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TEICHMÜLLER SPACES AND BOUNDED SYMMETRIC
DOMAINS DO NOT MIX ISOMETRICALLY

Stergios M. Antonakoudis

Abstract. This paper shows that, in dimensions two or more, there are no holo-
morphic isometries between Teichmüller spaces and bounded symmetric domains in
their intrinsic Kobayashi metric.
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1 Introduction

We study holomorphic maps between Teichmüller spaces Tg,n ⊂ C3g−3+n and
bounded symmetric domains B ⊂ CN in their intrinsic Kobayashi metric. The main
result in this paper is the following theorem.

Theorem 1.1. Let B be a bounded symmetric domain and Tg,n be a Teichmüller
space with dimCB, dimCTg,n ≥ 2. There are no holomorphic isometric immersions

B f
↪−−−−→ Tg,n or Tg,n

f
↪−−−−→ B

equivalently, there are no holomorphic maps f such that df is an isometry for the
Kobayashi norms on tangent spaces.

The proof involves ideas from geometric topology and leverages the description
of Teichmüller geodesics in terms of measured foliations and extremal length on
Riemann surfaces.

We note the following immediate corollary.

Corollary 1.2. There is no locally symmetric variety V isometrically immersed in
the moduli space of curves Mg,n, nor is there an isometric copy of Mg,n in V, for
the Kobayashi metrics, so long as both have dimension two or more.
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A feature that Teichmüller spaces and bounded symmetric domains have in com-
mon is that they contain holomorphic isometric copies of CH

1 through every point
and complex direction; in particular, in complex dimension one, Teichmüller spaces
and bounded symmetric domains coincide.

In higher dimensions, it is known [FM12, see discussion §13.2.1] that there are
many holomorphic isometries between Teichmüller spaces f : Tg,n ↪→ Th,m and
bounded symmetric domains f : B ↪→ ˜B, respectively, in their intrinsic Kobayashi
metric.

Informally, our results show that in dimensions two or more Teichmüller spaces
and bounded symmetric domains do not mix isometrically.

As an application of Theorem 1.1, we prove:

Theorem 1.3. Let (M, g) be a complete Kähler manifold with dimCM ≥ 2 and
holomorphic sectional curvature at least −4. There is no holomorphic map f : M →
Tg,n such that df is an isometry on tangent spaces.

Proof. The monotonicity of holomorphic sectional curvature under holomorphic
maps and the existence of (totally geodesic) holomorphic isometries CH

1 ↪→ Tg,n

through every complex direction imply that M has constant holomorphic curvature
-4. [Roy71] Since M is a complete Kähler manifold, we have M ∼= CH

N , which is
impossible when N ≥ 2 by Theorem 1.1.

The following corollary is immediate.

Corollary 1.4. There is no holomorphic, totally geodesic isometry from a Kähler
manifold M into a Teichmüller space Tg,n, so long as M has dimension two or more.

Questions. We conclude with two open questions.
1. Is there a holomorphic map f : (M, g) → Tg,n from a Hermitian manifold with
dimCM ≥ 2 such that df is an isometry on tangent spaces?
2. Is there a round complex two-dimensional linear slice in TXTg,n?
Theorems 1.1 and 1.3 suggest that the answers to both questions are negative.

Notes and References. For an introduction to Teichmüller spaces, we refer to
[GL00] and [Hub06]; for an introduction to symmetric spaces and their intrinsic
Kobayashi metric, we refer to [Hel78], [Sat80] and [Kob98], respectively. We note
that the Kobayashi metric of a bounded symmetric domain B does not coincide with
its Hermitian symmetric metric, unless it has rank one ie. B ∼= CH

N .
In his pioneering paper [Roy71], H. L. Royden showed that the Kobayashi met-

ric of Tg,n coincides with its classical Teichmüller metric and, using this result, he
proved that, when dimCTg ≥ 2, the group of holomorphic automorphisms Aut(Tg) is
discrete; hence, in particular, Tg,n is not a symmetric domain. A proof that Aut(Tg,n)
is discrete for all finite-dimensional Teichmüller spaces of dimension two or more is
given in [EM03].



GAFA TEICHMÜLLER SPACES AND BOUNDED SYMMETRIC DOMAINS... 455

The existence of isometrically immersed curves, known as Teichmüller curves,
in Mg,n has far-reaching applications in the dynfamics of billiards in rational poly-
gons. [Vee89], [McM03] Corollary 1.2 shows that there are no higher dimensional,
locally symmetric, analogues of Teichmüller curves.

In a follow-up paper [Ant], we use the results from this work to show that Theo-
rem 1.1 is true for convex domains B ⊂ CN as well. Finally, we refer to [Ant], where
a similar result to Theorem 1.1 is proved for isometric submersions.

2 Preliminaries

Let Tg,n denote the Teichmüller space of marked Riemann surfaces of genus g with
n punctures; it is the orbifold universal cover of the moduli space of curves Mg,n

and it is naturally a complex manifold of dimension 3g − 3 + n. It is known [Ber81]
that Teichmüller space can be realized as a (contractible) bounded domain Tg,n ⊂
C3g−3+n, by the Bers embeddings.

Let B ⊂ CN be a bounded domain; we call B a bounded symmetric domain if
every point p ∈ B is an isolated fixed point of a holomorphic involution σp : B → B,
with σ2

p = idB. Bounded symmetric domains are contractible and homogeneous
as complex manifolds. It is classically known [Hel78] that all Hermitian symmetric
spaces of non-compact type can be realized as bounded symmetric domains B ⊂ CN ,
by the Harish-Chandra embeddings.

The unit disk Δ ∼= {z ∈ C : |z| < 1} is a bounded symmetric domain; in
fact, it is the unique (up to isomorphism) contractible bounded domain of complex
dimension one. We denote by CH

1 the unit disk equipped with its Poincaré metric
|dz|/(1 − |z|2) of constant curvature −4, which we will refer to as the complex
hyperbolic line. Schwarz lemma shows that every holomorphic map f : CH

1 → CH
1

is non-expanding.

The Kobayashi metric [Kob98]. Let B ⊂ CN be a bounded domain, its intrinsic
Kobayashi metric is the largest complex Finsler metric such that every holomorphic
map f : CH

1 → B is non-expanding: ||df ||B ≤ 1. It determines both a family of
norms || · ||B on the tangent bundle TB and a distance dB(·, ·) on pairs of points.

The Kobayashi metric has the fundamental property that every holomorphic
map between complex domains is non-expanding; in particular, every holomorphic
automorphism is an isometry. The Kobayashi metric of complex domain depends
only on its structure as a complex manifold.

Examples.

(1) CH
1 realises the unit disk Δ with its Kobayashi metric. The Kobayashi metric

on the unit ball CH
2 ∼= {(z, w) | |z|2 + |w|2 < 1} ⊂ C2 coincides with its

unique (complete) invariant Kaëhler metric of constant holomorphic curvature
-4.See [Kob98, Example 3.1.24].
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(2) The Kobayashi metric on the bi-disk CH
1 × CH

1 coincides with the sup-metric
of the two factors. It is a complex Finsler metric; it is not a Hermitian met-
ric. [Kob98, Corollary 3.1.10].

(3) The Kobayashi metric on Tg,n coincides with the classical Teichmüller metric,
which endows Tg,n with the structure of a complete geodesic metric space. [Roy71]

Incidentally, Examples 1 & 2 describe all bounded symmetric domains up to
isomorphism, in dimension one and two. We discuss Example 3 in more detail below.

Teichmüller space [GL00], [Hub06]. Let Σg,n be a connected, oriented surface
of genus g and n punctures and Tg,n denote the Teichmüller space of Riemann
surfaces marked by Σg,n. A point in Tg,n is specified by an orientation preserving
homeorphism φ : Σg,n → X to a Riemann surface of finite type, up to a natural
equivalence relation1.

Teichmüller space Tg,n is naturally a complex manifold of dimension 3g − 3 + n
and forgetting the marking realises Tg,n as the complex orbifold universal cover of
the moduli space Mg,n. When it is clear from the context we often denote a point
specified by φ : Σg,n → X simply by X.

Quadratic differentials. For each X ∈ Tg,n, we let Q(X) denote the space of
holomorphic quadratic differentials q = q(z)(dz)2 on X with finite total mass: ||q||1 =
∫

X |q(z)||dz|2 < +∞, which means that q has at worse simple poles at the punctures
of X.

The tangent and cotangent spaces to Teichmüller space at X ∈ Tg,n are described
in terms of the natural pairing (q, μ) 	→

∫

X qμ between the space Q(X) and the space
M(X) of L∞-measurable Beltrami differentials on X; in particular, the tangent
TXTg,n and cotangent T ∗

XTg,n spaces are naturally isomorphic to M(X)/Q(X)⊥ and
Q(X), respectively.

The Teichmüller-Kobayashi metric on Tg,n is given by norm duality on the tan-
gent space TXTg,n from the norm ||q||1 =

∫

X |q| on the cotangent space Q(X)
at X. The corresponding distance function is given by the formula dTg,n

(X, Y ) =
inf 1

2 log K(φ) and measures the minimal dilatation K(φ) of a quasiconformal map
φ : X → Y respecting their markings.

We denote by QTg,n
∼= T ∗Tg,n the complex vector-bundle of holomorphic quadratic

differentials over Tg,n and by Q1Tg,n the associated sphere-bundle of quadratic dif-
ferentials with unit mass. There is a natural norm-preserving action of PSL2(R)
on QTg,n, with the diagonal matrices giving the geodesic flow for the Teichmüller-
Kobayashi metric of Tg,n. For each (X, q) ∈ Q1Tg,n, the orbit PSL2(R) · (X, q) ⊂
Q1Tg,n induces a holomorphic totally-geodesic isometry CH

1 ∼= SO2(R)\PSL2(R) ↪→
Tg,n, which we refer to as the Teichmüller disk generated by (X, q).

1 Two marked Riemann surfaces φ : Σg,n → X, ψ : Σg,n → Y are equivalent if ψ ◦ φ−1 : X → Y
is isotopic to a holomorphic bijection.



GAFA TEICHMÜLLER SPACES AND BOUNDED SYMMETRIC DOMAINS... 457

Measured foliations [FLP79]. Let MFg,n denote the space of equivalent classes
of nonzero (singular) measured foliations on Σg,n, where two measured foliations
F , G are equivalent F ∼ G if they differ by a finite sequence of Whitehead moves
followed by an isotopy of Σg,n preserving their transverse measures. It is known that
MFg,n has the structure of a piecewise linear manifold, which is homeomorphic to
R6g−6+2n\{0}.

The geometric intersection number of a pair of measured foliations F , G, denoted
by i(F , G), induces a continuous map i(·, ·) : MFg,n×MFg,n → R≥0, which extends
the geometric intersection pairing on the space of (isotopy classes of) simple closed
curves on Σg,n. [Bon88]

Given F ∈ MFg,n and X ∈ Tg,n, we let λ(F , X) denote the extremal length of
F on the Riemann surface X given by the formula λ(F , X) = sup �ρ(F)2

area(ρ) , where
�ρ(F) denotes the ρ-length of F and the supremum is over all (Borel-measurable)
conformal metrics ρ of finite area on X.

Each nonzero quadratic differential q ∈ Q(X) induces a conformal metric |q| on
X, which is non-singular of zero curvature away from the zeros of q, and a measured
foliation F(q) tangent to vectors v = v(z) ∂

∂z with q(v) = q(z)(v(z))2 < 0. The
transverse measure of the foliation F(q) is (locally) given by integrating |Re(

√
q)|

along arcs transverse to its leaves.
We refer to F(q) as the vertical measured foliation induced from (X, q). In local

coordinates, where q = dz2 (such coordinates exist away from the zeros of q), the
metric |q| coincides with the Euclidean metric |dz| in the plane and the measured
foliation F(q) has leaves given by vertical lines and transverse measure by the total
horizontal variation |Re(dz)|. We note that the measured foliation F(−q) has (hor-
izontal) leaves orthogonal to F(q) and the product of their transverse measures is
just the area form of the conformal metric |q| induced from q.

When it is clear from the context we often identify the measured foliation F(q)
with its equivalence class in MFg,n. The following fundamental theorem will be
used in the next section.

Theorem 2.1 ([HM79]; Hubbard-Masur). Let X ∈ Tg,n; the map q 	→ F(q) induces
a homeomorphism Q(X)\{0} ∼= MFg,n. Moreover, |q| is the unique extremal metric
for F(q) on X and its extremal length is given by the formula λ(F , X) = ||q||1.

3 Extremal length geometry

Let CH
2 ∼= {(z, w) | |z|2 + |w|2 < 1} ⊂ C2 denote the complex hyperbolic plane,

realized as the round unit ball with its Kobayashi metric. In this section we will use
measured foliations and extremal length on Riemann surfaces to prove:

Theorem 3.1. There is no holomorphic isometry f : CH
2 ↪→ Tg,n for the Kobayashi

metric.
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Outline of the proof. The proof leverages the fact that extremal length provides
a link between the geometry of Teichmüller geodesics and the geometric intersection
pairing for measured foliations.

Firstly, we note that such an isometry f would be totally-geodesic, it would send
real geodesics in CH

2 to Teichmüller geodesics in Tg,n, preserving their length. See
[EKK94, Theorem 5] for a proof using a deep result due to Slodkowski [S�lo91]. By
Theorem 2.1, we can parametrize the set of Teichmüller geodesic rays from any base
point X ∈ Tg,n by the subspace of measured foliations F ∈ MFg,n with extremal
length λ(F , X) = 1.

Assuming the existence of f , we consider pairs of measured foliations that
parametrize orthogonal geodesic rays in the image of a totally real geodesic hyper-
bolic plane RH

2 ⊂ CH
2. We obtain a contradiction by computing their geometric

intersection number in two different ways.
On the one hand, we use the geometry of complex hyperbolic horocycles and

extremal length to show that the geometric intersection number does not depend on
the choice of the totally real geodesic plane. On the other hand, by a direct geometric
argument we show that this is impossible. More precisely, we have:

Proposition 3.2. Let q ∈ Q1Tg,n and G ∈ MFg,n. There exist v1, . . . , vN ∈ C∗

such that i(F(eiθq), G) =
∑N

i=1 |Re(eiθ/2vi)| for all θ ∈ R/2πZ.

The proof of the proposition is given at the end of the section. ��
See § 2 for background material in Teichmüller theory and notation.

Complex hyperbolic horocycles. Let γ : [0, ∞) → CH
2 be a geodesic ray with

unit speed. Since CH
2 is a homogeneous space, we have γ = α ◦ γ1, where γ1(t) =

(tanh(t), 0), for t ≥ 0, and α is a holomorphic isometry of CH
2. Each geodesic ray is

contained in the image of unique holomorphic totally-geodesic isometry φ : CH
1 ↪→

CH
2 satisfying γ(t) = φ(tanh(t)); in particular, φ1(z) = (z, 0), for z ∈ Δ ∼= CH

1.
We note that every complex geodesic φ : CH

1 ↪→ CH
2 arises uniquely (up to pre-

composition with an automorphism of CH
1) as the intersection of the unit ball in

C2 with a complex affine line.
Associated to each geodesic ray γ : [0, ∞) → CH

2 is a pair of transverse foliations
of CH

2, one by real geodesics asymptotic to γ and another by complex hyperbolic
horocycles asymptotic to γ. For each p ∈ CH

2 there exists a unique geodesic γp : R →
CH

2 and a unique time tp ∈ R such that γp(tp) = p and lim
t→∞

dCH2(γ(t), γp(t)) → 0.

For each s ∈ R+, we define the set H(γ, s) = {p ∈ CH
2 | exp(tp) = s}. The

collection of subsets {H(γ, s)}s∈R+ defines the foliation of CH
2 by complex hyperbolic

horocycles asymptotic to γ.

Extremal length horocycles. Let γ : [0, ∞) → Tg,n be a Teichmüller geodesic
ray with unit speed. It has a unique lift to γ̃(t) = (Xt, qt) ∈ Q1Tg,n, such that
γ(t) = Xt and γ̃(t) = diag(et, e−t) · (X0, q0). The map q 	→ (F(q), F(−q)) gives an
embedding QTg,n ↪→ MFg,n × MFg,n which satisfies ||q||1 = i(F(q), F(−q)) and
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sends the lift γ̃(t) = (Xt, qt) of Teichmüller geodesic ray γ to a path of the form
(etF(q), e−tF(−q)).

The latter description of a Teichmüller geodesic and Theorem 2.1 show that the
extremal length of F(qt) along γ satisfies λ(F(qt), Xs) = e2(t−s) for all t, s ∈ R+,
which motivates the following definition. For each F ∈ MFg,n the extremal length
horocycles asymptotic to F are the level-sets of extremal length H(F , s) = {X ∈
Tg,n | λ(F , X) = s} for s ∈ R+. The collection of subsets {H(F , s)}s∈R+ defines
the foliation of Tg,n by extremal length horocycles asymptotic to F .

There is transverse foliation of Tg,n by real Teichmüller geodesics with lifts (Xt, qt)
that satisfy F(qt) ∈ R+ ·F . One might expect that this foliation of Tg,n is analogous
to the foliation of CH

2 by geodesics that are positively asymptotic to γ. Although
this is not always true, it is true for generic measured foliations F ∈ MFg,n.

Theorem 3.3 (H. Masur; [Mas80]). Let (Xt, qt) and (Yt, pt) be two Teichmüller
geodesics and F(q0) ∈ MFg,n be uniquely ergodic.2 Then limt→∞dTg,n

(Xt, Yt) → 0
if and only if F(q0) = F(p0) in MFg,n and λ(F(q0), X0) = λ(F(p0), Y0).

Remark. It is known that this result is not true for measured foliations that are
not uniquely ergodic.

Proof of Theorem 3.1. Let f : CH
2 ↪→ Tg,n be a holomorphic isometry for the

Kobayashi metric. We summarize the proof in the following three steps:
1. Asymptotic behavior of geodesics determines the extremal length horocycles.
2. The geometry of horocycles determines the geometric intersection pairing.
3. Get a contradiction by a direct computation of the geometric intersection pairing.

Step 1. Let X = f((0, 0)) ∈ Tg,n and q, p ∈ Q1(X) unit area quadratic differ-
entials generating the two Teichmüller geodesic rays f(γ1),f(γ2), where γ1,γ2 are
two orthogonal geodesic rays in CH

2 contained in the image of the totally real
geodesic hyperbolic plane RH

2 ⊂ CH
2; explicitly, they are given by the formulas

γ1(t) = (tanh(t), 0), γ2(t) = (0, tanh(t)), for t ≥ 0.
For every (X, q) ∈ Q1Tg,n there is a dense set of θ ∈ R/2πZ such that the mea-

sured foliation F(eiθq) is uniquely ergodic [KMS86]; hence, we can assume without
loss of generality (up to a holomorphic automorphism of CH

2) that both F(q) and
F(p) are (minimal) uniquely ergodic measured foliations. In particular, we can apply
Theorem 3.3 to study the extremal length horocycles asymptotic to F(q) and F(p)
respectively.

The complex hyperbolic horocycle H(γ1, 1) is characterized by the property that
for the points P ∈ H(γ1, 1) the geodesic distance between γP (t) and γ1(t) tends to
zero as t → +∞, where γP (t) is the unique geodesic with unit speed through P that
is positively asymptotic to γ1. Applying Theorem 3.3 we conclude that:

2 A measured foliation F is uniquely ergodic if it is minimal and admits a unique, up to scaling,
transverse measure; in particular, i(γ, F) > 0 for all simple closed curves γ. Compare with [Mas80].
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Figure 1: The real slice of CH
2 ⊂ C

2 coincides with the Klein model RH
2 ⊂ R

2 of the real
hyperbolic plane of constant curvature −1.

f(CH
2) ∩ H(F(q), 1) = f(H(γ1, 1)), (3.1)

f(CH
2) ∩ H(F(p), 1) = f(H(γ2, 1)). (3.2)

Step 2. Let δ be the (unique) complete real geodesic in CH
2, which is asymptotic to

γ1 in the positive direction and to γ2 in the negative direction, i.e. its two endpoints
are (1, 0), (0, 1) ∈ C2 in the boundary of the unit ball. Let P1 and P2 be the two
points where δ intersects the horocycles H(γ1, 1) and H(γ2, 1), respectively. See 1.

The image of δ under the map f is a Teichmüller geodesic which is parametrized
by a pair of measured foliations F , G ∈ MFg,n with i(F , G) = 1 and its unique lift
to Q1Tg,n is given by (etF , e−tG), for t ∈ R. Let ˜Pi = (etiF , e−tiG), for i = 1, 2,
denote the lifts of P1, P2 along the geodesic δ. Then, the distance between the two
points is given by dCH2(P1, P2) = t2−t1. From Step 1, we conclude that et1F = F(q)
(3.1) and e−t2G = F(p) ((3.2). Therefore we have i(F(q), F(p)) = et1−t2 .

Remark. A simple calculation shows that t2−t1 = log(2); hence, i(F(q), F(p)) = 1
2 .

Step 3. The holomorphic automorphism given by φ(z, w) = (e−iθz, w), for (z, w) ∈
CH

2, is an isometry of CH
2 and sends the two horocycles H(γi, 1) to the horocycles

H(φ(γi), 1), for i = 1, 2. The Teichmüller geodesic ray f(φ(γ1)) is now generated by
eiθq, whereas the Teichmüller geodesic ray f(φ(γ2)) is still generated by p ∈ Q(X).
Since the distance between P1 and P2 is equal to the distance between φ(P1) and
φ(P2), using Step 2 and the continuity of the geometric intersection pairing we
conclude that i(F(eiθq), G) = 1

2 for all θ ∈ R/2πZ. However, this contradicts the
following Proposition 3.2. ��
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Proposition 3.2. Let q ∈ Q1Tg,n and G ∈ MFg,n. There exist v1, . . . , vN ∈ C∗

such that i(F(eiθq), G) =
∑N

i=1 |Re(eiθ/2vi)| for all θ ∈ R/2πZ.

Proof of Proposition 3.2. Let q ∈ Q(X) be a unit area quadratic differential. We
assume first that q has no poles and that G is an isotopy class of simple closed curves.
The metric given by |q| is flat with conical singularities of negative curvature at its set
of zeros and hence the isotopy class of simple closed curves G has a unique geodesic
representative, which is a finite union of saddle connections of q. In particular, we can
readily compute i(F(eiθq), G) by integrating |Re(

√

eiθq)| along the union of these
saddle connections. It follows that:

i(F(eiθq), G) =
N

∑

i=1

|Re(eiθ/2vi)| for all θ ∈ R/2πZ (3.3)

where N denotes the number of the saddles connections and {vi}N
i=1 ⊂ C∗ are their

associated holonomy vectors.
We note that when q has simple poles, there need not be a geodesic representative

in G anymore. Nevertheless, Eq. (3.3) is still true by applying the argument to a
sequence of length minimizing representatives.

Finally, we observe that the number of saddle connections N is bounded from
above by a constant that depends only on the topology of the surface. Combining this
observation with the fact that any G ∈ MFg,n is a limit of simple closed curves and
that the geometric intersection pairing i(·, ·) : MFg,n × MFg,n → R is continuous,
we conclude that Eq. (3.3) is true in general. ��

4 Symmetric spaces versus Teichmüller spaces

Let Tg,n ⊂ C3g−3+n be a Teichmüller space and B ⊂ CN a bounded symmetric
domain equipped with their Kobayashi metrics. In this section, we complete the
proof of the following theorem.

Theorem 4.1. Let B ⊂ CN be a bounded symmetric domain and Tg,n be a
Teichmüller space with dimCB, dimCTg,n ≥ 2. There are no holomorphic isometric
immersions

B f
↪−−−−→ Tg,n or Tg,n

f
↪−−−−→ B

equivalently, there are no holomorphic maps f such that df is an isometry for the
Kobayashi norms on tangent spaces.

Remarks. 1. Torelli maps (associating to a marked Riemann surface the Jaco-

bians of its finite covers) give rise to holomorphic maps Tg,n
T

↪−−−−→ Hh into
bounded symmetric domains (Siegel spaces). It is known that these maps are
not isometric for the Kobayashi metric in most directions. [McM]

2. For a similar result about holomorphic isometric submersions see [Ant].

Outline of the proofs. The proof that B �↪→ Tg,n follows from Theorem 3.1 (rank
one) and a classical application of Sullivan’s rigidity theorem (higher rank). The new
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ingredient we introduce in this section is a comparison of the roughness of Kobayashi
metric for bounded symmetric domains and Teichmüller spaces, which we will use
to prove that Tg,n �↪→ B ��
Preliminaries on symmetric spaces. We give a quick review of the main fea-
tures of symmetric spaces, from a complex analysis perspective, which we use in the
proof. We refer to [Hel78], [Sat80] for more details.

Let B ⊂ CN be a bounded symmetric domain and p ∈ B. There is a unique, up

to post-composition with a linear map, holomorphic embedding B i
↪−−→ CN such

that i(B) ⊂ CN is a strictly convex circular domain with i(p) = 0 ∈ CN , which we
refer to as the Harish-Chandra realization of B centered at p ∈ B.

It is known that the Harish-Chandra realization of B ⊂ CN has the following
useful description. There is a finite dimensional linear subspace VB ⊂ Mn,m(C), of
the space of complex n × m matrices, such that B ∼= {V ∈ VB | ||V ||B < 1}
is the unit ball for the operator norm on VB, where ||V ||B = sup||ξ||2=1||V (ξ)||2, for
V ∈ Mn,m(C). We note that there is a natural identification TpB ∼= VB ∼= CN . [Sat80]

The Kobayashi norm on TpB ∼= VB coincides with the operator norm ||V ||B, for
V ∈ VB ⊂ Mn,m(C) and the Kobayashi distance from the origin is given by the
formula dB(0, V ) = 1

2 log(1+||V ||B
1−||V ||B ), for V ∈ B. [Kub89]

Roughness of the Kobayashi metric. The following proposition describes the
roughness of the Kobayashi distance for bounded symmetric domains.

Proposition 4.2. Let V : (−1, 1) → B be a real-analytic path with V (0) �= p.
There is an integer K > 0 and an ε > 0 such that dB(p, V (·)) : [0, ε) → B is a
real-analytic function of t1/K for t ∈ [0, ε).

Proof. Let B = {||V ||B < 1} ⊂ VB ⊂ Mn,m(C) be the Harish-Chandra realization
of B centered at p. For each t ∈ (−1, 1), we denote by λi(t), for i = 1, . . . , n, the
eigenvalues of the (positive) square matrix V (t)∗V (t), counted with multiplicities,
where V ∗ denotes the Hermitian adjoint of V .

The eigenvalues of V (t)∗V (t) are the zeros of a polynomial, the coefficients of
which are real-analytic functions of t ∈ (−1, 1). Therefore, the points (t, λi(t)) ∈ C2

for i = 1, . . . , n and t ∈ (−1, 1) are contained in an algebraic curve C = {(t, λ) ∈
C2 | P (t, λ) = 0}, which is equipped with a finite-degree branched covering map
to C given by (t, λ) 	→ t, for (t, λ) ∈ C.

Since the operator norm is given by the formula ||V (t)||B = sup{|λi(t)|1/2}n
i=1,

the proof of the proposition follows by considering the Puiseux series expansion for
λi(t)’s and the formula dB(0, V (t)) = 1

2 log(1+||V (t)||B
1−||V (t)||B ). ��

The roughness of the Kobayashi metric for Teichmüller spaces is described by
the following two theorems of M. Rees.

Theorem 4.3 (M. Rees; [Ree02]). The Teichmüller distance dTg,n
: Tg,n × Tg,n →

R≥0 is C2-smooth on the complement of the diagonal d−1
Tg,n

(0).



GAFA TEICHMÜLLER SPACES AND BOUNDED SYMMETRIC DOMAINS... 463

Theorem 4.4 (M. Rees; [Ree04]). When dimCTg,n ≥ 2, the Teichmüller distance
dTg,n

: Tg,n × Tg,n → R≥0 is not C2+ε for any ε > 0.
Moreover, let X, Y ∈ Tg,n be two distinct points connected by a (real) Teichmüller

geodesic which is generated by a quadratic differential q ∈ Q1(X), with either a
zero of order two or number of poles less than n. There is a real analytic path
X(t) : (−1, 1) → Tg,n with X(0) = X such that the distance dTg,n

(X(t), Y ) is not

C2+h-smooth at t = 0, for every gauge function h(t) with limt→0
h(t)

1/log(1/|t|) = 0.

Proof of Theorem 4.1. Let B ⊂ CN be a bounded symmetric domain and Tg,n a
Teichmüller space with dimCB, dimCTg,n ≥ 2. Using the fact that bounded symmet-
ric domains and Teichmüller spaces contain holomorphic isometric copies of CH

1

through every point and complex direction, and a theorem of Slodkowski [S�lo91],
[EM03], we deduce that any holomophic map f between B and Tg,n which is an
isometry for the Kobayashi norms on tangent spaces would be totally-geodesic and
would therefore preserve the Kobayashi distance for pairs of points.
(B �↪→ Tg,n)

Theorem 3.1 shows that there is no holomorphic isometry f : CH
2 → Tg,n.

Moreover, an application of Sullivan’s rigidity theorem (see [Tan93] for a precise
statement) shows that there is no proper holomorphic map f : CH

1 × CH
1 → Tg,n,

hence neither is such a holomorphic map that is an isometry.
However, for every bounded symmetric domain B with dimCB ≥ 2 there is either

a holomorphic totally-geodesic isometry CH
2 ↪→ B (rank one) or a holomorphic

totally-geodesic isometry CH
1 ×CH

1 ↪→ B (higher rank). [Kob70] We conclude that
there is no holomorphic isometric immersion f : B ↪→ Tg,n.
(Tg,n �↪→ B)

Let f : Tg,n ↪→ B be a holomorphic isometric immersion. Since dimCTg,n ≥ 2,
we can choose two distinct points X, Y ∈ Tg,n as described in Theorem 4.4; hence
there is a real analytic path X(t) : (−1, 1) → Tg,n with X(0) = X such that the
Teichmüller distance dTg,n

(X(t), Y ) is not C2+h-smooth at t = 0 for every gauge
function h(t) with limt→0

h(t)
1/log(1/|t|) = 0.

Let p = f(Y ) ∈ B and V (·) : (−1, 1) → B be the real analytic path given
by V (t) = f(X(t)) for t ∈ (−1, 1). Theorem 4.3 shows dB(p, V (t)) is C2-smooth at
t = 0 and Proposition 4.2 shows that it is real analytic in t1/K , for some fixed integer
K > 0, for all sufficiently small t ≥ 0. Therefore, it follows that dTg,n

(X(t), Y ) is
C2+ 1

K -smooth, but this contradicts the choice of the path X(t) ∈ Tg,n, given by
Theorem 4.4, by considering the gauge function h(t) = t1/K for t ≥ 0. We conclude
that there is no holomorphic isometric immersion f : Tg,n ↪→ B. ��
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