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Abstract The aim of this study was to investigate the associ-
ation between signal transducer and activator of transcription 3
(STAT3) polymorphisms and autoimmune thyroid diseases and
clinical features. We genotyped six single-nucleotide polymor-
phisms (SNPs) rs1053005, rs2293152, rs744166, rs17593222,
rs2291281, and rs2291282 of STAT3 gene in 667 patients with
autoimmune thyroid disease (417 Graves’ disease (GD) and 250
Hashimoto’s thyroiditis (HT)) and 301 healthy controls. The
allele A from rs1053005 was significantly less frequent in both
GD andHT patients (P=0.0024, OR=0.6958, 95%CI=0.5508–
0.8788; P=0.0091, OR=0.7013, 95%CI=0.5397–0.9112, re-
spectively). The AA genotype of rs1053005 was less in GD
and HT patients too (P=0.0025,OR=0.6278, 95%CI=0.466–
0.847) and (P=0.0036,OR=0.601, 95%CI=0.428–0.843). The
allele G from rs17593222 increased the susceptibility to the
ophthalmopathy development both in autoimmune thyroid dis-
ease (AITD) and GD patients (P=0.0007, OR=3.980, 95%CI=
1.871–8.464; P=0.0081, OR=3.378, 95%CI=1.441–7.919, re-
spectively). The allele A and AA genotype of SNP rs1053005
may protect individuals from the susceptibility to AITD and
their frequency decreased in AITD patients. In addition, the
allele G of rs17593222 may increase the ophthalmopathy risk

in AITD patients. Our findings suggest the existence of associ-
ation between STAT3 gene and AITD, thus adding STAT3 gene
to the list of the predisposing genes to AITD.
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Introduction

Autoimmune thyroid diseases (AITDs), including Graves’
disease (GD) and Hashimoto’s thyroiditis (HT), are among
the most common human autoimmune diseases. The preva-
lence in Caucasians is 1 % (Hollowell et al. 2002). GD is
characterized clinically by hyperthyroidism, diffuse goiter,
and the presence of thyrotropin receptor antibodies, and HT
is characterized by apoptosis of thyrocytes leading to hypo-
thyroidism and the presence of thyroid peroxidase antibodies
(TPOAb) or antibodies against thyroglobulin (TGAb).
Despite their contrasting clinical presentations, GD and HT
share many common features, mainly the infiltration of the
thyroid by T cells and the production of anti-thyroid autoan-
tibodies (Tomer 1997). The pathogenesis for AITDs remains
unclear, though it is thought to involve several risk factors,
including genetic risk factors (Tomer and Davies 2003) and
environmental triggers such as cigarette smoking, iodine in-
take, and infection (Tomer and Davies 1993).

T helper cells are a group of immune cells that mediate
adaptive immunity in vertebrates and are comprised of four
major subtypes, Th1, Th2, Th17, and Treg (Dong 2008;
Egwuagu 2009; Korn et al. 2009). In comparison to other T
helper subsets, IL-17-producing T cells (Th17) are present in
very low amounts in human blood but become highly elevated
during chronic inflammation and are implicated in the pathology
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of several autoimmune diseases and chronic inflammatory dis-
orders (Amadi-Obi et al. 2007). Recently, one of our studies
identified the association of interleukin-17A and interleukin-17F
gene single-nucleotide polymorphisms with autoimmune thy-
roid diseases. IL-17F/rs763780 polymorphisms may affect the
susceptibility to AITD, and IL-17A/rs3819025 SNP is likely a
protective factor to GD in the Chinese population (Yan et al.
2012). IL-17A and IL-17F are two IL-17 cytokine family mem-
bers responsible for the pathogenic activity of the Th17 cells
(Rutitzky et al. 2005). The differentiation of naive CD4+Tcells
toward the Th17 developmental pathway is mediated through
activation of STAT3 pathways and Th17 lineage-specific tran-
scription factors (Ivanov et al. 2007; Yang et al. 2007; Dong
2008; Korn et al. 2009). IL-6, IL-21, and IL-23 are all cytokines
that activate the transcription factor STAT3 (Chen et al. 2007).
Loss of STAT3 expression abrogates Th17 differentiation and
inhibits the production of cytokines secreted by Th17 cells
(Ivanov et al. 2007).

STAT3 gene polymorphisms had been reported to be asso-
ciated with several immune diseases, including Crohn’s dis-
ease (CD) (Ferguson et al. 2010), type1diabetes mellitus
(Fung et al. 2009), Sjogren’s syndrome (Okuma et al. 2013),
and psoriatic arthritis (PsA) (Cenit et al. 2013). No reports
about STAT3 SNPs’ correlation to AITDs had been seen.

In this study, we attempted to find the association of
SNPs rs1053005, rs2293152, rs744166, rs17593222,
rs2291281, and rs2291282 at the STAT3 gene locus with
GD and HT in a Han Chinese population.

Materials and methods

Subjects

All AITD (GD and HT) patients in the present case–control
study were recruited from the Department of Endocrinology,
the First Affiliated Hospital of Xi’an Jiaotong University. The
diagnostic criteria for GD were mainly determined by clinical
manifestation and laboratory biochemical proof of hyperthy-
roidism and the presence of diffuse goiter, the positive circu-
lating TSH receptor antibody (TRAb) and antibody against
thyroglobulin (TgAb) or antibody against thyroid peroxidase
(TPOAb). HT was defined on the basis of enlarged thyroid
and the high level of either TPOAb or TgAb, with or without
clinical and biochemical hypothyroidism. Fine needle aspira-
tion was performed for any demonstrative and suspected cases
of hypothyroidism. Three hundred and one healthy controls
were recruited from unrelated physical examination individ-
uals in the Health Check-up Center of the same hospital, with
thyroid disease and other autoimmune diseases ruled out. All
the subjects, including AITD patients and controls, were Han
Chinese and signed the informed consent. The research pro-
ject was approved by the Ethics Committee of the First

Affiliated Hospital of Medical School of Xi’an Jiaotong
University. As shown in Table 1, our study investigated 667
AITD patients, who comprised 417 GD (124 men and 293
women) and 250 HT patients (39 men and 211 women). In
GD patients, the average onset age was 32.31±14.07, 72
individuals had family history and 98 had ophthalmopathy.
In HT patients, the average onset age was 30.29±13.05, 54
individuals had family history and 6 had ophthalmopathy.

Genotyping

Peripheral venous blood of 2ml from the subjects was collected
in an EDTA tube. The genomic DNAwas extracted by salting-
out method, using RelaxGene Blood DNA System (TIANGEN
BIOTECH, Beijing, China), according to the manufactures’
protocol. Genotyping of SNPs (rs1053005, rs2293152,
rs744166, rs17593222, rs2291281, and rs2291282) was
performed by MassARRAY system (Sequenom, San Diego,
CA, USA) using the chip-based matrix-assisted laser desorp-
tion ionization time-of-flight mass spectrometry technology
(Du et al. 2011). This is a well-selected platform by many
researchers during studies including SNP genotyping. It has
high specificity and sensitivity (Xiu-Cheng Fan et al. 2008).
Primers were obtained from Sangon Biotech (Shanghai,
China). Briefly, multiplex reaction was designed using Assay
Designer software version 3.0 (Sequenom) and was processed
following standard protocols for iPLEX chemistry. The reac-
tion products were then cleaned and dispensed onto a Spectro-
CHIP bioarray. The chip was scanned using MassARRAY
workstation version 3.3, and the resulting spectra were ana-
lyzed using the Sequenom TYPER software.

Table 1 Clinical data of AITD patients and controls

GD HT Control

Number 417 250 30l

Gender

Female 293 211 210

Male 124 39 91

Age 34.48±13.95 31.9±13.1 33.5±12.59

Onset of age 32.31±14.07 30.29±13.05

Thyroid size

Normal 85 41

I 35 17

II 231 169

III 66 23

Family history

(+) 72 54

(-) 345 196

Ophthalmopathy

(+) 98 6

(-) 319 244
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Clinical phenotype analysis

Patients’ clinical characteristics data were presented in Table 1.
We conducted investigation in autoimmune thyroid patients
(GD and HT) and their clinical features subphenotypes.
Association analyses between genotypes and clinical manifes-
tations of GD or HTwere separately investigated involving (1)
presence or absence of AITD family history (defined as the
subjects’ first-degree relatives including parents, children, and
siblings or second-degree relatives such as grandparents, uncles,
and aunts who had AITD occurrence); (2) presence or absence
of ophthalmopathy (defined as a distinctive disorder character-
ized by inflammation and swelling of the extraocular muscles
and orbital fat, eyelid retraction, periorbital edema, episcleral
vascular injection, conjunctive swelling, and proptosis).

Statistical analysis

The clinical data are expressed as M ±SD. All SNPs were
analyzed using HapLoView 4.2 software to perform Hardy-

Weinberg equilibrium (HWE) tests. Haplotype blocks were
generated using the default algorithm based on methods
established by Gabriel et al. (2002). Because all SNPs
studied here were not located in the same block (data not
shown), we did no haplotype frequency calculation and
linkage disequilibrium (LD) test. Allele and genotype fre-
quencies between cases and controls were computed by chi
square test or Fisher’s exact test. Differences between
groups were determined by the odds ratio (OR) and 95 %
confidence interval (95 %CI). All statistical analyses were
performed using the software GraphPad Prism 5. A p value
less than 0.05 was considered significant.

Results

Allele and genotype results

All of these six SNPs in both case and control groups
were in HWE (p >0.05). Table 2 shows the allele and

Table 2 Allele and genotype frequencies in AITD patients and controls

SNP Alleles Con (%) CD (%) P OR 95%CI HT (%) P OR 95%CI

rs1053005 G 153 (25.5) 275 (32.97) 0.0024 0.6958 0.5508–0.8788 164 (32.8) 0.0091 0.7013 0.5397–0.9112

A 447 (74.5) 559 (67.03) 336 (67.2)

AA 170 (56.67) 188 (45.08) 0.008 110 (44) 0.0125

AG 107 (35.67) 183 (43.88) 116 (46.4)

GG 23 (7.66) 46 (11.04) 24 (9.6)

rs17593222 C 586 (97.67) 810 (97.36) 0.7363 493 (98.6) 0.279

G 14 (2.33) 22 (2.64) 7 (1.4)

CC 286 (95.33) 394 (94.71) 0.7329 243 (97.2) 0.2744

CG 14 (4.67) 22 (5.29) 7 (2.8)

rs2291281 A 8 (1.33) 6 (0.72) 0.2821 6 (1.2)

G 592 (98.67) 828 (99.28) 492 (98.8)

AG 8 (2.67) 6 (1.44) 0.2799 6 (2.41)

GG 292 (97.33) 411 (98.56) 243 (97.59)

rs2291282 C 7 (1.17) 17 (2.04) 0.2194 4 (0.8) 0.7627

T 593 (98.83) 817 (97.96) 496 (99.2)

CT 7 (2.33) 17 (4.08) 0.2156 4 (1.6) 0.7615

TT 293 (97.67) 400 (95.92) 246 (98.4)

rs2293152 C 293 (49) 371 (44.7) 0.1189 234 (46.99) 0.5438

G 305 (51) 459 (55.3) 264 (53.01)

CC 68 (22.74) 79 (19.04) 0.2577 53 (21.29) 0.7764

CG 157 (52.51) 213 (51.33) 128 (51.41)

66 74 (24.75) 123 (29.63) 68 (27.3)

rs744166 C 203 (34.06) 161 (38.15) 0.1849 199 (39.8) 0.0513

T 393 (65.94) 261 (61.85) 301 (60.2)

CC 34 (11.41) 22 (10.43) 0.0704 41 (16.4) 0.1381

CT 135 (45.3) 117 (55.45) 117 (46.8)

TT 129 (43.29) 72 (34.12) 92 (36.8)
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genotype frequencies and case–control association anal-
ysis for each SNP. In rs1053005, we found that allele A
was significantly less frequent in GD and HT patients
than in controls (p =0.0024, OR=0.6958, 95%CI=
0.5508–0.8788) and (p =0.0091, OR=0.7013, 95%CI=
0.5397–0.9112) (shown in Table 2). Also, AA genotype
of rs1053005 was less in GD (p =0.0025, OR=0.6278,
95%CI=0.466–0.847) and HT (p =0.0036, OR=0.601,
95%CI=0.428–0.843) patients than the control, which
evidently indicated the AA genotype could decrease
the susceptibility to GD and HT (shown in Table 3). SNP
rs744166 showed a marginal significant trend between HT
subjects and control group (p =0.0513) (shown in Table 2),
while the distribution of TT genotype from rs744166 (p =
0.0429, OR=0.6786, 95%CI=0.471–0.978) was decreased
in GD patients compared to the healthy controls (shown in
Table 3). Nevertheless, we did not find any significant differ-
ence both in genotype and allele frequencies between patients
and controls either in rs17593222, rs2291281, rs2291282, or
in rs2293152 SNPs.

Genotype and clinical phenotype associations

When we further compared the SNP rs1053005 between
patients with and those without family history, in both GD
and HT patients, no significant difference was observed
(data not shown).

Four SNPs, including rs1053005, rs17593222, rs2293152,
and rs744166, showed a significant association when
ophthalmopathy AITD patients were compared to the
healthy controls (shown in Table 4). Only two SNPs
(rs1053005 and rs744166) in non-ophthalmopathy AITD
patients showed difference when compared to the con-
trols (shown in Table 4). When we compared the
ophthalmopathy to the non-ophthalmopathy within
AITD patients, SNP rs17593222 showed significant as-
sociation (p =0.0007, OR=3.980, 95%CI=1.871–8.464).

Graves’ ophthalmopathy (GO) also known as thyroid-
associated ophthalmopathy is a condition that primarily
affects the extraocular muscles, the muscles that rotate
the eyeball up, down, and to the sides. It can happen

Table 3 Genotype distributions of rs1053005 and rs744166 in AITD patients and controls

SNP Genotype Con (%) GD (%) P OR CI HT (%) P OR CI

rs1053005 AG+GG 130 (43.33) 229 (54.92) 0.0025 0.6278 0.466–0.847 140 (56) 0.0036 0.601 0.428–0.843

AA 170 (56.67) 188 (45.08) 110 (44)

rs744166 CT+CC 169 (56.71) 139 (65.88) 0.0429 0.6786 0.471–0.978 158 (63.2) 0.1374

TT 129 (43.29) 72 (34.12) 92 (36.8)

Table 4 The allele and genotype frequencies of rs1053005, rs17953222, rs2293152, and rs744166 in ophthalmopathy and non-ophthalmopathy
patients and controls

SNP Alleles Con (%) Ophthalmopathy P OR CI Non-ophthalmopathy P OR CI

rsl053005 A 447 (74.5) 140 (67.31) 0.0475 1.419 1.007–2.000 753 (66.99) 0.0012 1.439 1.153–1.797

G 153 (25.5) 68 (32.69) 371 (33.01)

AA 170 (56.67) 48 (46.15) 0.0685 249 (44.31) 0.0006 1.644 1.239–2.181

AG+GG 130 (43.33) 56 (53.85) 313 (55.69)

rs17593222 C 586 (97.67) 196 (94.23) 0.0218 2.563 1.165–5.635 1105 (98.48) 0.2545

G 14 (2.33) 12 (5.77) 17 (1.52)

CC 286 (95.33) 92 (88.46) 0.0197 2.665 190–5.967 544 (96.97) 0.2502

CG 14 (4.67) 12 (11.54) 17 (3.03)

rs2293152 C 293 (49) 79 (37.98) 0.0061 1.569 1.136–2.166 521 (46.60) 0.3612

G 305 (51) 129 (62.02) 597 (53.40)

GG 74 (24.75) 44 (42.31) 0.0011 0.4485 0.280–0.717 150 (26.83) 0.5681

CG+CC 225 (75.25) 60 (57.69) 409 (73.17)

rs744166 C 203 (34.06) 87 (42.23) 0.0433 0.7065 0.511–0.977 444 (39.57) 0.0280 0.7888 0.641–0.971

T 393 (65.94) 119 (57.77) 678 (60.43)

CC 34 (11.41) 20 (19.42) 0.0454 0.5345 0.292–0.979 87 (15.51) 0.7017

CT+TT 264 (88.59) 83 (80.58) 474 (84.49)
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not only in GD but also in HT patients. Nevertheless,
we can see GD contributed much more to the develop-
ment of ophthalmopathy as shown in the Table 5.

Allele G from rs17593222 also increased the risk of
ophthalmopathy (p =0.0081, OR=3.378, 95%CI=1.441–
7.919) within GD patients. The minor allele G from
rs17593222 increased the susceptibility to the ophthalmopathy
development both in AITD and GD patient subgroups
(shown in Tables 6 and 7). CG genotype of rs
17593222 SNP increased the risk of ophthalmopathy
too when compared to CC genotype (p =0.0073, OR=
3.529, 95%CI=1.480–8.416 ). GG genotype from SNP
rs2293152 also increased the risk of ophthalmopathy in
GD patients (p =0.031, OR=1.729, 95%CI=1.073–
2.784) (shown in Table 7). No differences were seen
in other SNPs, including rs1053005 and rs744166 (data
not shown).

Discussion

STAT3 gene is located on chromosome17q21.31. The
protein encoded by this gene is a member of the STAT
protein family. In response to cytokines and growth
factors, STAT family members are phosphorylated by
the receptor-associated kinases and then form homo- or
heterodimers that translocate to the cell nucleus where
they act as transcription activators (Zhong et al. 1994).
This protein is activated through phosphorylation in
response to various cytokines and growth factors includ-
ing IFNs, EGF, IL5, IL6, HGF, LIF, and BMP2. It
mediates the expression of many genes in response to

cell stimuli and thus plays a key role in many cellular
processes such as cell growth and apoptosis. STAT3
also plays key roles in Th17 lymphocyte development
and differentiation.

SNPs rs744166, rs2293152, and rs1053005 had been
found to be associated with many autoimmune diseases.
The association with psoriatic arthritis (PsA) in SNP
rs744166 was observed in Spanish Caucasian origin
(Cenit et al. 2013). So did its association with ankylosing
spondylitis (AS) in white European ancestry (Danoy et al.
2010) and that with multiple sclerosis (MS) in Finland
population (Jakkula et al. 2010). The susceptibility of
STAT3 rs744166 TT homozygotes for ulcerative colitis
(UC) was found in Hungarian (Polgar et al. 2012).
Also, the association of rs744166 to Crohn’s disease
(CD) was also confirmed in adult German (Prager et al.
2012). STAT3 (rs2293152, rs1053005) were significant-
ly associated with AS in Han Chinese (Davidson et al.
2011). A significantly increased frequency of the GG
genotype of the STAT3 rs2293152 was also observed in
patients with BD in the Han Chinese population (Hu
et al. 2012). The frequencies of a C allele and its
homozygous CC genotype at rs2293152 SNP in
STAT3 in CD patients were significantly higher than
those in control subjects in the Japanese population (Sato et al.
2009). However, no study about the STAT3 SNPs association
with AITDs was reported until now.

Our study examined the association between six SNPs of
STAT3 gene and AITD in a Chinese Han population.
Regarding the allele frequencies and genotype analysis of
STAT3, we found that rs1053005 major allele A was signifi-
cantly decreased in GD and HT patients and lowered the risk

Table 5 Ophthalmopathy in
ATD disease Ophthalmopathy (%) Non-ophthalmopathy (%) P OR CI

GD 98 (94.23) 319 (56.76) <0.0001 12.44 5.365–28.86

HT 6 (5.77) 243 (43.24)

Table 6 The allele and genotype frequencies of rs17593222 and rs2293152 in ophthalmopathy and non-ophthalmopathy AITD patients

SNP Alleles Non-ophthalmopathy (%) Ophthalmopathy (%) P OR CI

rs17593222 C 1105 (98.48) 196 (94.23) 0.0007 3.980 1.871–8.464

G 17 (1.52) 12 (5.77)

CC 544 (96.97) 92 (88.46) 0.0006 4.174 1.930–9.028

CG 17 (3.03) 12 (11.54)

rs2293152 C 521 (46.60) 82 (39.42) 0.0583

G 597 (53.40) 126 (60.58)

CG+CC 409 (73.17) 63 (60.58) 0.0129 1.774 1.148–2.743

GG 150 (26.83) 41 (39.42)
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of diseases by 30.42 and 29.87 %, respectively. The AA
genotype frequencies in control, GD, and HT collections
were 56.67, 45.08, and 44 %, respectively. There is a
clear observation that the AA could lower the risk of
GD or HT by 37.22 and 39.9 %, respectively, and
protect individuals from developing AITDs. SNP
rs744166 showed a marginal difference between the
HT and control groups (p =0.0513). We observed much
higher risk of ophthalmopathy development both in
AITD and GD group with G allele of rs17593222
(OR=3.980 and 3.378, respectively).

Dysregulation of effector T cell responses represents a
common feature of a wide range of autoimmune diseases.
Activated CD4+ T cells differentiate into distinct functional
subsets, characterized by heritable patterns of cytokine
secretion and the expression of specific transcription
factors. IL-17 is mostly known for its pro-inflammatory
activities, both in vitro and in vivo, and its expression is
increased in inflammatory tissues (Kolls and Linden 2004).
One of these subsets, CD4+ T cells that preferentially
produce IL-17, designed Th17, have attracted tremendous
attention because of the connection with autoimmune dis-
ease (Stockinger and Veldhoen 2007; Weaver et al. 2007;
Miossec et al. 2009). An increasing body of evidence
shows the requirement of STAT3 for Th17 cell develop-
ment. Patients suffering from autosomal dominant hyper-
IgE syndrome, associated with negative mutations in
STAT3, had impaired Th17 cell differentiation (de
Beaucoudrey et al. 2008; Ma et al. 2008; Milner et al.
2008; Renner et al. 2008).

STAT3 bound to and regulated multiple genes that con-
tribute to the Th17 phenotype, including not only the IL17
locus itself, IL21, and IL23r but also CCR6 (Durant et al.
2010; Ghoreschi et al. 2010; Yang et al. 2011). STAT3 also
bound to genes encoding transcription factors critical for
Th17 differentiation including Rorc (which encodes Rorγt),
Irf4, Batf, and Nfibiz (Durant et al. 2010).

We and other researchers have found that there is an
increased differentiation of Th17 lymphocytes and an

enhanced synthesis of Th17 cytokines in AITDs. These may
substantially contribute to the pathogenesis of thyroid auto-
immunity (Figueroa-Vega et al. 2010; Qin et al. 2012). Our
previous work had also found the association of IL-17A and
IL-17F SNPs with AITDs, which were two IL-17 cytokine
family members secreted by Th17 cells (Yan et al. 2012).

Immunohistochemical analysis had demonstrated differ-
ential expression patterns of the various members of the
STAT transcription factors in lymphocytic thyroiditis, indi-
cating that each member of this conserved protein family
has its distinct functions in the development of the disease.
The cell-type-specific expression patterns of STAT proteins
in human lymphocytic thyroiditis reflect their distinct and
partially antagonistic roles in orchestrating the balance be-
tween degenerating and regenerating processes within a
changing cytokine environment (Staab et al. 2012). STAT
protein members have different effect on Th17 differentiation
and may contribute to their roles in human lymphocytic
thyroiditis pathogenesis.

STAT3 is a key signaling molecule within the Th17
lymphocyte differentiation pathway. It may play roles in
AITDs and ophthalmopathy development by regulating
Th17 lymphocyte differentiation. Here, we report the con-
tribution of STAT3 SNPs to AITDs and ophthalmopathy
susceptibility in patients for the first time. The AITDs
occurrence may be attributed to altered differentiation of
Th17 lymphocytes and different synthesis of Th17 cyto-
kines in the tissue.
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Table 7 The allele and genotype frequencies of rs1759222 and rs2293152 in ophthalmopathy and non-ophthalmopathy GD patients

SNP Alleles Non-ophthalmopathy GD (%) Ophthalmopathy GD (%) P OR CI

rs17593222 C 625 (98.27) 185 (94.39) 0.0081 3.378 1.441–7.919

G 11 (1.73) 11 (5.61)

CC 307 (96.54) 87 (88.78) 0.0073 3.529 1.480–8.416

CG 11 (3.46) 11 (11.22)

rs2293152 C 293 (46.21) 78 (39.80) 0.1190

G 341 (53.79) 118 (60.20)

CG+CC 232 (73.19) 60 (61.22) 0.031 1.729 1.073–2.784

GG 85 (26.81) 38 (38.78)
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