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Structural insights into glutathione-mediated
activation of the master regulator PrfA
in Listeria monocytogenes

Dear Editor

Listeria monocytogenes is a Gram-positive and facultative
intracellular bacterial pathogen with two distinct lifestyles:
saprophytic in the soil and parasitic in host cells (Freitag
et al., 2009). L. monocytogenescan cause a foodborne
infection characterized by bacteremia, meningoencephalitis,
abortion or neonatal sepsis and a high case-fatality rate
(Freitag et al., 2009). In relation to pathogenesis, the
expression of most virulence genes in L. monocytogenes is
regulated by the master regulator PrfA, which is a member of
the Crp/Fnr family of site-specific DNA-binding transcription
regulators (Freitag et al., 2009). The absolute requirement of
PrfA for pathogenesis was demonstrated utilizing L. mono-
cytogenesstrains with deletions or loss-of-function mutations
within the prfA gene (Chakraborty et al., 1992; Freitag et al.,
1993; Leimeister-Wachter et al., 1990). PrfA activates tran-
scription by binding to a palindromic promoter element ter-
med the PrfA box (tTAACanntGTtAa). Very recently,
glutathione (GSH), either generated by bacteria or derived
from host cells, was found to be the essential small molecule
cofactor of PrfA through allosteric binding to the protein
(Reniere et al., 2015). PrfAG145S, the most well studied
constitutively active mutant, was found to be able to com-
pletely bypass the requirement for glutathione during infec-
tion (Reniere et al., 2015).

Infection by L. monocytogenes can be detected by the
cytosolic DNA sensing pathway of the host cell, thereby
inducing the expression of type I interferons (IFNs) (Hansen
et al., 2014). Although type I IFNs are well known for their
ability to protect the host from viral infections and some
bacterial infections, these pleiotropic cytokines are found to
be able to exacerbate infections by L. monocytogenes
(Rayamajhi et al., 2010). It was also found that L. monocy-
togenes is intrinsically resistant to broad spectrum cepha-
losporin antibiotics, which are commonly used in the
treatment of bacterial infections (Krawczyk-Balska and
Markiewicz, 2015). Thus a better understanding of PrfA
regulation may give us an alternative strategy to control
infection. Despite extensive genetic and biochemical
research, the detailed molecular mechanism of PrfA

activation and regulation is still unclear due to the lack of
structures of PrfA bound to DNA and cofactor. In this study,
we determined the crystal structures of PrfA-DNA binary and
PrfA-DNA-GSH ternary complexes, thereby providing new
insights into the mechanism of PrfA-mediated gene
regulation.

We have co-crystallized PrfA bound to an intact 28-bp
complementary dsDNA (plus 1-nt 5′ overhang at either end)
and solved the structure of the binary complex at 2.93 Å res-
olution (X-ray statistics in Table S1). The complex contains
one PrfA dimer bound to one dsDNAmolecule and exhibits an
intramolecular 2-fold pseudosymmetry (Fig. 1A). Each PrfA
monomer consists of an N-terminal domain (aa 1–108), a long
α-helical linker (aa 109–1137), and a helix-loop-helix-con-
taining C-terminal domain (aa 138–1237) (Fig. 1A). The
overall DNA bend is ∼45° in the PrfA-DNA complex (Fig. 1A),
which is significantly different from the previously reported
bend values of approx. 80° to 90° for Crp-DNA (Benoff et al.,
2002; Schultz et al., 1991) and CprK-DNA (Levy et al., 2008)
complexes (Fig. S1A). Given the high quality electron density
map for the DNA in the complex, we could readily build each
nucleotide into the map (Fig. S1B). The intermolecular con-
tacts between PrfA dimer and DNA (summarized in Fig. 1B)
contain both specific interactions with bases and nonspecific
interactions with sugar-phosphate backbone. The second
helix of the helix-loop-helix motif penetrates into the major
groove of the DNA, with S184 and R188 forming direct
hydrogen bonds with the bases of T20 and G18, respectively
(Fig. 1C). The majority of the intermolecular contacts are
between PrfA and the sugar-phosphate backbone of the DNA
(Fig. 1D and 1E). The superimposed structures of PrfA in
DNA-bound state with either PrfA or PrfAG145S in free state
(Eiting et al., 2005) are shown in Fig. S1C and S1D, respec-
tively. As expected, PrfA in the DNA-bound state is highly
similar to the constitutively activemutant PrfAG145S (Figs. S1D
and 1G), while comparison with wild type PrfA shows signifi-
cant differences in the helix-loop-helix motif and the linker
region (Figs. S1C and 1F).

We have solved the structure of the PrfA-DNA-GSH
ternary complex at 2.99 Å (X-ray statistics in Table S1)
generated by soaking the PrfA-DNA crystal in high
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concentration glutathione solution. The overall structure of
the ternary complex (Fig. 2A) is very similar to PrfA-DNA
binary complex (Figs. 1A and S1E), with no further

conformational changes detected within either protein or
DNA components following glutathione binding. The glu-
tathione molecule binds into the central cleft surrounded by
N-terminal domain, C-terminal domain, and the α-helical
linker (Fig. 2A). Although the detailed interactions are dif-
ferent, the GSH binding sites in the PrfA-DNA complex are
topographically equivalent to those for cAMP in Crp (Schultz
et al., 1991) (Fig. S2A), CO in CooA (Lanzilotta et al., 2000)
(Fig. S2B), OCPA in CprK (Levy et al., 2008) (Fig. S2C), and
2OG in NtcA (Zhao et al., 2010) (Fig. S2D), indicating a
conserved cofactor binding mode amongst the Crp/Fnr
family members. The ternary complex structure also implies
that the central ligand-binding cleft cannot accommodate the
larger oxidized glutathione (GSSG), thereby providing a
structural explanation for previous observation that PrfA
does not bind to GSSG (Reniere et al., 2015). Complex
formation between glutathione GSH and PrfA is mediated by
van der Waals contacts and hydrogen bond interactions,
whereby the glutathione molecule interacts with amino acids
from both N- and C-domains, as well as the linker region

Figure 1. Structure of PrfA bound to DNA. (A) 2.93 Å crystal

structure of PrfA bound to a 28 bp DNA duplex (with one base

5′ overhang at each end). N-terminal domain, C-terminal

domain, and linker region are colored in green, blue and violet,

respectively. The helix-loop-helix (HTH) motif in the C-terminal

domain is colored in red. DNA is colored in light brown. The

DNA is bent by appox. 45° upon binding to PrfA. (B) Schematic

of the detailed interactions between protein and DNA. The

amino acids from two PrfA monomers are colored in cyan and

black, respectively. (C–E) Hydrogen bonds interactions

between one PrfA monomer with the DNA. (F and G) Super-

posed structures of PrfA in PrfA-DNA complex (cyan) with PrfA

(WT) in free state (panel F, magenta) and PrfAG145S in free state

(panel G, brown). The disordered region in the structure of PrfA

(WT) in free state is shown as magenta dots (panel F). The two

panels are shown in the same view.
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Figure 2. Structure of PrfA bound to DNA and glutathione. (A) 2.99 Å crystal structure of PrfA bound to DNA and glutathione

(GSH). The color code is same as in Fig. 1A. The glutathione is shown in a space filling representation. (B) Hydrogen bonds

interactions between PrfA and GSH. The color code is same as in panel A. The 2Fo-Fc density of GSH in yellow is shown in blue

mesh with σ = 1.0. (C) The thiol group of GSH is embedded in a hydrophobic/aromatic pocket. The side chains of amino acids of PrfA

and thiol group of GSH are shown in a dotted representation.
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(Fig. 2B and 2C). The hydrogen bonds are formed between
glutathione with the main-chain of a β-strand (Y62-A66) in
the N-terminal domain, the side chain of K122 and Y126
from the linker region, and side chain of Y154 from C-ter-
minal domain (Fig. 2C). The thiol group of glutathione is
embedded in a hydrophobic/aromatic pocket composed of
Q61, Y63, F67, K122, Y126, and W224 (Fig. 2C).

In this study, we have provided detailed structural infor-
mation on PrfA bound to its target DNA sequence and
cofactor glutathione GSH. We observed a DNA-induced
conformational change of PrfA by comparing the structures
of PrfA in free and DNA bound states (Figs. S1C and 1F).
The conformation of PrfA in the PrfA-DNA and PrfA-DNA-
GSH complexes is similar to the constitutively active mutant
PrfAG145S in free state (Fig. S1D and 1G), consistent with the
previous prediction that PrfAG145S mutant adopts an induced
conformation (Eiting et al., 2005). The DNA is bent by about
45° upon complex formation with PrfA, which is smaller than
the previously reported approx. 80° to 90° value for Crp/Fnr
family proteins: Crp and CprK (Benoff et al., 2002; Levy
et al., 2008; Schultz et al., 1991). One possibility is that for
PrfA-mediated gene regulation, the DNA does not need to be
bent to the same degree observed for Crp and CprK com-
plexes. Another possibility, however, is that the larger DNA
bend in Crp and CprK complexes is due to the use of DNA
molecules containing breaks, which may introduce artifacts
during the crystallization process. In keeping with this
hypothesis, an unpublished crystal structure of Crp-DNA-
cAMP complex (RCSB: 3MZH) shows the same degree of
bending observed for our PrfA complexes when using an
intact DNA lacking breaks (Fig. S1A). Interestingly, the DNA
is bent slightly larger in our structures than in the recently
reported PrfA-DNA complexes (Hall et al., 2016).

It has been proposed that PrfA activation constitutes a
two-step process involving initial DNA binding followed by
allosteric binding of glutathione for fully transcriptional acti-
vation (Reniere et al., 2015). This implies that glutathione
binding will cause additional conformational change to the
PrfA-DNA binary complex. However, we did not observe
conformational differences between the PrfA-DNA binary
complex and the PrfA-DNA-GSH ternary complex, which is
consistent with the previous understanding that PrfA could
interact with DNA in vitro even in the absence of an activator.
In addition, recent structure determination of the PrfAG145S-
DNA complex (Hall et al., 2016) showed that there is no
conformational difference between PrfAG145S-DNA and PrfA-
DNA/PrfA-DNA-GSH complexes. Given that the constitu-
tively active mutant PrfAG145S can completely bypass the
requirement for glutathione during infection (Reniere et al.,
2015), we conclude that our PrfA-DNA/PrfA-DNA-GSH
structures represent the fully active conformation, the same
as PrfAG145S-DNA. More importantly, the recently solved
structure of PrfA bound to GSH adopts the similar active
conformation to PrfA-DNA-GSH complex, in contrast to the
inactive conformation of the PrfA in free state (Hall et al.,
2016). This indicates that the GSH-activated PrfA is primed

for DNA binding (Hall et al., 2016). In line with the structural
results, in vitro binding assays also confirmed that PrfAG145S

(structurally equivalent to PrfA-GSH) shows stronger binding
to the target DNA than the wild-type PrfA (Eiting et al., 2005).
Based on the structural and biochemical results, we propose
that glutathione will first bind to PrfA and induce local con-
formational change, which is a common feature of other
Crp/Fnr family members. Next, GSH-bound PrfA will bind to
the target DNA to regulate gene transcription.
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