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Abstract For a periodic vector field F , let Xε solve the dynamical system

dXε

dt
= F

(
Xε

ε

)
.

In (Set Valued Anal 2(1–2):175–182, 1994) Ennio De Giorgi enquiers whether from the

existence of the limit X0(t) := limε→0 Xε(t) one can conclude that dX
0

dt = constant. Our
main result settles this conjecture under fairly general assumptions on F , which in some
cases may also depend on t-variable. Once the above problem is solved, one can apply the
result to the corresponding transport equation, in a standard way. This is also touched upon
in the text to follow.
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1 Introduction

1.1 Problem setting

For each i = 1, . . . , d let Fi : [0,∞) × R
d → R be a smooth 1-periodic function for both

variables. Let us consider the first-order system of differential equations with oscillating
structure

dxi
dt

= Fi

(
t

ε
,
x1
ε

, . . . ,
xd
ε

)
i = 1, . . . , d, (1)

where ε > 0 is a small parameter. Our primary motivation for studying (1) comes from
a conjecture posed by Ennio De Giorgi in [6] (Conjecture 1.1 page 175) concerning the
homogenization of the transport equation

∂t uε(t, x) + F (t/ε, x/ε) · ∇xuε(t, x) = 0, t ∈ (0,∞), x ∈ R
d ,

uε(t = 0, x) = u0(x), x ∈ R
d ,

(2)

with vector field F = (F1, F2, . . . , Fd) Lipschitz continuous and periodic in both variables
(t, x). The Lipschitz continuous initial condition u0(x) is specified at the initial time t = 0.

He also conjectured that if (2) is homogenizable then the following property must be true
(see [6, page 177]): Let Xε(t) be the solution of the following initial value problem

dXε

dt
= F

(
t

ε
,
Xε

ε

)
, Xε(0) = p (3)

for some given initial condition p ∈ R
d . Then the limit exists

X0(t) := lim
ε→0

Xε(t) (4)

for any t, p. Moreover, there is a vector B ∈ R
d such that

dX0

dt
= B. (5)

We remark that Peirone [13] showed that if F does not depend on t , then the asymptotic
linearity of Xε(t) as t → ∞ implies that (2) is homogenizable; see Remark 4.

1.2 Related work

In view of Peirone’s result [13], the homogenization of (3) is closely related to the homog-
enization of the first-order transport equations ∂t u + F · ∇u = 0 describing miscible flow
in porous media [18]. One of the central questions concerning (2) is the strong convergence
which is not true in general as the example of Eq. (2) with F(t, x1, x2) = (0, sin x1), d = 2
shows; see [6] page 176. It is known that if div F = 0 1 then the effective equation has
arithmetic averages (

´
T2 F1(x)dx,

´
T2 F2(x)dx) as the forcing velocity, whereas the shear

field F(x) = aϕ(x), a = (1, γ ) ∈ R
2 yields harmonic averages, i.e., in the homogenized

equation the forcing velocity is a
´
T2

dx
ϕ(x) , see [18]. The interested reader can find more on

this problem in the works [5,9,18] and the references therein.
The homogenization of more general transport equations

∂t u
ε + div[aε f (u

ε)] = 0, uε(0, x) = U0(x, x/ε) (6)

1 This refers to the case of unit density ρ = 1 for the invariant measure; see Sect. 1.4 for more details.
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On a conjecture of De Giorgi related to homogenization 2169

under the assumption aε = a(x, x/ε) and divx a(x, y) = divy a(x, y) = 0, is studied in [20].
The case when aε = a(x/ε) is studied in [8]. It is also shown that solutions of (6) converge
in L2 and the limit equation is either a constant coefficient linear transport equation (ergodic
case) or an infinite dimensional dynamical system, see [8,20].

In [17] Tartar studied some transport equations with memory effects. He addressed the
question of importance of considering the limit function rather than the equation it satisfies.
The question he raised was whether the limit retains, in some sense, the structure of linear
transport equations (e.g., when it is traveling wave solution).

Some of these questions were addressed by Tassa in [18]. In particular, he showed that
for shear flow (d = 2) the limit is a traveling wave (Theorems 4.2 and 4.5 in [18]). He also
derived convergence rate which depends on the smoothness of the forcing vector field as well
as on whether the rotation number (which we denoted γ in the formula a = (1, γ ) above)
is rational or irrational. In fact for rational rotation number (Theorem 4.5 in [18]) the limit
is determined by some function aη; see (3.13) in [18], and the limit function is a traveling
wave if aη = const for all η ∈ [0, 1].

It seems plausible that the techniques here can (partially) be applied to more general
context involving random structure, i.e., stochastic differential equations. Similar type of
problems has been studied in recent works of Bardi–Cesaroni–Scotti [2]. The problem here
can be reduced to thewell-known classical perturbation problem through variable substitution
Y ε = Xε/ε. To illustrate this at a heuristic level, we assume (for clarity) F to be independent
of t . We thus have

dXε

dt
= F(Y ε), Xε(0) = p ⇒ dY ε

dt
= 1

ε
F(Y ε), Y ε(0) = p/ε.

Introducing Z ε(s) = Y ε(εs), s > 0, we infer dZε

ds = ε(Y ε)′(εs) = F(Z ε) and thus by
Theorem 3.1 [13] we get that for a fixed ε > 0 the limit

lim
s→∞

Z ε(s)

s
= lim

s→∞
Xε(εs)

εs
:= B

exists and is independent of ε for a suitable class of F . If we knew that this limit is also
uniform in ε, then for τ = εs we could conclude that limε→0

Xε(τ )
τ

exists for each fixed τ

and is independent of ε or, equivalently, Xε(τ ) = oε(τ ) + Bτ . Certainly this captures the
case when p = 0. Nevertheless, it is possible that our Theorem 2b has some overlapping
with above mentioned Theorem 3.1 [13].

A further direction, that our approach might be possible to extend to, is that of multiscale
problems.More exactly, one may consider F that has both slow and fast variable F(x, x/ε). A
particular case of this was studied by Menon [12], with F(x, x/ε) = div(K(x) + εA(x/ε)).

1.3 Problem setup

We shall switch between cases of t-dependent as well as t-independent F , and this will be
clear from the context. Hence we shall use both notation F(t, x), as well as F(x).

Next, going back to our t-independent F , one can establish a number of remarkable
properties, for the non-oscillating system (i.e., when ε = 1)

dxi
dt

= Fi (x1, . . . , xd) . (7)

Suppose that (7) has invariantmeasure dμx = ρ(x)dx with densityρ > 0, i.e., the vector field
ρF is divergence free; see Sect. 1.4 for details. For the two-dimensional problem, (d = 2),
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2170 A. L. Karakhanyan, H. Shahgholian

Kolmogorov proved that if F(x) = (F1(x1, x2), F2(x1, x2)) �= 0, is Z2 periodic and both
ρ and F are real analytic in (x1, x2) variables, then there is an analytic transformation of
coordinates y = f (x) such that (7) transforms into shear flow system

dyi
dt

= ai
G(y1, y2)

, i = 1, 2, (8)

with constants a1 = 1, a2 = γ ∈ R and G being a Z2 periodic scalar function. Here γ is
called the rotation number of (7) (also called rotation index), and the system (7) is ergodic
if γ is diophantine; see [16]. For the latter case, the shear flow (8) can be further transformed

to a constant speed system dwi

dt = ci , i = 1, 2 where ci are constants.
In fact, one can take

G(x1, x2) = ρ(x1, x2), for a.e. (x1, x2) ∈ R
2

to be the density of invariant measure of (8) such that we have div ρ
G = 0. In other words,

now 1
G is the density of the invariant measure of the new shear flow system of differential

Eq. (8), obtained from (7) via a coordinate transformation introduced by Kolmogorov [10].
The main goal of this article is to analyze the behavior of the solution Xε(t) to Eq. (3) as

ε → 0 under some conditions imposed on the vector field F = (F1, . . . , Fd) which we list
below:

(F.1) F : Rd → R
d is continuous, Zd -periodic, and there is a constant L > 0 such that

|F(u1) − F(u2)| � L|u1 − u2|, ∀u1, u2 ∈ R
d . (9)

We write F = (F1, . . . , Fd) where Fi , 1 � i � d are the components of the vector
field F .

(F.2) There is a constant λ > 0 such that

λ � Fi (u) � 1

λ
, 1 � i � d

for every u ∈ R
d .

(F.3) There is a bounded Z
d periodic function ρ > 0 such that div(ρF) = 0 in R

d . Here ρ

is called the density of invariant measure.

Equation div(ρF) = 0 is understood in the weak sense, i.e.,
´

ρF · ∇ψ = 0 for every
ψ ∈ C∞

0 (Rd).
The conditions (F.1)–(F.3) will be mainly used in the statement of Theorem 2.

1.4 Invariant measure

(General discussion) Condition (F.3) needs some explanation. Suppose that F(x) =
a

G(x) , x ∈ R
d for some constant vector a and suitable scalar function G such that F is

smooth. It is clear that for this case ρ = G. However for general flows the existence of ρ

is not easily obtained. In the proof of Theorem 2b, we require that the invariant measure
exists and is bounded in order to construct a change of variables which reduces general flows
to shear one. In this regard, we mention the following existence result from [7]: Suppose
F : Rd → R

d , F ∈ C1 and for simplicity t-independent. Let ρ be sought as the solution of
Liouville’s equation div(ρF) = 0. Let τ = xd , x ′ = (x1, x2, . . . , xd−1, 0) and assume that
Fd > 0 then Liouville’s equation can be rewritten as follows

∂τ log ρ + ∇x ′ log ρ · F ′

Fd
= −div F

Fd
,

123



On a conjecture of De Giorgi related to homogenization 2171

where F ′ = (F1, . . . , Fd−1, 0). We can specify initial condition at time τ = 0, i.e., xd = 0,
and then by [7] (Proposition II.1 andRemark afterward) there is a L∞-solution of this Cauchy
problem in Rd × [0,∞), provided that both F and the initial data are Lipschitz.

If d = 2, then it is well known that divergence-free vector field is 90 degree rotation
of the gradient of a potential function u, i.e., ρF = (ux2 ,−ux1). From here we have that
ρF1 = ux2 , ρF2 = −ux1 . For F satisfying (F.2), we can eliminate ρ to obtain

ux1 = −ux2
F2
F1

in T
2.

The existence and regularity of periodic solution u = u(x1, x2) follow from standard exis-
tence theory for the first-order linear equations via themethod of characteristics. In particular,
if F ∈ Ck , then ∇u ∈ Ck . The density of the invariant measure can be recovered as follows

ρ = ux1 F2−ux2 F1
|F |2 .

1.5 The approach and methodology

De Giorgi’s conjecture has (more or less) been ignored completely. Indeed, the fact that con-
vergence of the underlying dynamical system would give the convergence of the transport
problem, have been unnoticed in the literature. Our result (read observation) should be seen
in the light of homogenization of the dynamical system, rather than the transport problem,
even though this directly implies the convergence of the transport problem. The approach
we have taken here is a combination of a few, already worked out, methods (originating in
the work of Kolmogorov [10], and later Bogolyubov [3]). More precisely, it is a combina-
tion of Kolmogorov’s transformation of coordinate system (and its refinement due to Tassa
[18]) and Bogolyubov’s method for singular perturbations. In particular, the latter implies a
convergence rate as ε → 0.

To the best of our knowledge, this has not been done previously and hence worth noticing.
Such a composition of hybrid techniques—combination of singular perturbations, dynamical
systems, and homogenization—gives new insights and opens up for the study of convergence
rates for similar problems.

We also want to stress that although our result seems to be new, it does not use any new
technique, and most probably if the problem was noticed by others, that have worked with
the related transport problem, a similar observation would have been made.

2 Preliminaries and main results

We first recall the definition of KBM-functions from [15] Definition 4.2.4.

Definition 1 Consider the function G(t, x) continuous in t and x on [0,∞) ×R
d such that

for some constant L > 0 there holds

|G(t, x1) − G(t, x2)| � L|x1 − x2|, for all t ∈ [0,∞), x1, x2 ∈ R
d .

If the average

G0(y) = lim
�→∞

1

�

ˆ �

0
G(τ, y)dτ (10)

exists uniformly in y on compact sets D ⊂ R
d then we call G a KBM-function (KMB stands

for Krylov, Bogolyubov and Mitropolski.)

123



2172 A. L. Karakhanyan, H. Shahgholian

We next justify the existence ofG0 and obtain a refined estimate for δ under the periodicity
assumption on G in t-variable.

Lemma 1 Consider the function G : [0,∞) × R
d → R, continuous in t ∈ [0,∞) and

x ∈ R such that for some constant L > 0 there holds

|G(t, x1) − G(t, x2)| � L|x1 − x2|, for all t ∈ [0,∞), x1, x2 ∈ R
d .

Suppose G(t, x) is 1-periodic in t , then the limit in (10) exists and consequently G is a
KBM-function.

Proof For fixed y we have

ˆ �

0
(G(τ, y) − G0(y))dτ =

[�]∑
m=1

ˆ m

m−1
(G(τ, y) − G0(y))dτ +

ˆ �

[�]
(G(τ, y) − G0(y))dτ =

=
ˆ �

[�]
(G(τ, y) − G0(y))dτ

where [�] is the integer part of � > 0 and G0(y) = ´ 10 G(τ, y)dτ . Consequently,

1

�

ˆ �

0
G(τ, y)dτ = G0(y) + 1

�

ˆ �

[�]
(G(τ, y) − G0(y))dτ → G0(y) as � → ∞.

The second part that G is KBM follows from Lemma 4.6.4 [15]. ��
Note that for periodicG independent of x , we have thatG0(x) = ´ 10 G(τ, x)dτ is constant.

The convergence rate for almost periodic G depending only on x variable may be weaker as
the example in Sect. 6 shows.

We formulate our main results below starting from the one-dimensional problem.

Theorem 1 (d = 1) Let G(t, x), t ∈ R, x ∈ T be positive, periodic in x, such that the
function G(t, x) := G(x, t) (with swapped variables) is KBM-function and

M := sup
x∈R,t�0

1

G(t, x)
< ∞.

Let Xε be the solution to the initial value problem⎧⎪⎨
⎪⎩

dXε

dt
= 1

G

(
t, Xε

ε

) ,

Xε(0) = p.

(11)

Then there is a Lipschitz continuous function X0(t) such that

|Xε(t) − X0(t)| � C(T )ε, t ∈ [0, T ] (12)

where T > 0 is the length of the time interval t ∈ [0, T ], C(T ) is a positive constant
depending only on T and G. Furthermore, if G(t, η) does not depend on t and is periodic
in η, then X0(t) = p0 + βt for some p0, β ∈ R.

In the proof of Theorem 1, we will use a simple version of Bogolyubov’s method, tailored
for the Cauchy problem dY ε

dt = G
( t

ε
, Y ε

)
, Y ε(0) = p, see [3] §26, [15] Lemma 4.3.1. It is

worthwhile to mention that at some point we swap the arguments of the function G such
that the resulted function G is KBM.

Next we state our main result for the multidimensional problem.
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Theorem 2 (d � 2)

(a) Let d � 2 be a periodic scalar function G : Rd → R independent of t , G ∈ Ck(Rn),
and there are positive constants c0 and κ, k > d+κ +1 such that a ∈ R

d is diophantine,
i.e.,

|〈a,m〉| � c0
|m|d+κ

, ∀m ∈ Z
d \ {0}. (13)

Finally, suppose that F = a
G satisfies (F.1)–(F.3). If Xε is the solution to the Cauchy

problem dzε
dt = a

G
(
zε
ε

) , zε(0) = p, then

∣∣∣∣zε(t) −
(
p + a

M(G)
t

)∣∣∣∣ � Cε, t � 0

where M(G) = ffl
Td G, Td is the d-dimensional torus, and

C = d|a|
c0π |M(G)|

∑
m∈Zd\{0}

|m|d+κ |Gm | < ∞

where Gm is the m-th Fourier coefficient of G.
(b) Let d = 2 and F ∈ Ck be independent of t , and 1-periodic in x-variable. Let further

(F.1)–(F.3) hold and Xε solves the Cauchy problem⎧⎨
⎩

dXε

dt
= F

(
Xε

ε

)
,

Xε(0) = p.
(14)

Let γ be the rotation number (see Sect. 1.3) and assume that a = (1, γ ) satisfies (13)
with some constants C > 0 and κ > 0 such that k > 3 + κ . Then there is a linear
function X0(t) = p + Bt, B ∈ R

2 such that

|Xε(t) − X0(t)| � Ĉε, t ∈ [0,∞) (15)

where Ĉ depends on ‖ρF‖∞, γ and ‖F‖Ck .

We shall use a number of results from dynamical systems. In particular, in the proof of
Theorem 2, we shall employ Kolmogorov’s theorem on coordinate transformation y = f (x)
[10], see Sect. 1.3. It needs to be mentioned that Kolmogorov’s proof is not constructive, i.e.,
he did not write explicit form of such transformation. In [18] Tassa found a simple argument
that renders the explicit form of f . Such coordinate transformation exists for d � 3 under
various assumptions [1,11].

3 Proof of Theorem 1

We first observe that if G is a KBM-function then by Definition 1 the following limit

G0(y) = lim
�→∞

1

�

ˆ �

0
G(s, y)ds (16)

exists uniformly in y ∈ D for any compact D ⊂ R. In particular, the Lipschitz continuity
of G translates to G0. Next let us derive a scaled version of Bogolyubov’s estimate in one
dimension.
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2174 A. L. Karakhanyan, H. Shahgholian

Lemma 2 Let G : [0,∞) × R → R be a KBM-function periodic in the first variable. Let

hε(ξ) be the solution of the Cauchy problem
dhε

dξ
= G

(
ξ

ε
, hε(ξ)

)
, hε(0) = p.

Let G0 be as in (16) and h0 a unique solution of the Cauchy problem

dh0

dξ
= G0(h0), h0(0) = p

on the finite interval [0, T1]. Then, as ε → 0,

|hε(ξ) − h0(ξ)| � C(T )ε, 0 � ξ � T < T1 (17)

for some constant C(T ) > 0 depending only on T .

Remark 3 Note that under the conditions of Theorem 1 the solution h0 is unique because G0

is Lipschitz.

Proof Weuse Bogolyubov’s estimate for the slowly varying systems. Define θε(ξ) = hε(εξ)

then we have ⎧⎨
⎩

dθε

dξ
= εG

(
ξ, θε

)
,

θε(0) = p.
(18)

Furthermore, let θ0(ξ) solve
⎧⎨
⎩

dθ0

dξ
= εG0 (

θ0
)
,

θ0(0) = p,
(19)

whereG0 is as in (16). Applying Bogolyubov’s estimate, [4] Theorem 12.1 and Remark 12.1,
(see also [15] Theorem 4.5.5) to θε, θ0 we have that

sup
ξ∈[0, T

ε
]
|θε(ξ) − θ0(ξ)| � C(T )ε (20)

where C(T ) > 0 depends only on T . After setting h0(εξ) = θ0(ξ), substituting εξ = s in
(20) the result follows. ��

Now we are ready to finish the proof of Theorem 1. Observe that 0 < dXε

dt �
supx∈R,t�0

1
G(t,x)

= M < ∞ and therefore {Xε} is uniformly Lipschitz continuous on
every finite interval [0, T ]. In fact, we have the estimate |Xε(t)| � |p| + T M, t ∈ [0, T ].
Furthermore, Xε is strictly monotone because G > 0. Thus Xε has inverse which we denote
by hε,

ξ = Xε(hε(ξ)). (21)

Rewriting the system for hε , we have

1
dhε

dξ

= 1

G(hε(ξ), ξ/ε)
⇒ dhε

dξ
= G(h

ε(ξ), ξ/ε).

As for the initial condition, we have hε(p) = 0.

123
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Denote G(t, x) = G(x, t), the function with swapped variables. Note that G satisfies all
requirements of Lemma 2 (in particularG is periodic in t), and hence it follows that hε → h0

locally uniformly on [0,∞) and the homogenized equation is dh0
dξ

= G0(h0) where

G0(y) = lim
�→∞

1

�

ˆ �

0
G(τ, y)dτ.

Returning to Xε and using the refined convergence rate (17) for periodic G in t variable,
we note that by (21)

ξ = Xε
(
hε(ξ)

) = Xε([hε(ξ) − h0(ξ)] + h0(ξ)) (22)

implying that |ξ − Xε(h0(ξ))| = |Xε([hε(ξ)− h0(ξ)]+ h0(ξ))− Xε(h0(ξ))| � M |hε(ξ)−
h0(ξ)| � MC(T )ε, where the last inequality follows from (17). Hence, Xε converges uni-
formly to X0(t), determined by the implicit equation ξ = X0(h0(ξ)).

Finally, the last part of Theorem 1 follows from the fact that G0 is constant for periodic
G and therefore X0(t) must be linear function of t .

4 Multidimensional problem: Proof of Theorem 2a

4.1 Change of variables for d � 2

Let dμ = ρdx be the invariant measure of the system dxi
dt = Fi (x) where F(x) =

(F1(x), . . . , Fd(x)), x ∈ R
d is the vector field on the right hand side of the Eq. (7). If

d = 2, F1, F2, ρ ∈ C∞, Fi : R2 → R and F2
1 + F2

2 > 0 then Kolmogorov showed that
there is a transformation x → y such that in the new system of coordinates the equation

transforms into the shear flow dy1
dt = F,

dy2
dt = γ F where γ is the rotation number (see

Sect. 1.3), and F is a positive function. Furthermore, if γ is diophantine (see the formulation
of Theorem 2 for precise condition), then there is another transformation of R2, y → u such

that the system takes the form dui
dt = ai , i = 1, 2 where ai are constants.

For d � 3, Kolmogorov’s theorem has been generalized by Kozlov which we state below
without proof, see [11].

Proposition 1 Let d � 2 and G > 0, 1
G ∈ Ck, k > d+κ +1 is smooth. If a = (a1, . . . , ad)

is diophantine in the sense of (13), then there exists a change of variables transforming the
system

dw j

dt
= a j

G(w1, . . . , wd)
, j = 1, . . . , d (23)

into the constant coefficient system
dw j

dt = a j .

It is clear that for the shear flow (23) the density of invariant measure is ρ = G.

4.2 Proof of Theorem 2a

Proof Weshall use the coordinate transformation introduced in [11] Theorem2: if u(t) solves
the shear system du

dt = q
G(u)

with diophantine q then the mapping given by the equations

w j = u j + q j

M(G)
f (u), 1 � j � d, u = (u1, . . . , ud) (24)
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2176 A. L. Karakhanyan, H. Shahgholian

transforms the equation into

dw j

dt
= q j

M(G)
,

as stated in Proposition 1, see [11] page 197. Here M(G) = ffl
Td

G is the mean value of G

and f is determined from the first-order differential equation

〈∇ f, q〉 = G(u) − M(G).

In fact, this mapping is non-degenerate (i.e., has nontrivial Jacobian) and is one-to-one [11].
Taking εu = z we see that

du

dt
= q

G(u)

with q = a
ε
. From Fourier’s expansion we have

G(u) − M(G) =
∑

m∈Zd\{0}
Gme

2π i〈m,u〉

which by integration gives

f (u) =
∑

m∈Zd\{0}

Gm

2π i〈m, q〉e
2π i〈m,u〉 = ε

∑
m∈Zd\{0}

Gm

2π i〈m, a〉e
2π i〈m,u〉, (25)

and the series is absolutely convergent, due to the assumption that a is diophantine (see (13))
and G ∈ Ck, k > d + κ + 1. In particular, |Gm | � C(k, d)(1 + |m|)−k for some universal
constant C(k, d) > 0 depending only on d and k. Notice that the sum is bounded because 1

G
satisfies the assumptions (F.1)–(F.3). Summarizing we have

wε
j (t) = q j

M(G)
t + wε

j (0)

= a j

εM(G)
t + wε

j (0). (26)

On the other hand, from (24) and (25)

wε
j (t) = uε

j (t) + q j

M(G)
f (uε)

= zεj (t)

ε
+

{
a j

ε

1

M(G)

}
ε

∑
m∈Zd\{0}

Gm

2π i〈m, a〉e
2π i〈m,uε〉

= zεj (t)

ε
+ a j

M(G)

∑
m∈Zd\{0}

Gm

2π i〈m, a〉e
2π i
ε

〈m,zε〉. (27)
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Combining (26), (27) and wε
j (0) = zεj (0)

ε
+ q j

M(G)
f ( z

ε(0)
ε

), which follows from (24), we get
a j

M(G)
t + p j − zεj (t) = σ(ε) where

σ(ε) = ε

⎧⎨
⎩− q j

M(G)
f
( p

ε

)
+ a j

M(G)

∑
m∈Zd\{0}

Gm

2π i〈m, a〉e
2π i
ε

〈m,zε〉
⎫⎬
⎭

= ε

⎧⎨
⎩

a j

M(G)

∑
m∈Zd\{0}

Gm

2π i〈m, a〉
[
e
2π i
ε

〈m,zε〉 − e
2π i
ε

〈m,p〉]
⎫⎬
⎭ .

Since G ∈ Ck, k > d + κ + 1 and a is diophantine, see (13), it follows that the series∑
m∈Zd\{0}

|Gm |
2π |〈m,a〉| converges. Therefore using (13)

|σ(ε)| � 2ε|a|
|M(G)|

∑
m∈Zd\{0}

|Gm |
2π |〈m, a〉| � ε|a|

c0π |M(G)|
∑

m∈Zd\{0}
|m|d+κ |Gm |

and the series converges because from G ∈ Ck we get |Gm | � C(k, d)(1 + |m|)−k with
k > d + κ + 1. The proof now follows. ��
Remark 4 Peirone showed that if F ∈ C1(Td) is Z

d periodic, u0 ∈ C1 and the limit

lim
t→∞

StF (x)
t exists for a.e. x ∈ T

d then the problem (2) is homogenizable; see [13] Lemma

2.2 (b). Here StF is the semigroup generated by (7). Our result establishes the converse of
this statement for homogenizable (2).

5 Proof of Theorem 2b

Our goal here is to apply Kolmogorov’s coordinate transformation in order to reduce the
general problem to shear flow. For this, Tassa [18] found an explicit formula, that we will
write below. We should (again) point out that Kolmogorov’s proof in [10] is not constructive.

It is convenient to introduce some basic facts about the equation dX
dt = F(X) with F

satisfying the properties (F.1)–(F.3). Let dμ = ρdx be the invariant measure corresponding
to this system, then by definition div(ρF) = 0. Thus the vector field b = (b1, b2) =
ρF is divergence free, 1-periodic, and ρ ∈ Ck, see Sect. 1.4. This yields that the integral´ 1
0 b1(x1, x2)dx2 is constant since

∂x1

ˆ 1

0
b1(x1, x2)dx2 =

ˆ 1

0
∂x1b1(x1, x2)dx2

= −
ˆ 1

0
∂x2b2(x1, x2)dx2

= − [b2(x1, 1) − b2(x1, 0)] = 0. (28)

Similarly we have that
´ 1
0 b2(x1, x2)dx1 is constant. Denote b1 = ´ 10 b1(x1, x2)dx2, b2 =

´ 1
0 b2(x1, x2)dx1 (which are the mean integrals of b1, b2 over T2) and set

y1 = f1(x1, x2) = 1

b2

ˆ x1

0
b2(ξ, 0)dξ,

y2 = f2(x1, x2) = 1

b1

ˆ x2

0
b1(x1, ξ)dξ.

(29)
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It is shown in [18] that in the new coordinate system, we get the shear flow dy
dt = a

G(y) with
a = (1, γ ), where γ is the rotation number, see Sect. 1.3. Furthermore, we have that∣∣∣∣∂(y1, y2)

∂(x1, x2)

∣∣∣∣ = b1(x1, x2)

b1

b2(x1, 0)

b2
�= 0, ∀x ∈ T

2 (30)

and the invariant measure density is

1

G(y)
= b2(g1(y), 0)

b2
F1(g1(y), g2(y)) (31)

with g = (g1, g2) being the inverse of f = ( f1, f2), see [18], page 1395. In particular, it
follows

b ∈ Ck and G ∈ Ck (32)

(recall that b = ρF and ρ ∈ Ck, see Sect. 1.4). Moreover from (29), (30) and the inverse
function theorem g ∈ Ck implying G ∈ Ck, k > 3 + κ .

In order to take advantage of (29), we introduce the function zε(t) = Xε(t)/ε. Then zε(t)
solves the Cauchy problem dzε

dt = F(zε)
ε

, zε(0) = p
ε
. Clearly, the invariant measure now is

dμz = 1
ε
ρdz and bε = ( b1

ε
, b2

ε
) is divergence free. Note that

bi
bi

= bε
i

bε
i

and therefore applying the change of variables y = f (x), with mapping f = ( f1, f2) given
by (29), we obtain the shear flow

dyε

dt
= a

b2(g1(yε), 0)

b2

F1(g(yε))

ε
. (33)

In order to get rid of ε in the denominator, we set wε(t) = εyε(t). Then wε(t) solves the
equation

dwε

dt
= a

b2(g1(wε/ε), 0)

b2
F1(g(w

ε/ε)). (34)

By (29) we have that

f1(x1 + 1, x2) = f1(x1, x2) + 1,

f1(x1, x2 + 1) = f1(x1, x2),

and similarly

f2(x1 + 1, x2) = f2(x1, x2),

f2(x1, x2 + 1) = f2(x1, x2) + 1

in view of the periodicity of b. Consequently if ei , (i = 1, 2) is the unit vector in the
canonical basis of R2, then this translates to the inverse of f , namely we have g j (η +
ei ) = g j (η) + Mi j , 1 � i, j � 2 where Mi j ∈ Z, see [18] equation (2.5). This yields that
1

G(η)
= b2(g1(η),0)

b2
F1(g(η)) is periodic function and wε solves the Cauchy problem

dwε

dt
= a

G
(

wε

ε

) , wε(0) = ε f

(
xε(0)

ε

)
. (35)
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From here, in light of (29) we have

wε
1(t) = ε

b2

ˆ zε1(t)

0
b2(ξ, 0)dξ = ε

b2

ˆ xε
1 (t)/ε

0
b2(ξ, 0)dξ

= xε
1 + ε

b2

ˆ xε
1 (t)/ε

0
(b2(ξ, 0) − b2)dξ

= xε
1 + ε

b2

ˆ xε
1 (t)/ε

[xε
1 (t)/ε]

(b2(ξ, 0) − b2)dξ

(36)

for b is periodic; see the proof of Lamma 1 for a similar argument. Here [·] denotes the integer
part.

Hence we conclude that

wε
1(t) = xε

1(t) + ε

b2

ˆ xε
1 (t)/ε

[xε
1 (t)/ε]

(b2(ξ, 0) − b2)dξ t ∈ [0,∞). (37)

In particular, for the initial condition, we get that wε
1(0) = p1 +O(ε). As for the asymptotic

expansion of wε
2, we need to use a well-known fact that there is a scalar function ϕ such that

b = (∂2ϕ,−∂1ϕ) for every two-dimensional divergence-free vector field b ∈ L∞. From this
equation, it followsϕ(x) = ψ(x)+q ·x+q0 whereψ is periodic. Observe that b = ρF ∈ L∞
by (F.1)–(F.3) [(in fact b ∈ Ck by (32)], hence ‖∇ψ‖∞ � ‖ρF‖∞ < ∞. Using this fact,
we compute

wε
2(t) = ε

b1

ˆ zε2(t)

0
b1

(
xε
1

ε
, ξ

)
dξ = ε

b1

ˆ xε
2 (t)/ε

0
b1

(
xε
1

ε
, ξ

)
dξ

= ε

b1

ˆ xε
2 (t)/ε

0

[
b1

(
xε
1

ε
, ξ

)
− b1(0, ξ)

]
dξ + ε

b1

ˆ xε
2 (t)/ε

0
b1 (0, ξ) dξ

= ε

b1

[
ϕ

(
xε
1

ε
, 0

)
− ϕ

(
xε
1

ε
,
xε
2

ε

)
+ϕ

(
0,

xε
2

ε

)
+ ϕ(0, 0)

]
+ ε

b1

ˆ xε
2 (t)/ε

0
b1 (0, ξ) dξ

= ε

b1

[
ψ

(
xε
1

ε
, 0

)
− ψ

(
xε
1

ε
,
xε
2

ε

)
+ ψ

(
0,

xε
2

ε

)
+ ψ(0, 0) + 2q0

]

+ xε
2(t) + ε

b1

ˆ xε
2 (t)/ε

[xε
2 (t)/ε]

(b1 (0, ξ) − b1)dξ

where the third line follows as in (37), or integrating by parts and using b = (∂2ϕ,−∂1ϕ).
In particular, at t = 0, we have that wε

2(0) = p2 + O(ε).
Summarizing, we see that wε solves the following Cauchy problem

dwε

dt
= a

G
(

wε

ε

) , wε(0) = (p1 + O(ε), p2 + O(ε))

where a = (1, γ ) and γ is the rotation number, see Sect. 1.3. By Theorem 2a, for diophantine
a = (1, γ ), there is a linear function w0 such that |wε(t) − w0(t)| � Cε, t ∈ [0,∞). Here
C > 0 depends on F, ρ and γ as in Theorem 2a (note that we can apply Theorem 2a because
by (32) G ∈ Ck). Then from (37)

|xε
1(t) − w0

1(t)| � ε

b2

∣∣∣∣∣
ˆ xε

1 (t)/ε

[xε
1 (t)/ε]

(b2(ξ, 0) − b2)dξ

∣∣∣∣∣ � 2ε‖ρF‖L∞

b2
.
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Finally for xε
2 we have

|xε
2 − w0

2 | � |wε
2 − w0

2 | + ε‖ψ‖L∞ + ε

b1

∣∣∣∣∣
ˆ xε

2 (t)/ε

[xε
2 (t)/ε]

(b1 (0, ξ) − b1)dξ

∣∣∣∣∣
= Ĉε + ε‖ψ‖L∞ + ε

2‖ρF‖L∞

b1

and the desired estimate follows

6 Examples

Example 1 Let F be 1-periodic vector field such that F2 = 1 and

F1(x1, x2) = F1(x1) =
{
1 0 < x1 � 1/2,
0 1/2 < x1 � 1.

Let Xε(t) be the solution to the following initial value problem
{ dXε

dt = F
(
Xε

ε

)
,

Xε(0) = p.

Let Sε be the (cigar-shaped) ε

2
√
2
-neighborhood of the ray p + sE, E = (2, 1), s � 0, i.e.,

Sε =
{
x ∈ R

2 : |x − [p + sE]| � ε

2
√
2
, s � 0

}
.

Thus as ε → 0 the trajectory (i.e., curves determined by Xε) converges to the line �(s) =
p+ s(2, 1), s � 0 in Hausdorff distance. Hence the trajectory of the limit is the line �(s). As
for the speed of the convergence, we note first that by definition xε

2 = 1, and it is enough to

study the ode dz
dt = F1(z/ε). Multiplying both sides of this equation by dzε

dt and integrating,
we obtain that

ˆ s

0

∣∣∣∣dz
ε(t)

dt

∣∣∣∣
2

dt =
ˆ s

0
F1

(
zε(t)

ε

)
dzε(t)

dt
dt = qs + O(ε)

where q = ffl[0,1] F1 = 1
2 . Since

∣∣∣dzε(t)dt

∣∣∣ � sup F1 = 1, we can use a customary compactness

argument and infer from Lebesgue’s dominated convergence theorem

ˆ s

0

∣∣∣∣dz
0(t)

dt

∣∣∣∣
2

dt = s

2
,

where z0 is the limit function. After differentiation we get
∣∣∣dz0(t)dt

∣∣∣ =
√

1
2 .

The astute reader has probably noticed that we did not use condition (F.3) here, but could
still obtain a convergence rate. This is due to the one-dimensional character of the problem,
since F2 = 1 here.

Example 2 (One dimension) Another example is given by F with saw-like graph

F(τ ) =
{ 2hτ

a + σ if τ ∈ [0, a
2 ),

2h
a (a − τ) + σ if τ ∈ [ a2 , a),

(38)
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Fig. 1 In this example a = 1, h = 3 and σ = 1
3

periodically extended over R, see Fig. 1. Here σ > 0, a > 0 is the periodicity of F and
h = max F is the peak of F . We can solve this equations explicitly: Indeed, we have that

dyε

dt
=

⎧⎨
⎩

2h
a (

yε

ε
− ka) + σ if yε

ε
∈ ak + [0, a

2 ),

2h
a (a(k + 1) − yε

ε
) + σ if yε

ε
∈ ak + [ a2 , a).

After integration one gets

yε =
⎧⎨
⎩
C−(k)e

2ht
εa + εka − aσε

2h if yε ∈ εak + [0, aε
2 ),

C+(k)e− 2ht
εa + ε(k + 1)a − aσε

2h if yε ∈ εak + [ aε
2 , aε),

with some constants C±(k) and k ∈ Z. Clearly this solution yε is monotone and hence
the argument using the inverse function in the proof of Lemma 2 works here too. Obviously
1
a

´ a
0

dτ
F(τ )

= a
h log

( h+σ
σ

) ≡ β and therefore we infer that yε converges uniformly to y0(t) =
p + t

β
on any finite closed interval [0, T ].

Example 3 Theorem 1 is still valid if the periodicity of G(·, x) is replaced with almost
periodicity in x because we needed periodicity in the proof only for the convergence rate for
G0. In this case one may get weaker error estimates, see [19] Example 11.13. Indeed, the

function F(x) = ∑∞
k=0

1
(2k+1)2

sin
(

x
2k+1

)
is almost periodic. By direct computation

ˆ T

0
F(x)dx =

∞∑
k=0

2

2k + 1
sin2

(
T

2(2k + 1)

)

=
N (ε)∑
0

· · · +
∞∑
N (ε)

. . .

N (ε) ∼ 1
ε
then in this case |Xε(t)− X0(t)| � C(T )(ε| log ε|) on finite time intervals [0, T ].
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Example 4 (one-dimensional transport equation) One can apply Theorem 1 to the homoge-
nization of some model transport equations such as

∂tv
ε + H(x/ε)∂xv

ε = 0, vε(0, x) = v0(x). (39)

Here H > 0 isC1 smooth periodic function. Let F = (1, H) and ρ be the density of invariant
measure, i.e., div(ρF) = 0. Therefore, there is a function M(t, x) solving the system{

∂t M = −ρH(y/ε)
∂x M = ρ.

(40)

The level sets M = const are the characteristics of Eq. (39). Noting that ∂t M = −ρH �= 0
and applying the inverse function theorem to M(t, x) = const we infer that x = hε(t), and
therefore, for the solution of the Cauchy problem, we have the formula

vε(t, x) = v0(x − hε(t)),

where by construction dhε

dt = H(hε/ε), hε(0) = x . Denote v0(t, x) = v0(x − h0(t)), where

h0 = lim hε. Thus we have from Theorem 1 the estimate

|vε(t, x) − v0(t, x)| = |v0(x − hε(t)) − v0(x − h0(t))|
� ‖∂xv0‖∞|hε(t) − h0(t)| � C(T )ε

on finite time intervals [0, T ].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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