 44]. As the transition probabilities are often estimated

using observational data that do not have the same mea-

surement interval as the cycle length, such conversion

formulas are typically required.

These conversion formulas are not necessarily exact for

transition probabilities in models with multiple states.

Consider the example of a three-state model with an annual

cycle shown in Fig. 3a [45]. Patients progress from

decompensated cirrhosis (DeCirr) to hepatocellular carci-

noma (HeCarc) or death, and patients with HeCarc have an

increased risk of dying. The annual transition probability

from DeCirr to death of 0.14 includes two possible paths:

(1) patients can develop HeCarc and die from HeCarc in

the same year; or (2) patients can die without developing

HeCarc. The univariate conversion of probabilities to a

different cycle length ignores the first possibility, and can

thus lead to incorrect transition probabilities. Figure 3

shows that the annual transition probabilities out of DeCirr

are quite different between the initial values and those

based on conversion to and back from monthly probabili-

ties. Note that this bias cannot be reduced by using an

HCC.

In some cases it is possible to use matrix roots based on

eigendecompositions to change the cycle length in a Mar-

kov model [45]. These matrix roots take into account the

possibility of multiple events per cycle, and thus yield

accurate results. Another solution is to choose a short cycle

length, such that the probability of multiple clinical events

occurring during a cycle is very small, thereby minimising

the bias shown in Fig. 3. Estimating transition probabilities

from observational data for models with short cycles can be

difficult if the observational intervals are long; however,

appropriate statistical methods have been described in the

literature [46].

4 Discounting and Time Preference

People typically prefer to enjoy good things sooner rather

than later. This tendency is called positive time preference

and it means that the present value of future costs or health

effects is less than at the time they will be realised [47].

Discounting is the method used to find the present value of

future outcomes in economic evaluation. Discounting is

generally easy to implement and country-specific CEA

guidelines usually give clear advice on what rates to apply.

The near-universal consensus is to discount costs and

health effects at an equal discount rate that remains con-

stant over time, typically ranging from 3 to 5 % [47].

Nevertheless, discounting remains a much-debated topic

[48], undoubtedly partly because it leads to a worsening of

ICERs for many interventions.

4.1 The Standard Discounting Model

Discounting is usually applied as a discrete function, using

an annual discount factor of dt = (1 ? r)-(t-1), where r is

the annual discount rate and t is the time period starting at

t = 1 in the discount year. Accordingly, all outcomes

within each given year are discounted equally, irrespective

of when in the year they occur. Although it may be more

theoretically consistent to apply a continuous discount

factor of the form dt = e-r(t-1), this is rarely applied in

practice.

The literature discussing the rationale for discounting is

extensive [47, 49, 50]. There are two principal arguments

supporting discounting [51]. The first is that positive time

preference is an undeniable aspect of human behaviour and

that social decision makers should reflect private prefer-

ences [50]. The second is that there is an opportunity cost

of spending on health rather than other goods and services:

if money is spent now to achieve future health gains, these

future gains need to be sufficiently large to outweigh the

return on funds allocated to other uses [51]. While there are

competing arguments on what should represent the rate of

return of alternative uses of funds, government borrowing

costs as represented by bond yields are typically used to

represent this intertemporal opportunity cost [48]. Note that

inflation is not a reason to discount and that discounting

should be applied irrespective of any anticipated real price

changes [52].

Most countries recommend discounting costs and effects

at a common rate, in which case the practical advice on
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discounting is straightforward: both costs and effects

should be discounted according to national guidelines and

the analysis should clearly state the rates applied. In the

interests of comparability between countries, it is useful to

supplement the base case with estimates for the rates of 3

and 5 %, as recommended by The Panel on Cost-Effec-

tiveness in Health and Medicine [48]. These rates are also a

reasonable recommendation for countries without official

discounting guidance.

A univariate sensitivity analysis featuring discount

rates ranging from 0 to 6 % is a common requirement of

CEA guidelines. When conducting such sensitivity anal-

yses, the discount rates on costs and effects should be

varied together, so that equal discounting is maintained.

Such sensitivity analyses usefully illustrate the effects of

discounting to decision makers and should be reported.

Nevertheless, analysts should not overemphasise undis-

counted outcomes, as this may give the impression that

the intervention is more cost effective than in reality.

What is often not appreciated is that the relative ranking

of interventions in terms of ICERs may be less sensitive

to discounting than the ICER itself. Discount rates should

not be varied during probabilistic sensitivity analysis as

the appropriate discount rate is not usually subject to

parameter uncertainty.

Discounting is used to estimate the present value of

future costs and effects at a single point in time known as

the discount year. Although the choice of discount year

will affect the absolute size of discounted costs and effects,

it does not influence ICERs under equal discounting, as

adjusting the discount year results in equiproportionate

changes in the numerator and the denominator of the ICER.

Accordingly, the choice of discount year is usually not

critical to the outcome of a CEA [53], but may be relevant

to cost analyses. Nevertheless, it is conventional practice to

use the year the intervention begins as the discount year, as

this represents a decision year in which the intervention

may or may not be implemented. However, it is necessary

to maintain a common discount year when comparing

multiple possible initiation years, for example with alter-

native start ages for prophylactic statin therapy in a given

cohort.

The adequacy of the standard discounting model with

constant, equal discount rates for costs and effects has been

debated, as there is considerable evidence that individuals’

time preferences do not accord with this model [54]. For

instance, individuals tend to demonstrate decreasing rates

of time preference as outcomes become more distant [55].

This has prompted proposals of non-constant discounting

in which the discount rate falls over time [49, 56]. How-

ever, such discounting results in dynamic inconsistency,

whereby the optimal policy choice can alter as time

advances and outcomes become more immediate [48].

Apparently, the only national CEA guidelines recom-

mending a declining discount rate are those of France,

which permit a fall in the discount rate after 30 years [57],

although the guidance is ambiguous regarding implemen-

tation. A declining discount rate has also been recom-

mended by the UK Treasury [55], but this guidance is not

CEA specific.

4.2 Differential Discounting

Differential discounting is one deviation from standard

discounting that has been adopted in several CEA guide-

lines. It is the application of a different (typically lower)

discount rate to health effects than to costs [58]. The pri-

mary justification for differential discounting is the

expectation of growth in the willingness to pay for health

over time, represented either by the value of health or the

cost-effectiveness threshold [58, 59]. The CEA guidelines

of Belgium, The Netherlands and Poland require

Fig. 3 The effect of ignoring the possibility of multiple events per

cycle when changing the cycle length in state transition models.

A Markov model with three health states is shown: decompensated

cirrhosis (DeCirr), hepatocellular carcinoma (HeCarc) and death.

a Shows the model with annual cycle; b shows the model transformed

to monthly cycles using a univariate conversion of probabilities; and

c shows the implied annual transition probabilities of the Markov

model using monthly cycles (adapted from Chhatwal et al. [45])

1262 J. F. O’Mahony et al.



differential discounting, as did the UK’s prior to 2004 [53,

60]. Differential discounting improves the ICERs of many

interventions, especially those with a long lag between

costs and benefits, such as preventive interventions.

Differential discounting can complicate the interpreta-

tion of cost-effectiveness evidence, presenting problems

that have yet to be documented or resolved. One long-

recognised issue is the so-called postponing paradox,

whereby an intervention’s ICER declines if implementa-

tion is postponed to a cohort in the following year, sup-

posedly leading decision makers to eternally postpone

implementation [61]. The paradox has been dismissed as

irrelevant, because CEA informs what interventions to

implement in a given period rather than when to allocate

resources [62]. Despite this, there remain two closely

related problems.

The first is that the choice of discount year can influence

ICERs. Setting the discount year to a period before treat-

ment initiation will reduce the ICER relative to the more

common practice of discounting to the year of treatment

initiation. For example, a Dutch CEA of cervical screening

strategies starting at age 30 years in women who received

HPV vaccination discounted the costs and effects of

screening to the age of vaccination at 12 years [63]. Under

the Dutch discount rates of 4 % for costs and 1.5 % for

effects, the 18 additional years of discounting resulted in

ICERs that were approximately 35 % lower than would

have been the case had outcomes been discounted to the

initiation of screening. This should be avoided by setting

the discount year to the year of treatment initiation. In the

case of comparisons of multiple possible intervention ages

for a given cohort, the discount year should be held as the

earliest intervention year.

The second problem related to the postponing paradox is

that ICERs fall with the addition of future cohorts to a

model [53]. As mentioned above, the simulation of indirect

effects of vaccination requires the inclusion of multiple

future cohorts, which will improve the ICER under dif-

ferential discounting, all else being equal. Indeed, this

effect can become so pronounced when the number of

future cohorts is large that ICERs under differential dis-

counting can become even lower than ICERs without dis-

counting. For example, a CEA of HPV vaccination that

employed 100 years of incident cohorts found an ICER of

£2385/QALY under differential discounting rates of 6 and

1.5 % for costs and effects, respectively, whereas the

undiscounted ICER was £4320/QALY [64]. So, although

discounting typically inflates ICERs when beneficial

effects occur after costs are incurred, this can be out-

weighed by the implicit increase in the value of health

effects implied by differential discounting if the analysis

extends sufficiently far into the future. This effect of dif-

ferential discounting compromises the comparability of

estimates between CEAs with different numbers of future

cohorts.

We make three recommendations for those countries

requiring differential discounting. The first is to also report

outcomes for equal discounting at both 3 and 5 %. Second,

clearly define the simulated cohorts, including their ages at

the date the intervention begins. Third, always report the

discount year and intervention start year for all strategies

modelled.

5 Discussion

The methodological issues regarding time have important

implications for evaluating the cost effectiveness of

healthcare strategies. This applies to each of the three

principal issues considered in this article: (1) the choice of

which cohorts to simulate in a model and for how long; (2)

how to simulate time in a CEA model; and (3) how to

discount future costs and effects. Aspects of these ques-

tions can be complex and abstract (e.g. the postponing

paradox); nevertheless, these are important elements of the

correspondence between models and the real-life policy

choices they inform. Therefore, applied CEA modellers

should have an appreciation of the issues regarding time

and reflect them appropriately in the simulations they

conduct to help inform policy makers.

Single-cohort models are often sufficient to simulate an

intervention’s cost effectiveness and are widely used.

However, some situations require the simulation of multi-

ple cohorts, which then raises questions of how the

implementation period and analytic time horizon should be

extended to accommodate future cohorts and whether to

report disaggregated subgroup-specific estimates. This

article’s key recommendations are summarised in Table 1.

The choice of cohorts simulated should be made explicit,

as should the decision to report aggregated results or

otherwise. Implementation periods and analytic time hori-

zons should be sufficiently long to avoid curtailing the

simulation of interventions and the assessment of their

outcomes. One exception to this recommendation is the

multi-cohort modelling of interventions with shared

effects, in which the imposition of finite time horizons that

censor the assessment of effects for at least some cohorts

seems largely inevitable. Further research is required into

the most appropriate approach in this case.

The issue of how to simulate the timing of events using

different modelling techniques has received much atten-

tion in the literature. Although the limitations of models

not explicitly simulating time have previously been

recognised, decision trees are still used. As long as

models do simulate time explicitly and cycle lengths are

set appropriately within discrete time models, the choice

Time in Health Economic Evaluation 1263



between discrete-time and continuous-time modelling is

not necessarily critical. The cycle length determines how

well discrete-time models approximate continuous-time

processes and thus is an important modelling choice.

Although HCCs can reduce some of the inaccuracies

associated with long cycle lengths, we generally recom-

mend making the cycle length sufficiently short to ensure

the differences between continuous-time and discrete-time

models are negligible, provided that a short cycle is

computationally feasible. Finally, adjusting transition

probabilities for different cycle lengths is an underappre-

ciated issue and analysts should always take care when

making such conversions.

Discounting remains a much-debated topic in CEA,

probably partly due to the deterioration of ICERs after

discounting in many cases. Discounting is not always

intuitive, especially to non-economists, and it is under-

standably disconcerting that ICERs can vary profoundly

with small changes in the discount rate, especially when

the rationale for one rate over another appears weak. The

particular rates and form of discounting applied should

have a sound normative basis and not be driven by a desire

to find some interventions cost effective. Alternatives to

constant-rate discounting (e.g. hyperbolic discounting) do

not accord with standard economic theory and may

potentially lead to logical inconsistencies and unanticipated

consequences. Accordingly, we strongly recommend

applying the discount rates stipulated in the relevant CEA

guidance.

Differential discounting is one departure from standard

discounting that has achieved sufficient support among

health economists to be adopted in some national CEA

guidelines. However, questions remain whether the dif-

ferentials between rates currently employed are empirically

justified given plausible rates of threshold growth [65].

Similarly, it is unclear how differential discounting should

be applied in multi-cohort models. This is especially rele-

vant for infectious disease models that extend far into the

future, as the implied growth in the willingness to pay for

health over a long period can be substantial.

A common thread linking the three topics considered in

this article is the correspondence of models to the policy

questions they guide. Recognising that models need to

closely correspond to policy questions if they are to pro-

vide reliable guidance prompts two further important

considerations. First, judging how well a given model

corresponds to a particular policy question requires a clear

model description. Unfortunately, many aspects of time are

often not explicitly noted or are incompletely described,

including the implementation period, simulation cycle

length and discount year. Therefore, it can be unclear what

analytic approach has been adopted and why. Although

technical details regarding model implementation that do

not affect results can sometimes be omitted in the

description of applied CEAs, many issues regarding time

can have a strong impact on the estimated cost effective-

ness and should thus be reported.

Second, it is important that policy questions are framed

in a way that is meaningful to CEA. For example, a deci-

sion maker may quite naturally ask what the cost effec-

tiveness of a given intervention in the population over the

next 5 years is. Such a question may not be meaningfully

applicable to many long-duration interventions such as

screening programmes. Accordingly, dialogue between

Table 1 Key recommendations

Topic area Key recommendations

Cohort selection and model

structure

Clearly describe the scope of the policy choice regarding who will receive in the intervention and for how long

Clearly define the simulated recipient cohorts, their birth years, intervention start dates and the time horizon of

the model

Use a multi-cohort model if there are substantial differences in cost effectiveness between cohorts or if the

intervention has shared effects; otherwise, use a single-cohort model

Set an implementation period that does not constrain cohorts from completing the intervention if possible

Justify the choice of aggregate or disaggregate reporting when using multi-cohort models

Simulating time Use short cycle lengths when modelling in discrete time or use a continuous-time model

When using state transition models, assess whether a cycle-tree half-cycle correction is necessary

Take care when converting rates and probabilities where multiple transitions are possible

Discounting Follow national CEA guidelines and clearly state which rates were applied

Report outcomes for discount rates of 3 and 5 % in the interests of comparability

Clearly state the discount year

When using differential discounting in multi-cohort models, acknowledge the fact that ICERs can be inflated by

the inclusion of future cohorts

CEA cost-effectiveness analysis, ICER incremental cost-effectiveness ratio
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modellers and decision makers is essential, not only to

ensure that models correspond with policy questions but

also that the right policy questions are posed in the first

place.

A limitation of this article is that it naturally cannot

address all relevant issues regarding time in CEA mod-

elling. It has not considered extrapolation of trial data and

the influence of alternative survival functions on cost-ef-

fectiveness estimates, which have been addressed else-

where [66, 67]. Similarly, it has not reviewed recent work

on the graphical presentation of net benefit and its uncer-

tainty over time [68, 69], or how time affects value of

information analysis and the possibility of delaying

implementation for further research [70, 71]. We have

investigated the effects of the cycle length and the HCC on

the discrete-time approximation error, leading to suggested

bounds on the appropriate size of the per-cycle transition

probabilities. Further research is necessary to provide a full

exposition of these results. More generally, our recom-

mendations are based on the literature and the authors’

CEA modelling experience rather than being substantiated

with examples.

6 Conclusions

Choices around time in health economic evaluations can be

influential, but unfortunately they can also be conceptually

challenging for both analysts and policy makers. We make

a number of specific recommendations, but the most

important is the general suggestion that analysts think

carefully about how considerations of time may impact on

results and that they explicitly state and justify their

modelling choices.
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Appendix: Effects of Cycle Length and Half-Cycle
Correction on Discrete-Time Approximation
Error

Consider a simple two-state state transition model in which

the only possible transition is from alive to dead. The

model can be analysed using either discrete or continuous

time. Let t denote the time in the model, with the unit of

measurement equal to the cycle length in a discrete-time

analysis, so that t = 1 corresponds to the end of the first

cycle. The proportion of a cohort alive at any point

between the cycles can be calculated under the assumption

of constant hazard and using the per-cycle transition

probability, p. For a cohort alive at t = 0, the proportion

alive at time t is given by f(t) = elog(1-p)t, where t is

constrained to integer values for the discrete-time model,

so that the proportion alive at time t = 1 is f(1) = 1 - p.

When evaluated in continuous time, the amount of time

spent in the alive state during the first cycle can be cal-

culated by integrating f(t), which yields that

Texact ¼
R 1

0
elogð1�pÞtdt ¼ �p

logð1�pÞ. When evaluated in dis-

crete time without HCC, the time spent in this state over

the first cycle is TNoHCC = 1 - p, i.e. the state membership

at the end of the cycle; with a cycle-tree HCC, this is

THCC = 1 - 0.5p, which is the average state membership

at the beginning and the end of the cycle. The state

membership as a function of time is illustrated in Fig. 4, for

Fig. 4 State membership as a function of time in a continuous-time

two-state model with states alive and dead, as well as the implied

half-cycle correction approximations to the state membership func-

tion. HCC half-cycle correction
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both the continuous-time model and the discrete-time

model with HCC.

The discrete-time approximation error can be defined as

the relative difference in the time spent between the con-

tinuous-time approach and the discrete-time approach,

which is given by TNoHCC�TExact
TExact

¼ p�1
p
log 1� pð Þ � 1 and

THCC�TExact
TExact

¼ 0:5p�1
p

log 1� pð Þ � 1, without HCC and with

HCC, respectively. The absolute values of these functions

are shown in Fig. 5, as the approximation errors with and

without HCC have a different sign in this case due to the

convexity of the survival function.

In models with more than two states, for each state there

is not only a bias associated with patients leaving the state

before the end of a cycle, but also a bias due to patients

entering the state during the cycle. These two biases have

opposite directions, and so will offset each other to a

degree. Consequently, the total approximation error cannot

be larger than the maximum of these two biases. The size

of the bias associated with patients leaving the state before

the end of a cycle can be described by the functions in

Fig. 5, with these functions applied to the probability that a

patient leaves a state during a cycle, i.e. the sum of all

transition probabilities out of this state.

The bias associated with patients entering a state during

a cycle has the same size in absolute terms (i.e. THCC -

TExact or TNoHCC - TExact) as the bias associated with the

probability of leaving the state during a cycle for the state

from which the patients are coming. This fact is illustrated

in Fig. 4, where the area between the exact state mem-

bership curve and the HCC approximation is identical for

both the dead state and the alive state: the overestimation in

the time spent in the alive state (with HCC) equals the

underestimation of the time spent in the dead state.

Although the approximation error relative to the time spent

in the initial state (i.e. alive) remains constant over cycles,

the approximation error relative to the time spent in the

absorbing state (i.e. dead) is initially high and decreases

over cycles. Note, therefore, that the relative error for the

absorbing state will be larger than shown in Fig. 5 in early

cycles. These large approximation errors typically only

occur in the first cycles of the model, when there can be

large relative increases in the state membership during a

cycle for states with initial state membership equal to 0.

When summed over a number of cycles of the model, the

total relative bias due to patients entering a state during a

cycle will thus be attenuated. Numerical experimentation

with state transition models with more than two states

suggests that the approximation error in any state in a state

transition model is rarely larger than the relative bias given

in Fig. 5, unless the model is run for a small number (e.g.

less than 50) of cycles.

The benefits of the HCC can be shown in the illustrative

example of a two-state model. An illustrative maximum

bias of 2.5 % is achieved when the probability of leaving

the current state does not exceed 0.05 in a model without

HCC or 0.40 in a model with HCC. Thus, a tolerable level

of approximation error can be achieved at much higher

transition probabilities if a HCC is applied. We did not

study the effect of the approximation error on comparative

cost-effectiveness outcomes such as ICERs, and we also

ignored the effects of discounting in our analysis. However,

the biases due to the discrete-time approximation in the

costs and health effects under different treatments should

all have the same direction, so that the bias in cost-effec-

tiveness ratios may be much smaller than the bias in the

time spent in a state.
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