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Abstract The rapid adoption of microbial whole genome
sequencing in public health, clinical testing, and forensic
laboratories requires the use of validated measurement pro-
cesses. Well-characterized, homogeneous, and stable micro-
bial genomic reference materials can be used to evaluate
measurement processes, improving confidence in micro-
bial whole genome sequencing results. We have developed
a reproducible and transparent bioinformatics tool, PEPR,
Pipelines for Evaluating Prokaryotic References, for char-
acterizing the reference genome of prokaryotic genomic
materials. PEPR evaluates the quality, purity, and homo-
geneity of the reference material genome, and purity of the
genomic material. The quality of the genome is evaluated
using high coverage paired-end sequence data; coverage,
paired-end read size and direction, as well as soft-clipping
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rates, are used to identify mis-assemblies. The homogeneity
and purity of the material relative to the reference genome
are characterized by comparing base calls from replicate
datasets generated using multiple sequencing technologies.
Genomic purity of the material is assessed by checking for
DNA contaminants. We demonstrate the tool and its output
using sequencing data while developing a Staphylococcus
aureus candidate genomic reference material. PEPR is open
source and available at https://github.com/usnistgov/pepr.

Keywords Microbiology · Whole genome sequencing ·
Bioinformatics

Introduction

Over the past decade, the availability of affordable and
rapid Next-Generation Sequencing (NGS) technology has
revolutionized the field of microbiology. Arguably the most
discriminatory typing method available, whole genome
sequencing (WGS), has been adopted by the research com-
munity, as well as public health laboratories, clinical testing
laboratories, and the forensic community. High stakes deci-
sions are often made based on the outcome of a WGS assay.
To increase confidence in WGS assay, results a critical
assessment of the errors inherent to the measurement pro-
cesses is required. A number of sources of error associated
with the WGS measurement process have been identified,
but the degree to which they can be predicted, controlled, or
compensated varies significantly [1].

Well-characterized, homogeneous, and stable genomic
materials can be used to evaluate methods and aid in estab-
lishing confidence in results from a measurement process.
For example, we recently characterized a whole human
genome reference material (National Institute of Standards
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and Technology, NIST, Reference Material 8398) to assess
the performance of variant calling in human genomic
samples [2], but no reference materials for microbial
sequencing currently exist. NIST is developing four micro-
bial genomic DNA candidate reference materials to meet
this need. When considering the extensive genomic diver-
sity of prokaryotic organisms as well as the rapidly evolving
and diverse DNA sequencing applications, we envision the
need for a wide variety of application-specific genomic
materials for use in method validation and benchmarking.
Currently, many laboratories and sequencing centers are
using in-house materials as part of a regular method val-
idation and quality control system. However, the degree
to which these materials are characterized varies signifi-
cantly, and, therefore, a common pipeline for characterizing
prokaryotic genomic materials is needed.

PEPR, Pipelines for Evaluating Prokaryotic Refer-
ences, a set of reproducible and transparent bioinformatic
pipelines, was developed to characterize genomic materi-
als for use in WGS method validation. Using the pipeline
increases confidence in method validation through the abil-
ity to develop better-characterized control materials. PEPR
characterizes prokaryotic genomic material for purity and
homogeneity of the genome sequence, as well as the pres-
ence of genomic material other than the material genus. The
general approach to material characterization that guided
the development of PEPR is the use of orthogonal sequenc-
ing methods along with technical replicates to obtain con-
sensus values for the characterized properties. These con-
sensus values are our best current estimates of the true val-
ues. We do not assert probabilistic estimates of confidence
or confidence classification values with the sequence data,
as we lack good models of biases or systematic errors of

current sequencing technologies. Here we will first describe
PEPR then show how PEPR was used to characterize NIST
Staphylococcus aureus genomic DNA candidate reference
material.

Methods

Pipelines for evaluating prokaryotic references: PEPR

PEPR consists of three bioinformatic pipelines written
in Python (Fig. 1). The three bioinformatic pipelines are
genome evaluation, genome characterization, and genomic
purity. A YAML file (http://yaml.org) is used to define
pipeline inputs. The pipeline coordinates the execution
of a number of command line tools, logging the stan-
dard output and standard error for each executed com-
mand in time-stamped files for reference and debug-
ging. Pipeline code is available at (https://github.com/
usnistgov/pepr). To reduce the barrier for reuse, two
Docker (https://www.docker.com/) containers are avail-
able with pre-installed pipeline dependencies. Docker
is a lightweight virtual environment that facilitates the
sharing and distribution of computing environments and
can be run on any desktop, cloud, or high-performance
computing environment, regardless of the operating sys-
tem. The pepr container (https://registry.hub.docker.com/
u/natedolson/pepr) includes dependencies for the genome
evaluation and characterization pipelines, excluding the
Genome Analysis Toolkit (due to licensing restrictions).
The docker-pathoscope container has dependencies
for the genomic purity pipeline installed (https://registry.
hub.docker.com/u/natedolson/docker-pathoscope/).

Fig. 1 PEPR workflow. White
objects are pipeline inputs, grey
objects are the three pipeline
components, and light blue
objects are the pipeline products

http://yaml.org
https://github.com/usnistgov/pepr
https://github.com/usnistgov/pepr
https://www.docker.com/
https://registry.hub.docker.com/u/natedolson/pepr
https://registry.hub.docker.com/u/natedolson/pepr
https://registry.hub.docker.com/u/natedolson/docker-pathoscope/
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A software package, peprr, was developed for the sta-
tistical computing language R [3] to compile the output
from the genome evaluation, characterization, and genomic
purity pipelines. The compiled data was formatted into a
series of data tables within an SQLite, peprDB, database
to facilitate downstream analysis [4]. The package includes
functions to generate a number of summary tables and
figures, including those in this publication.

Genome evaluation pipeline

The Genome Evaluation Pipeline is the first step in the
PEPR workflow and is used to reduce errors in the user-
provided genome assembly prior to characterization. The
evaluation pipeline consists of three steps. Illumina
sequencing data are retrieved from the Genbank Sequence
Read Archive (SRA) using the sratoolkit fastq-dump
command (http://ncbi.github.io/sra-tools/). Users can also
run the pipeline using fastq files by including file paths in the
pipeline parameters file. Next, sequencing reads are mapped
to the reference genome using BWA mem algorithm [5].
Finally, Pilon is used to evaluate and polish the reference
assembly [6]. The corrected reference genome is then used
as input for the Genome Characterization Pipeline.

Genome characterization pipeline

The Genome Characterization Pipeline uses replicate
sequence dataset from multiple sequencing platforms to
characterize the corrected reference genome produced by
the Genome Evaluation Pipeline at the individual base
level. Illumina data are aligned to the reference genome
using the same methods as the evaluation pipeline.
Ion Torrent PGM data are mapped to the reference using
the TMAP algorithm [7]. If Pacific Biosciences (PacBio)
sequencing data are used to generate the input refer-
ence assembly, the data are mapped to the reference
genome using the BWA mem algorithm [5]. Sequence
alignment files are processed prior to downstream anal-
ysis by marking duplicates with Picard’s MarkDupli-
cates command (http://broadinstitute.github.io/picard) and
realigning reads mapping to regions with insertions or
deletion using the GenomeAnalysisToolKit [8, 9]. After
refining the alignment files, base level analysis is performed
using the short-read sequencing data. For each platform
a VCF (variant call format) file with a number of sum-
mary statistics is generated using SAMtools mpileup [10].
A base purity metric is calculated from the resulting VCF
files. The base purity metric is the number of high-quality
bases (quality score ≥ 20) in reads aligned to a genome
position that are in agreement with the reference base
divided by the total number of reads high-quality bases

supporting the reference and alternate base called by SAM-
tools. The metric is calculated from the SAMtools DP4
INFO tag in the vcf output generated with the mpileup
command. Homogeneity analysis, a measure of genomic
content similarity between vials of the reference material,
is performed by first generating a pileup file using SAM-
tools mpileup for each dataset then performing pairwise
tumor-normal variant calling using VarScan [11]. In this
work, VarScan looks specifically for differences between
vials in the proportion of reads containing variants. A
standard Benjamini-Hochberg procedure was used to assess
the power of the homogeneity analysis (Electronic Supple-
mental Material, https://github.com/DanSBS/NGSPower).
Additionally, a number of summary statistics are calculated
for the sequencing datasets using Picard’s Collect Multiple
Metrics (http://broadinstitute.github.io/picard).

Genome purity pipeline

The Genomic Purity Pipeline assesses the purity of the
genomic material, defined as the presence of DNA from
sources other than the expected genus. Material genomic
purity was assessed using the metagenomic taxonomic
read classification algorithm PathoScope 2.0 [12]. This
method uses an expectation-maximization algorithm where
the sequence data are first mapped to a database com-
prised of all sequence data in the Genbank nt database.
Then, through an iterative process, PathoScope re-assigns
ambiguously mapped reads to a taxonomic group based
on the proportion of reads mapped unambiguously to indi-
vidual taxonomic groups in the database. Using short-read
sequencing data as input, PathoScope 2.0 first filters and
trims low-quality reads (PathoQC), followed by mapping
reads to a reference database (PathoMap - a wrapper for
bowtie2 [13]), and then the expectation-maximization algo-
rithm (PathoID) is used for the taxonomic classification.
The annotated Genbank nt database provided by the Patho-
Scope developers was used as the reference database (ftp://
pathoscope.bumc.bu.edu/data/nt ti.fa.gz).

Candidate reference material S. aureus sequencing data

Sequencing data and the reference assembly for the NIST
candidate reference material S. aureus was used to demon-
strate how PEPR is used to characterize a genomic material.
A de novo genome assembly from Pacific Biosciences
(PacBio) long-read sequencing data was used as input for
PEPR. Prior to being used as input, the assembly was val-
idated using optical mapping data. Eight replicate vials of
the candidate reference material were sequenced on the Illu-
mina MiSeq and Ion Torrent PGM sequencing platforms
(Electronic Supplemental Material).

http://ncbi.github.io/sra-tools/
http://broadinstitute.github.io/picard
https://github.com/DanSBS/NGSPower
http://broadinstitute.github.io/picard
ftp://pathoscope.bumc.bu.edu/data/nt_{t}i.fa.gz
ftp://pathoscope.bumc.bu.edu/data/nt_{t}i.fa.gz
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Results and discussion

Pipelines for Evaluating Prokaryotic References (PEPR)
uses biological and technical replicate sequencing data
from orthogonal sequencing platforms to characterize the
reference genome of a prokaryotic material. The prokary-
otic material is a batch of genomic DNA extracted from
a prokaryotic culture. There are two primary reasons for
using replicate sequencing datasets. One is to test for
homogeneity within the batch of DNA. The second is
to minimize the impact of library specific biases. The
resulting characterized genome is suitable for evaluat-
ing and benchmarking whole genome sequencing meth-
ods. PEPR consists of three pipelines: genome evaluation,
genome characterization, and genomic purity assessment

(Fig. 1). The following section includes the characterization
results for the NIST S. aureus candidate reference mate-
rial along with a discussion of PEPR’s assumptions and
limitations.

Preparation of reference assembly

A user-provided high-quality closed reference assembly
free of large assembly errors should be used as input when
running PEPR. Optical mapping, as well as large insert
mate-pair and synthetic long-read library preparation meth-
ods [14], are a few orthogonal methods that can be used
to identify large mis-assemblies. The long DNA fragments
used in optical mapping (average size < 200 Mb) allows
for the identification of large mis-assemblies (< 3 kb)

Table 1 Summary of sequencing datasets

Acc. Plat Vial Lib. Reads Length (bp) Insert (bp) Cov.

SRR1979039 miseq 0 1 3305082 230 257 247

SRR1979040 miseq 0 2 3732088 216 233 263

SRR1979041 miseq 1 1 3973320 218 242 279

SRR1979042 miseq 1 2 3941040 223 247 285

SRR1979043 miseq 2 1 3442554 234 268 261

SRR1979070 miseq 2 2 3226726 232 268 240

SRR1979044 miseq 3 1 3025028 233 264 229

SRR1979045 miseq 3 2 4796382 200 210 303

SRR1979046 miseq 4 1 3338456 239 278 260

SRR1979047 miseq 4 2 2995090 237 277 231

SRR1979048 miseq 5 1 3495384 225 255 255

SRR1979049 miseq 5 2 3116128 241 281 244

SRR1979050 miseq 6 1 3129282 237 271 240

SRR1979060 miseq 6 2 2976312 242 280 233

SRR1979064 miseq 7 1 2630544 241 283 204

SRR1979065 miseq 7 2 3416580 225 248 247

SRR2002412 pgm 0 1 556903 231 42

SRR2002413 pgm 1 1 530117 224 38

SRR2002414 pgm 2 1 437527 231 33

SRR2002415 pgm 3 1 552692 232 42

SRR2002416 pgm 4 1 498479 232 37

SRR2002418 pgm 5 1 390070 235 30

SRR2002419 pgm 6 1 426196 232 32

SRR2002420 pgm 7 1 439119 238 34

SRR2056302 pacbio 9 1 163475 10510 108

SRR2056306 pacbio 9 2 163471 10436 103

SRR2056310 pacbio 9 3 163474 9863 91

Acc. - Sequence read archive (SRA) database accessions. Plat. - sequencing platform, miseq: Illumina MiSeq, pgm: Ion Torrent PGM, pacbio:
Pacific Biosciences RSII. Lib. - library replicate number for miseq and pgm, smartcell replicate for pacbio. Reads - number of sequencing reads
in the dataset. Length - median read length in base pairs. Insert - median insert size in base pairs for paired-end reads. Cov. - median sequence
coverage across the genome
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Fig. 2 Comparison of base
purity values for PGM and
MiSeq. Positions are colored
based of high and low purity
values for the two sequencing
platforms, MiSeq - Illumina
MiSeq and PGM - Ion Torrent
PGM. A purity value of 0.99
was used to differentiate
between high and low purity
positions. Positions with high
purity for both platforms were
excluded from the figure
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that are not easily identified using short-read sequencing
data [15]. For the S. aureus RM, the reference assembly
was constructed from Pacific Biosciences (PacBio) RSII
long-read sequencing data (Electronic Supplemental Mate-
rial). To validate the S. aureus reference assembly prior to
evaluation with PEPR, OpGen optical mapping technology
was used. The S. aureus optical mapping results were in
agreement with the PacBio assembly, indicating no large
mis-assemblies, and that the assembly was suitable for use
in PEPR.

Genome evaluation

The Genome Evaluation pipeline is the first step in PEPR.
Pilon was chosen for the evaluation step as it assesses the
accuracy of the genome and corrects errors in the assem-
bly [6]. While currently not part of the PEPR, PAGIT, and
REAPR are two alternative methods for evaluating and cor-
recting genome assemblies similar to Pilon [16, 17]. Other
methods are available for evaluating reference genomes,
e.g. amosValidate [18] and ALE [19], however, these meth-
ods only assess assembly accuracy without correcting mis-
assemblies. The resulting reference assembly represents the
consensus genome of the population of cells used to gener-
ate the material. The genome evaluation pipeline does not
attempt to identify or characterize low-frequency structural
variants within the material or vial-to-vial variability of the
reference genome. The evaluation pipeline failed to identify
any assembly or base call errors in the S. aureus candidate

genome assembly. The candidate genome, once evaluated,
and, if necessary, refined during the Genome Evaluation
pipeline, is used as input for the Genome Characterization
pipeline.

Genome characterization

The Genome Characterization pipeline calculates whole
genome base level statistics using replicate sequencing data
from orthogonal measurement methods. As part of the char-
acterization pipeline, summary statistics are generated for
the user provided sequencing datasets. While PEPR only
uses short-read sequencing data to evaluate the material,
dataset summary statistics for additional sequence data,
such as long-read data used to generate the reference assem-
bly, can be calculated. The results from our analysis of the
S. aureus candidate reference material using PEPR provides
an example of the type of information, summary figures,
and tables that can be generated with PEPR.

Table 2 Number of genome positions with high and low purity, purity
metric values higher and lower than 0.99 respectively, for the Illumina
MiSeq and Ion Torrent PGM sequencing platforms

PGM-High PGM-Low

MiSeq-High 2864925 44534

MiSeq-Low 394 115
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Sequencing data summary statistics

Summary statistics were calculated including number of
reads, mapped read length, insert size for paired-end
datasets, and coverage for S. aureus datasets (Table 1).
The MiSeq sequencing run had an average of 1.7 million
paired-end reads per library with a median read length of
232 bp, whereas the PGM sequencing run produced 0.2
million reads per library on average with a median read
length of 232 bp. Based on the sequencing methods used
(Electronic Supplemental Material), longer reads were
expected for PGM. The shorter read length is potentially
due to the low GC content, which is known to challenge cur-
rent sequencing technologies [20]. The higher throughput
and paired-end reads resulted in higher coverage for MiSeq
compared to PGM (251 X vs. 36 X). The three PacBio
datasets are library replicates run on different SMRT cells.
The replicate libraries had a median subread length 10,436
bp and 302 X total coverage. Between the three platforms
a total coverage of 4,611 X. The dataset summary statistics
provide general information about the sequencing datasets
and identify potential biases in the sequence methods.

Base level purity

A base purity metric was used to evaluate how well the
sequencing data supports the reference base call. Through

comparison of the base purity for two orthogonal sequenc-
ing methods, we identified genome positions with low
purity values due to platform specific systematic sequencing
errors. The reference base is identified using a third orthog-
onal sequencing method (Pacific Biosciences RSII), which
only chooses the dominant base and does not identify small
impurities. Thus, a low purity (below 50 %) for one of the
two short-read sequencing platforms and a high purity value
for the other means that two technologies (one short-read
and one long-read) agree that the dominant base is the ref-
erence base. It is important to acknowledge that even if the
two short-read sequencing platforms indicate an impurity,
they are potentially susceptible to the same unknown bias.

We compared purity metric values between two orthogo-
nal sequencing methods, MiSeq and PGM, for all positions
in the genome (Fig. 2). The purity metric was used to cat-
egorize genomic positions as high (> 0.99) or low purity
(< 0.99). Out of 2,909,968 positions in the genome
2,864,925 positions had purity values greater than 0.99
for both short-read sequencing platforms (Table 2). Fur-
ther, 2,909,853 and 2,909,965 positions had purity values
greater than 0.99 and 0.97, respectively, for one of the two
platforms. Only 115 positions had purity values less than
0.99 for both platforms, and no positions had purity value
less than 0.95 for both platforms. The positions with low
purity for MiSeq were non-uniformly distributed whereas

Fig. 3 Distribution of genome
positions by purity group. Bases
with high and low purity and
purity values greater than and
less than 0.99 respectively for
the two platforms, MiSeq -
Illumina MiSeq and PGM - Ion
Torrent PGM. Positions with
high purity for both platforms
were excluded from the figure
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positions with low purity for PGM were uniformly dis-
tributed (Fig. 3). The difference in low purity position
distributions is due to differences in the systematic sequenc-
ing error profiles for the two platforms. PGM has a higher
error rate for homopolymers, whereas MiSeq has a more
context specific sequencing error profile [20].

The sequencing technologies used to characterize the
material are still maturing, and an incomplete understand-
ing of platform-specific biases limits our ability to provide
a confidence value for the base calls. A number of base
level metrics, such as strand bias, are calculated as part
of the PEPR Genome Characterization Pipeline and are
included in the pipeline results database. These metrics can
be used to differentiate positions with low purity due to
measurement error and those due to biological variabil-
ity. Use of additional metrics and algorithms developed
for the identification of low-frequency variants, such as
LoFreq [21], could help identify positions with low levels
of biological variability, but are not currently implemented
in PEPR.

Base level homogeneity

Material homogeneity was assessed through pairwise sta-
tistical analysis of the replicate MiSeq datasets using the
VarScan somatic variant caller [11]. The pairwise vari-
ant analysis failed to identify any statistically significant
base level differences among the replicates (Table 3). Only
Illumina data was used to assess the homogeneity of the
material as the higher coverage increased the statistical
power of the test, and replicate libraries provide information
regarding the method error rate. The Ion Torrent dataset did
not include replicate libraries for the eight vials sequenced,
and therefore, library specific sequencing errors were
confounded with vial-to-vial variability. No statistically
significant variants were identified between all pairwise
comparisons indicating that the material is homogeneous.
If potential inhomogeneities were found, then the PGM

sequencing data could be examined for additional support
for the inhomogeneities. Even without replicate libraries for
the different vials, it is unlikely that any library specific bias
will correlate with vial-to-vial variability observed in the
Illumina data by chance.

Genomic purity pipeline

TheGenomic Purity pipeline is used to identify DNAwithin
the material that belongs to a genus other than the mate-
rial genus. Short-read sequencing data was used to identify
the proportion of DNA in the material from an organism
other than the material genus, in this case, Staphylococ-
cus, using PathoScope 2.0 [12]. The genus level cutoff was
selected based on results from a previous study character-
izing the specificity of the PathoScope 2.0 classification
algorithm (Olson et al. in-prep). Genomic contaminants can
be from the culture itself or reagents and materials used to
prepare the material or during sequencing [22–24]. Contam-
inants identified by the Genomic Purity Pipeline may not
be present in the material. For example, reagents used dur-
ing library preparation may include contaminants [24–27].
Additionally, bioinformatic errors may lead to false posi-
tives, either due to errors in the database or errors by the
classification algorithm.

Based on analysis of the MiSeq and PGM sequencing
data, the reference material has minimal if any genomic
contaminants, with a maximum of 0.0039 % reads in any
dataset classified as not belonging to the genus Staphylococ-
cus. The most abundant contaminant was Escherichia coli
(Fig. 4). E. coli is a well-documented contaminant of molec-
ular biology reagents, and not likely a true contaminant
[24]. Lower abundant contaminants may be bioinformatic
errors and not true contaminants. While, contaminants iden-
tified by the Genomic Purity pipeline are most likely from
reagents or due to bioinformatic errors, a conservative esti-
mate of the material purity, assuming all contaminants
are real, is reported by the pipeline. Users will want to

Table 3 Pairwise variant analysis results

Position Proportion of Pairs Median Frequency Minimum P-value N Significant

244332 0.01 21.31 0.51 0.00

2615986 0.03 20.48 0.45 0.00

2616058 0.08 25.29 0.15 0.00

2619808 0.01 20.78 0.61 0.00

2619886 0.01 21.54 0.50 0.00

Position is the position in the genome where differences in variant frequency for at least one of the 16 pairwise comparisons were reported.
Proportion of pairs is the fraction of the pairwise comparisons between the 16 Illumina MiSeq datasets where VarScan reported a difference in
variant frequency. Median frequency is the median variant frequency for datasets with reported difference at that genome position. Minimum p-
value is the lowest p-value reported by VarScan for all pairwise dataset comparisons with reported differences in variant frequency. N Significant
is the number of datasets with reported statistically significant differences at that genome position
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Fig. 4 Breakdown of
contaminants by organism

Achromobacter xylosoxidans

Methylobacterium populi

Homo sapiens

Streptococcus oralis

Gallibacterium anatis

Human papillomavirus

Streptococcus mitis

NanoLuc reporter

unidentified cloning

Bacillus cereus

Shuttle vector

Roseburia hominis

Streptococcus pneumoniae

Pseudomonas mendocina

synthetic construct

Campylobacter coli

Gemella morbillorum

Stenotrophomonas maltophilia

Enterococcus sp.

Nanoluc luciferase

Enterococcus faecium

Escherichia coli

0 50 100 150
Reads

O
rg

an
is

m

Platform

miseq

pgm

consider the limited specificity of the taxonomic classi-
fication method. For example, if the intended use of the
genomic DNA is for use as part of an inclusivity exclusiv-
ity panel, additional genomic purity assessment in addition
to the PEPR Genomic Purity Pipeline is required to validate
the material.

Conclusions

PEPR provides a framework for characterizing microbial
genomic reference materials, for instance, a homogenized
batch of DNA from a single prokaryotic strain. The objec-
tive in developing PEPR was to provide a reproducible
and transparent workflow for characterizing of prokaryotic
genomic materials. The pipeline can be used to characterize
reference materials as well as in-house quality control mate-
rials for which replicate sequencing datasets from multiple
platforms are available. If another lab wishes to character-
ize a new reference or quality control material, they could
follow this process:

1. Ideally, the user should generate a large batch of mate-
rial and aliquot it to reduce inhomogeneity.

2. Identify a high-quality genome assembly. If a good ref-
erence assembly does not exist for the sample, then
long-read sequencing like PacBio may be required to

generate an assembly, and ideally mapping technologies
would be used to validate the assembly.

3. Short-read whole genome sequencing, preferably from
two orthogonal sequencing technologies, should be
generated from multiple vials of the material, ide-
ally with technical replicate libraries from at least six
randomly selected vials.

4. PEPR can then be run to assess base level purity
and homogeneity, genomic contaminants, and mis-
assemblies.

PEPR outputs include a corrected reference genome
assembly, genome positions with high and low purity based
on biological and technical variation, base level homogene-
ity of the material, as well as the percentage and identity
of genus level genomic contaminants. The resulting charac-
terization values are intentionally conservative and without
uncertainty or confidence estimates, as sources of bias and
error associated with the measurement process are currently
not fully understood. As the scientific community’s under-
standing of the measurement process matures new algo-
rithms can be incorporated into the pipeline to increase the
quality of material characterization process. The genomic
materials characterized using PEPR will help increase
confidence in WGS measurement methods and improve
our understanding of the sequencing and data analysis
process.
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