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Abstract Water samples were seasonally collected from
12 stations of the eastern coast of Suez Gulf during
autumn of 2012 and winter, spring, and summer of
2013 in order to investigate phytoplankton community
structure in relation to some physicochemical parameters.
The study area harbored a diversified phytoplankton
community (138 species), belonging to 67 genera. Four
algal groups were represented and classified as
Bacillariophyceae (90 species), Dinophyceae (28 spe-
cies), Cyanophyceae (16 species), and Chlorophyceae
(4 species). The results indicated a relative high occur-
rence of some species namely.; Pleurotaenium trabecula
of green algae;Chaetoceros lorenzianus, Proboscia alata
var. gracillima, Pseudosolenia calcar-avis, and Pseudo-
nitzschia pungens of diatoms; Trichodesmium
erythraeum and Pseudoanabaena limnetica of
cyanophytes. Most of other algal species were fairly
distributed at the selected stations of the study area. The
total abundance of phytoplankton was relatively low
(average of 2989 unit/L) in the eastern coast of Suez Gulf,
as compared its western coast and the northern part of the
Red Sea. The diversity of phytoplankton species was
relatively high (2.35–3.82 nats) with an annual average

of 3.22 nats in the present study. The results concluded
that most of eastern coast of Suez Gulf is still healthy,
relatively unpolluted, and oligotrophic area, which is
clearly achieved by the low values of dissolved phosphate
(0.025–0.3 μM), nitrate (0.18–1.26 μM), and dissolved
ammonium (0.81–5.36 μM). Even if the occurrence of
potentially harmful algae species was low, the study area
should be monitored continuously. The dissolved oxygen
ranged between 1.77 and 8.41 mg/L and pH values
between 7.6 and 8.41. The multiple regression analysis
showed that the dissolved nitrate and pH values were the
most effective factors that controlled the seasonal fluctu-
ations of phytoplankton along the eastern coast of Suez
Gulf during 2012–2013.
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Introduction

The northern end of the Red Sea bifurcates into the Sinai
Peninsula, creating the Gulf of Suez in the west and the
Gulf of Aqaba to the east. The gulf is relatively shallow
and formed within a relatively young but now inactive
Gulf of Suez Rift basin, dating back about 28 million
years. It stretches some 300 km north by northwest,
terminating at the Egyptian city of Suez and the entrance
to the Suez Canal. Along the mid-line of the gulf is the
boundary between Africa and Asia. The length of the
gulf, from its mouth at the Strait of Jubal to its head at
the city of Suez, is 314 km, and it varies in width from
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19 to 32 km. The Gulf of Suez is relatively shallow, with
a maximum depth of about 64 m; outside its mouth, the
depth drops sharply to about 1255 m.

However, the Suez Gulf is subjected to sources of
pollution such as shipping activities, where transport of
oil continues to play a critical role in marine pollution in
the northern part of the gulf and Suez Canal. On the other
hand, extensive oil production operations are taking place
in the gulf, both inshore and offshore. In addition, the gulf
is subjected to industrial, agricultural, and domestic sew-
age; thermal pollution from power, desalination plants; and
tourism activities (TEAM 2000, and NPA 2003a, b, c). In
fact, there is no analysis of the tourism-related literature or
recent analysis of impacts. Themost published topics relate
to coral breakage and its management. A full account of
tourism’s environmental impacts is constrained by limited
tourism data (Gladstone et al. 2013). However, the western
coast of the gulf is considered more polluted than the
eastern coast due to urbanization resulting from the popu-
lation expansion, establishment of new industries along the
coast such as fertilizer and cement factories, chemicals, and
organic wastes from food processing factories at SuezCity,
and, in addition, to more tourism activities due to the
establishment of numerous touristy villages. Thus, theGulf
of Suez could be fairly considered themost polluted area in
the Red Sea (TEAM 2000 and NPA 2003a, b, c).

Noticeably, all these pollutants affected the marine
ecosystem, which becomes under variable pressure,
causing radical changes in marine organisms, including
coral reefs, invertebrates, seagrasses, seaweeds, phyto-
plankton, and others (TEAM2000 and NPA 2003a, b, c).

In fact, phytoplankton communities are the basis
of many marine and freshwater food webs. Their
composition fluctuates depending on hydrological
conditions, such as light, temperature, salinity, pH,
nutrients, and turbulence (Huertas et al. 2011). Typ-
ically, diatoms dominate coastal marine communi-
ties. However, other groups of phytoplankton can
dominate depending on the combination of hydrolog-
ical conditions and climatic variability (Leterme et al.
2006). Changes in dominant base groups/species of-
ten propagate up the food chain, impacting on fish,
marine mammals, and birds (Donnelly et al. 2007).
Phytoplankton are known to exhibit rapid responses
to changes in environmental conditions and are
therefore commonly acknowledged as excellent
bioindicators of the impact of natural and seasonal
changes in coastal ecosystems (Rimet and Bouchez
2012). Their susceptibility to environmental change is

usually expressed by morphological and/or behavioral
changes as well as by persistent or seasonally a typical
differences in abundance and distribution (Leterme et al.
2010, 2013). Where mono-or class-specific blooms are
observed on an annual basis, they often vary significant-
ly in magnitude and/or duration between years (Ji et al.
2006 and Leterme et al. 2014).

The phytoplankton community structure in the
northern part of the Red Sea was investigated by
several workers and revealed variable biodiversity
and community structure according to different
ecological conditions and different spatial and
temporal scales. Nassar (1994) recorded 76 species
including 50 diatoms, 18 dinoflagellates, five blue-
green algae, and three species of green algae in Suez
Bay of the northern part of Suez Gulf. El-Sherif and
Abo El-Ezz (2000) examined the distribution of
plankton at Taba, Sharm El-Sheikh, Hurgada, and
Safaga at northern Red Sea, recording 41 diatom
species, 53 dinoflagellates, 10 cyanophytes, and two
chlorophytes. Deyab et al. (2004) recorded 200 phy-
toplankton species along the Suez Canal, Suez Gulf,
and the northern part of the Red Sea with clear
dominance of diatoms. Shams El-Din et al. (2005)
identified 110 phytoplankton species belonging to
seven classes on both sides of the Suez Gulf. Nassar
(2007a) studied the phytoplankton dynamics in the
western coast of Suez Gulf and recorded 144 species
of different groups, and Nassar (2007b) conducted
similar study on the phytoplankton abundance in the
coastal waters of the Aqaba Gulf, recording 127 taxa.
Also, Al-Najjar et al. (2007) studied the seasonal
dynamics of phytoplankton in the Gulf of Aqaba.
Madkour et al. (2010) reported that the spatial distri-
bution of phytoplankton showed that Gulf of Suez
differs in the dominant species and timing of abun-
dance from both Gulf of Aqaba and the southern sites
of Sinai Peninsula. Recently, a checklist of 207 phy-
toplankton species is detected in the Egyptian waters
of the Red Sea and some surrounding habitats during
the period 1990–2010 (Nassar and Khairy 2014). In
fact, the available literatures on phytoplankton pop-
ulation dynamic in the eastern coast of the gulf are
scarce, and information is lacking concerning phyto-
plankton in this area.

The aim of the present work is to follow up the
changes that might take place in the standing crop and
community structure of the phytoplankton in the coastal
waters of eastern coast of the Suez Gulf in response to
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changes in the physicochemical characters of water and
to compare the results with the previous studies of the
surrounding habitats.

Materials and methods

Description of sampling stations

Twelve stations were selected along the eastern coast of
the Suez Gulf as shown in Fig. 1. These stations are
subjected to different ecological conditions due to the
touristic and human activities, sewage and oil effluents,
and industrial and thermal effects: St. 1 is located near
the Electrical Power Station of Ayon Mousa at about
500 m of the coast and is subjected to thermal water
discharge. St. 2 is situated near a tourist village namely
Tamara Crouze with low human and tourist activities.
St. 3 is located near the beach of Ras Sedr and is
subjected to high tourist and human activities especially
during summer months. St. 4 is located near a new
tourist village namely Daghish village, at which low
human and tourist activities were observed. St. 5 is a
sandy beach located north of the Hammam Pharaon and
is relatively far from the human activities. St. 6 is located

near the Hammam Pharaon hot springs; its water is
relatively hot and characterized by high vegetations
and bad odors. St. 7 (Abu-Zenima) is situated at about
2.5 km fromAbu-Zenima City. St. 8 is located near from
the manganese factory of Abu-Zenima and is subjected
to Mn effluents of this factory. St. 9 (Abu-Redis) is
located in the south of Abu-Redis City and is subjected
to sewage and oil effluents discharged from the oil
charging and discharging company. St. 10 (Petropil) is
situated near the Petropil Oil Company and is subjected
also to oil effluents. St. 11 (Al-Konaysa) is located near
a fishing harbor of the Fisheries Commission and is
subjected to fishing and human activities. St. 12 (Al-
Tur) is situated near the eastern side of Al-Tur fishing
harbor and is also subjected to fishing and human
activities.

Phytoplankton estimations

Water samples were seasonally collected using Ruttiner
bottles from the sub-surface waters of different 12 sta-
tions during autumn of 2012 (November) and winter
(January), spring (April), and summer (August) of 2013
(Fig. 1). Cell abundance and composition of phyto-
plankton were estimated according to sedimentation

Fig. 1 Positions of the sampling
stations (1–12)
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method (Utermöhl 1958). The species identification was
carried out following Peragallo and Peragallo (1908),
Ghazzawi (1939), Cupp (1943), Prescott (1962),
Bourrelly (1968), Ferguson (1968), Sournia (1986),
Mizuno (1990), and Al-Kandari et al. (2009). Then,
the phytoplankton species are updated according to the
taxonomic database sites, like algaebase.com (ab),
World Register of Marine Species (WoRMS), Canadian
Register of Marine Species (CaRMS), Nordic
Microalgae and Aquatic Protozoa (NOD), and Integrat-
ed Taxonomic Information System (ITIS).

Physicochemical parameters

Water temperature was measured by using a simple
pocket thermometer graduated to 0.1 °C. The pH value
of water samples was measured in situ using a pocket
pHmeter model Orion 210. Dissolved oxygenwas fixed
in field and measured according to the modified
Winkler’s method according to (Strickland and Parsons
1972), and the dissolved inorganic nutrients (NO3, NH4

and PO4) were determined spectrophotometrically, and
the results were expressed in micromolar according to
the methods described by APHA (2005).

Statistical analysis

The correlation matrices was applied to total phyto-
plankton counts, phytoplankton classes, dominant spe-
cies, and the physicochemical parameters at confidence
limit 95 % and n=47. Multiple regression was calculat-
ed for phytoplankton during each season, using the
program of STATISTICA Version 5. Similarity index
between the stations of the study area, based on phyto-
plankton community structure, was calculated, using the
program of Primer 5. The species diversity (H′) was
calculated according to Shannon and Weaver (1963).

Results

Physicochemical parameters

The results of physicochemical parameters of seawater
samples collected from the eastern coast of Suez Gulf
during 2012–2013 are shown in Table 1.

The temperature was typical of the north part of the
Suez Gulf, ranging from a minimum of 17.00 °C during
winter at St. 1 and a maximum of 31.50 °C during

summer at St. 7 with an annual mean value of
24.35 °C. The normal thermal cycle was clear in the
study area, showing the highest temperature during
summer (30.10 °C), while in winter, the lowest ones
were reached (18.16 °C).

Seawater pH lied in the alkaline side during all sea-
sons with almost the highest values during summer. The
lowest value of pH was recorded during winter at St. 9
(7.60) and the highest during summer at St. 1 (8.41).
Whereas, seawater dissolved oxygen (DO) varied be-
tween a minimum of 1.77 mg/L during spring at St. 3
and a maximum of 8.41 mg/L during winter at St. 9 with
small seasonal differences and an annual average of
4.30 mg O2/L.

As far as nutrients are concerned, the reactive phos-
phate (PO4) was very low during spring and summer at
all stations, whereas the maximum value was recorded
during autumn at St. 9 (0.30 μM). The dissolved nitrate
(NO3) in the gulf ranged between a maximum value of
1.26 μM during autumn at St. 9 and a minimum of
0.18 μM during summer at St. 3. The dissolved ammo-
nium (NH4) varied between a minimum of 0.81 μM
during spring at St. 1 and amaximum of 5.36μMduring
summer at St. 9, which may be due to the effect of
sewage and oil effluents. Generally, nitrate and phos-
phate exhibited a seasonal cycle with lower concentra-
tions during summer, while dissolved ammonium was
the most abundant source of nitrogen during summer
(Table 1).

Phytoplankton

Community composition

The study area showed a discrete phytoplankton diver-
sity (138 species), belonging to 67 genera. Four algal
groups were represented in the eastern coast of Suez
Gulf belonging to Bacillariophyceae (90 species),
Dinophyceae (28 species), Cyanophyceae (16 species),
and Chlorophyceae (4 species) (Table 2).

The diatoms were the most dominated group,
forming about 67.00 % of the total counts of phyto-
plankton, followed by Cyanophytes that represented
about 17.00 % of the total abundance. On the other
hand, Dinophyceae and Chlorophyceae formed collec-
tively about 15.50 % of the total counts of phytoplank-
ton (Table 3).

The phytoplankton diversity displayed wide spatial
variations. The station 9 was reported as the most
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diversified community (93 species), while station 1
recorded the lowest diversified one (59 species)
(Table 2). On the other hand, there were no distinct
seasonal variations in phytoplankton diversity, where
the three seasons: autumn, winter, and spring harbored
closed number of species (64, 66, and 69 species),
respectively, whereas the summer harbored relatively
low number (53 species).

Regardless of the large number of phytoplankton spe-
cies in the study area, only nine species were perennial
(occurring during the four seasons). These species are
Guinardia flaccida, Gyrosigma attenuatum, Nitzschia

longissima, Nitzschia sigma, Odontella obtusa, Synedra
ulna, Thalassiothrix longissima, Phormidium sp., and
Ceratium trichoceros. Whereas, 21 species appeared
during the three seasons and are considered as semi-
perennial. The rest number of species was observed
either for one or two seasons. On the other hand, there
were few species restricted to one station such as Am-
phora grevilleana (St. 1); Chaetoceros curvisetus,
Synedra crystallina, and Anabaena sp. (St. 2);
Asterolampra sp., Paralia sulcata, Dinophysis sp., and
Phalacroma sp. (St. 4); Fragillaria pectinalis and
Fragillaria construens (St. 7); Protoperidinium

Table 1 Seasonal variations of temperature (°C), pH value, DO (mg O2/L), and the nutrients PO4, No3, and NH4 (μM) along the eastern
coast of Suez Gulf during 2012–2013

Autumn 2012

Station 1 2 3 4 5 6 7 8 9 10 11 12 Average

Temp 22.00 23.00 22.40 22.70 23.50 22.80 23.80 23.10 22.60 24.00 23.20 22.20 22.94

pH 8.22 8.00 8.20 8.00 8.00 8.10 8.05 8.12 7.66 7.70 7.80 7.80 –

DO 3.00 3.63 2.38 4.25 3.56 3.30 3.38 3.11 7.50 6.50 4.60 4.32 4.12

PO4 0.122 0.166 0.09 0.173 0.147 0.134 0.144 0.126 0.30 0.26 0.186 0.175 0.17

NO3 0.55 0.70 0.52 0.71 0.61 0.50 0.61 0.40 1.26 1.10 0.77 0.73 0.71

NH4 2.66 1.28 2.32 1.26 1.16 1.53 1.51 1.63 0.84 1.07 1.10 1.17 1.46

Winter 2013

Temp 17.00 18.40 17.50 18.00 18.8 18.2 19.00 18.6 17.70 19.00 18.50 17.30 18.16

pH 8.30 7.90 8.22 7.90 8.00 8.10 8.10 8.20 7.60 7.85 7.90 7.90 –

DO 3.32 4.14 2.88 4.26 4.1 3.78 3.90 3.40 8.41 7.51 5.27 4.63 4.63

PO4 0.11 0.14 0.09 0.14 0.13 0.13 0.11 0.11 0.28 0.25 0.17 0.15 0.15

NO3 0.32 0.46 0.37 0.47 0.45 0.42 0.43 0.38 0.93 0.89 0.60 0.52 0.52

NH4 4.72 2.28 4.21 2.18 2.32 2.60 2.40 2.96 1.62 1.86 1.90 2.12 2.60

Spring 2013

Temp 25.00 26.80 25.50 26.20 27.40 26.40 27.00 27.00 26.00 ND 27.20 25.20 26.20

pH 8.32 8.00 8.30 7.90 8.00 8.20 8.17 8.22 7.80 ND 7.83 7.87 –

DO 1.83 3.43 1.77 3.72 3.4 2.74 3.32 2.37 5.25 ND 4.75 4.1 4.425

PO4 0.04 0.08 0.04 0.08 0.07 0.06 0.07 0.05 0.12 ND 0.11 0.09 0.10

NO3 0.25 0.50 0.26 0.53 0.48 0.4 0.47 0.34 0.75 ND 0.68 0.6 0.64

NH4 0.81 1.52 2.18 1.26 1.56 1.71 1.58 1.87 2.40 ND 0.84 1.1 0.97

Summer 2013

Temp 28.1 30.6 28.7 29.4 31.4 30 31.5 31 29.4 31.2 31.2 28.5 30.1

pH 8.41 8.3 8.4 8.3 8.3 8.35 8.33 8.4 8.3 8.12 8.14 8.26 –

DO 3.1 4.45 2.34 4.53 4.14 3.32 3.42 3.26 4.53 5.37 5.22 4.74 4.03

PO4 0.03 0.05 0.02 0.05 0.04 0.04 0.04 0.03 0.05 0.06 0.06 0.05 0.04

NO3 0.21 0.34 0.18 0.35 0.26 0.25 0.26 0.24 0.35 0.42 0.4 0.36 0.30

NH4 2.55 2.62 4.11 2.55 3.4 3.62 3.46 4.0 5.36 2.1 2.37 2.5 3.22

ND not measured
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Table 2 Relative counts of the recorded phytoplankton species (unit/L) along the eastern coast of Suez Gulf during 2012–2013

Diatoms 1 2 3 4 5 6 7 8 9 10 11 12

Amphiprora alata (Ehrenberg) Kützing (ab) + + + + + + +

Amphiprora paludosa W. Smith (ab) + + + + + + + + + + + +

Amphora grevilleana Gregory (WoRMS) +

Amphora lineolata Ehrenberg (ab) + + + + + + + + +

Amphora marina W. Smith (ab) + + + + + + + + + + +

Amphora ovalis (Kützing) Kützing (WoRMS) +

Asterionella sp. + +

Asterolampra sp. +

Aulacoseira granulata var angustissima (O.F.Müller)
Simonsen (ab)

+ + + + + + + + + + + +

Aulacoseira italica (Ehrenberg) Simonsen (ab) + + + + + +

Bacillaria paradoxa J.F. Gmelin (ab) + +

Campylodiscus hibernicus Ehrenberg (ab) ++ + + + + – + + + + + +

Chaetoceros coarctatus* Lauder (ab) + + + + + -

Chaetoceros curvisetus* Cleve (ab) +

Chaetoceros densus* (Cleve) Cleve (ab) + +

Chaetoceros lorenzianus* Grunow (ab) + + + +++ ++ ++ + + ++ + + +

Chaetoceros peruvianus* Brightwell (ab) + +

Climacodium biconcavum Cleve (WoRMS) + + + + ++ ++

Climacosphenia moniligera Ehr. (ab) + ++ + + ++ ++ ++ ++ ++ + ++ ++

Cocconeis placentula Ehrenberg (ab) + + + + + + + + –

Coscinodiscus centralis Ehrenberg (WoRMS) + +

Coscinodiscus granii Gough (ab) + + + +

Coscinodiscus marginatus Ehrenberg (ab) + +

Coscinodiscus radiatus Ehrenberg (WoRMS) +++ – + + + + + + + – –

Cyclotella meneghiana* Kützing (ab) + +

Cymbella aspera Ehrenberg Cleve (WoRMS) +

Cymbella sp. + + + + + + +

Cymbella ventricosa (C.Agardh) C.Agardh (ab) + + + + + + +

Diploneis interrupta (Kützing) Cleve (ab) + ++

Diploneis sp. + + + +

Fragillaria pectinalis (O.F.Müller), Lyngbye (ab) +

Fragillaria construens Ehrenberg Grunow (ab) +

Fragillaria sp. + + + + + + +

Gramatophora marina (Lyngbye) Kützing (ab) + + + + + + + +

Gramatophora oceanica Ehrenberg (WoRMS) + + +

Guinardia flaccida (Castracane) H. Peragallo (ab) + +++ + +++ ++ ++ ++ ++ +++ ++ ++ +

Gyrosigma acuminatum (Kützing) Rabenhorst (WoRMS) + + + + + + + ++ + +

Gyrosigma attenuatum (Kützing) Rabenhorst (ab) +++ ++ ++ ++ ++ ++ ++ ++ +++ +++ ++ +++

Gyrosigma balticum (Ehrenberg) Rabenhorst (WoRMS) + + + + + + +

Hemiaulus membranaceus Cleve + + +

Hemiaulus sinensis Greville +

Lauderia annulata Cleve (WoRMS) +

Leptocylindrus danicus (ab) + + + + + + +++ +

Leptocylindrus minimus Granv (WoRMS) +++ +++ + + ++ + ++ ++ + + + +
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Table 2 (continued)

Diatoms 1 2 3 4 5 6 7 8 9 10 11 12

Leptocylindrus sp. + + + + +

Licmophora abbreviata C. Agardh (ab) + +

Licmophora flabellata C. Agardh (ab) + + ++ ++ + ++ + ++ ++ ++ + ++

Licmophora gracilis (Ehrenberg) Grunow (WoRMS) + + + + + + + + + + + +

Mastogloia sp. + + + +

Melosira sp. + +

Melosira varians C. Agardh (ab) + + + +

Navicula dicephala (Ehrenberg) W. Smith (ab) + + + + +

Navicula tripunctata (O.F. Müller) Bory de Saint-Vincent
(WoRMS)

+ + + ++ + + + + + + + +

Navicula placentula (Ehrenberg) Kützing (ab) + + + + ++ + +

Navicula sp. + + + + + +

Nitzschia acicularis (Kütz.) W.Sm. + + + + + + + + ++ + + +

Nitzschia closterium* (Ehrenberg) W. Smith (ab) + + + + +

Nitzschia longissima* Brébisson) Ralfs in Pritchard (ab) ++ + + + ++ + + ++ ++ ++ +++ +

Nitzschia obtusaW. Smith (ab) + + + + + + + + + + + +

Nitzschia pungens* var. atlantica (Grunow ex Cleve)
G.R.Hasle, (ab)

+ + + +++ ++ ++ + ++ +++ + ++ +

Nitzschia sigma (Kützing) W. Smith (ab) + + + ++ + ++ ++ + ++ ++ +++ ++

Nitzschia vermicularis (Kütz.) Hantzsch in Rabenh + +

Odontella aurita (Lyngbye) C.A. Agardh (ab) + + + + + + +

Odontella obtusa (Kützing) Ralfs (ab) + ++ + + + + + ++ + + ++ ++

Odontella sinensis (Greville) Grunow ( WoRMS) +

Paralia sulcata (Ehrenberg) Cleve (ab +

Plagiotropis lepidoptera (Gregory) Kuntze (ab) + + + + + + ++ + +

Pleurosigma angulatum W. Smith (ab) + + + + + + + +

Proboscia alata var.gracillima* (Brightwell) Sündstrom
(ab)

++ +++ ++ +++ +++ ++ +++ +++ +++ ++ ++ +++

Proboscia alata form indica* Brightwell) Sündstrom (ab) + + ++ +

Pseudosolenia bergoni H. Péragallo (ab) +

Pseudosolenia calcar avis (Schultze) Sundström (ab) ++ +++ ++ +++ +++ ++ ++ +++ +++ +++ +++ ++

Rhizosolenia fragilissima Bergon + + + + + +

Rhizosolenia imbricata (Cleve) Schröder WoRMS) ++++ + + + + + + +++ ++

Rhizosolenia stoterfothii H. Peragallo (ab) + + + + + + +

Rhizosolenia styliformis Brightwell (ab) + + + + + + + +

Skeletonema costatum* (Greville) Cleve (ab) + + + + + + +

Stephanopyxis turis (Greville & Arnott in Gregory) Ralfs in
Pritchard

+ + - + +

Striatella unipunctata (Lyngbye) C. Agardh (ab) + +

Surirella minuta Brébisson (WoRMS) ++ + ++ + + + + + + + + +

Surirella robusta Ehrenberg (ab) + + +

Synedra acus Kütz. + + + + + + + +

Synedra crystalline (C.Agardh) Kützing (WoRMS) +

Synedra ulna (Nitzsch) Ehrenberg (ab) ++ ++ + ++ ++ ++ ++ ++ ++ ++ +++ ++

Synedra undulata (J.W.Bailey) Gregory (ab) + + + + + + + + + + +

Thalassionema nitzschioides* (Grunow) + + + + + + + + +
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Table 2 (continued)

Diatoms 1 2 3 4 5 6 7 8 9 10 11 12

Mereschkowsky (ab)
Thalassiosira sp. + + ++ ++

Thalassiothrix frauenfeldii (Grunow) Grunow (WoRMS) ++ ++ + + + ++ + +

Thalassiothrix longissima Cleve & Grunow (ab) ++ ++ ++ +++ ++ ++ ++ ++ +++ +++ +++ +++

Trachyneis aspera (Ehrenberg; Ehrenberg) Cleve + + ++ + + + + ++

Cyanophytes

Anabaena sp. +

Chroococcus minutus (Kütz.) Nägeli + ++ ++ + + + + +

Chroococcus turigidus (Kützing) Nägeli (ab + + + + +

Coelosphaerium sp. + + + + + + + +

Lyngbya majorMeneghini ex Gomont (ab) + ++ +

Lyngbya majuscula Harvey ex Gomont (WoRMS) + + + ++ +

Microcystis sp. + + + + + + +

Trichodesmium erythraeum *(Ehrenberg) Geitler (ab) + + + + +++ + +++ ++ ++ ++++ +++ +++

Pseudanabaena limnetica* (Lemmermann) Komárek (ab) ++ ++ ++ + +++ ++ +++ ++ ++ +++ ++ ++

Oscillatoria simplicissima* Gomont (WoRMS) + + + + + + ++ + +++ + ++

Oscillatoria sp. + +++ ++ + ++ + ++ + ++ ++ ++ ++

Oscillatoria tenuis* C. Agardh (WoRMS) + + + + + + ++ + +

Phormidium sp. ++ ++ ++ + ++ ++ ++ ++ ++ +++ ++ ++

Planktothrix formosa* + + + + + + + + + ++ + ++

Spirulina major Kützing ex Gomont (WoRMS) ++ +

Spirulina sp. + +

Dinoflagellates

Ceratium breve (Ostenfeld & Schmidt)
Schroder (ab)

+ + + + +

Ceratium egyptiacum Halim (ab) +

Ceratium extensum (Gourret) Cleve-Euler (ab) + + +

Ceratium furca* (Ehrenberg) Claparède & Lachmann
(WoRMS)

+ + + + + + +

Ceratium fusus* (Ehrenberg) Dujardin (ab) + + + + +

Ceratium karastenii Pavillard (WoRMS) +

Ceratium macroceros (Kofoid) Peters (ab) + + + + + + + +

Ceratium massiliense (Gourret) E.G.Jørgensen (ab) + + + + + + + ++ + +

Ceratium trichoceros (Ehrenberg) Kofoid (WoRMS) + + + ++ + + + + ++ +++ +++ +

Ceratium tripos* (O.F.Müller) Nitzsch (WoRMS) + + + + + + + + + ++ ++ +

Dinophysis caudata* Saville-Kent (ab) + + + +

Dinophysis sp. +

Diplopsalis lenticula + + +

Exuviaella compressa (Bailey) Knudsen& inOstenfeld (ab) + + + ++ + + + ++ ++

Goniaulax sp. + + +

Gymnodinium sp. + +

Oxytoxum gracile J.Schiller + +

Phalacroma sp. +

Podolampas palmipes Stein + + +

Prorocentrum compressum (J.W. Bailey) Abé ex Dodge +
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divergens (St. 8); Amphora ovalis, Cymbella aspera,
Hemiaulus sinensis, Odontella sinensis, Rhizosolenia
bergoni, Ceratium egyptiacum, Ceratium karastenii,
and Prorocentrum compressum (St. 9), whereas
Pediastum clathratum appeared only at St. 11 (Table 2).

Seasonal and spatial variations of phytoplankton
community

The diatoms prevailed during all seasons forming
numerically the highest percentage (82 %) during
winter, followed by cyanophytes, which formed
the highest percentage during summer (24 %).
The chlorophytes were absent during winter at all
stations and formed almost equal percentages dur-
ing the three other seasons. The fourth group,
dinoflagellates, formed numerically (5–13 %) of
the total count during the study period. Like the
seasonal pattern, the spatial distribution of phyto-
plankton revealed the dominance of diatoms at all
stations (Table 3), forming numerically from 57 %
(St. 10) to 80 % (St. 4). The cyanophytes and
chlorophytes showed the inverse pattern, recording
the highest percentage (26 %, St. 10) and the
lowest (8 %, St. 4) for the former and (11 %,
St. 10; 3 %, St. 4) for the later. The dinoflagel-
lates displayed the highest contribution at St. 9

(13 %) and the lowest one at St. 5 (5 %) as
shown in Fig. 2.

Standing crop

The total abundance of phytoplankton was relative-
ly low in the present study of the eastern coast of
Suez Gulf (average of 2989 unit/L) as compared
with the previous studies (Table 4). The total phy-
toplankton showed the highest counts during au-
tumn 2012 with an average of 3801 unit/L, follow-
ed by winter (average of 2973 unit/L), spring
(average of 2713 unit/L), and summer (average
of 2469 unit/L) as shown in Table 3 and Fig. 2.
The peak of autumn was due to the co-dominance
of C. lorenzianus (4.24 %), G. attenuatum
(6.16 %), P. pungens (4.05 %), P. alata var.
gracillima (4.37 %), P. calcar-avis (7.35 %),
T. erythraeum (3.98 %), Pseudanabaena limnetica
(3.75 %), and P. trabecula (9.41 %). However,
some of these species were also observed with
relative high counts during summer and spring,
2013 such as P. alata var. gracillima, P. calcar-
avis, and P. trabecula. Most of other algal species
were fairly distributed at the different stations in
the coastal waters of eastern coast of Suez Gulf
during 2012–2013.

Table 2 (continued)

Diatoms 1 2 3 4 5 6 7 8 9 10 11 12

Prorocentrum micans* Ehrenberg (ab) + +

Prorocentrum minimum* (Pavillard) Schiller + + + +

Protoperidinium minutum (Kofoid) Loeblich III + + + + + + + + +

Protoperidinium cerasus (Paulsen) Balech (ab) + + + + +; + + + + + + +

Protoperidinium depressum (Bailey) Balech (CaRMS) + + + +

Protoperidinium divergens (Ehrenberg) Balech (CaRMS) +

Protoperidinium ovatum Pouchet (CaRMS) + +

Pyrophacus horologicum Stein (ab) + +

Chlorophytes

Dictyosphaerium sp. + +

Pediastrum clathratum. (Schröder) Lemmermann (ab) +

Pleurotaenium trabeculum Nägeli (ab) +++ + +++ +++ ++++ +++ ++++ +++ +++ +++ +++ +++

Treubaria crassipina G. M. Smith (WoRMS)4 + + ++ 0

0–50 rare +, >50–100 frequent ++, >100–200 common +++, >200 abundant ++++

The species marked with asterisks are potential harmful
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On the spatial scale, the average total count was
relatively low in all stations. The relatively high
abundance was recorded at St. 9 followed by St. 10
with total counts of 4170 and 3840, respectively,
whereas St. 1 and St. 3 sustained the lowest average
total counts (2218 and 2123 unit/L, respectively)
(Table 3). However, St. 9 sustained relatively high
counts of phytoplankton during the whole period,
due to the co-dominance of P. pungens (3.06 %),
P. alata var. gracillima (3.39 %), P. calcar-avis

(3.80 %), and P. trabecula (4.29 %). The species
P. trabecula appeared also at St. 10 (9.54 %), with
the contribution of Melosira granulata (4.77 %),
T. longissima (3.90 %), T. erythraeum (5.78 %), and
P. limnetica (3.76 %).

Species diversity

The total average of diversity in the eastern coast of
Suez Gulf was 3.22 (Table 5). The diversity of

Table 3 Seasonal variations of phytoplankton counts (unit/L) at the different stations along the eastern coast of Suez Gulf

Autumn 2012

Station 1 2 3 4 5 6 7 8 9 10 11 12 Average Percentage
Algal group

Diatoms 1790 1980 1286 3185 2598 2051 2035 2374 2703 3738 3696 2045 2457 65 %

Dinoflagellates 233 278 167 328 50 217 67 100 980 167 484 278 279 7 %

Cyanophytes 278 362 457 300 756 328 678 551 317 2355 1167 561 676 18 %

Chlorophytes 378 200 233 233 400 333 450 250 250 633 311 1000 389 10 %

Total 2679 2820 2143 4046 3804 2929 3230 3275 4250 6893 5658 3884 3801 100 %

Winter 2013

Diatoms 1657 1970 2319 2748 2481 2280 1967 1870 3997 1943 2002 3917 2429 82 %

Dinoflagellates 200 295 78 228 228 328 451 195 384 401 134 250 264 9 %

Cyanophytes 0 178 379 0 601 67 100 67 467 311 67 1111 279 9 %

Chlorophytes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %

Total 1857 2443 2776 2976 3310 2675 2518 2132 4848 2655 2203 5278 2973 100 %

Spring 2013

Diatoms 1002 2004 1364 3042 1374 2265 1947 1601 3393 Nd 1881 841 1883 69 %

Dinoflagellates 117 128 100 357 0 167 0 145 134 ND 145 100 127 5 %

Cyanophytes 311 367 345 245 751 473 667 578 478 ND 818 324 487 18 %

Chlorophytes 150 278 200 100 178 100 133 356 333 ND 378 178 217 8 %

1580 2777 2009 3744 2303 3005 2747 2680 4338 ND 3222 1443 2713 100 %

Summer 2013

Diatoms 1635 2285 929 1112 1108 857 967 1302 1835 845 1547 1290 1309 53.03 %

Dinoflagellates 167 506 167 234 312 234 117 251 596 117 829 195 310 12.57 %

Cyanophytes 754 1161 748 412 756 306 562 333 678 345 533 440 586 23.72 %

Chlorophytes 200 78 233 78 378 100 1000 100 133 666 100 100 264 10.68 %

Total 2756 4030 2077 1836 2554 1497 2646 1986 3242 1973 3009 2025 2469 100 %

Total average

Diatoms 1521 2060 1475 2522 1890 1863 1729 1787 2982 2175 2282 2023 2026 67.48 %

Dinoflagellates 179 302 128 287 148 237 159 173 524 228 398 206 247 8.24 %

Cyanophytes 336 517 354 239 716 294 502 382 485 1004 646 609 507 16.89 %

Chlorophytes 182 139 167 103 239 133 396 177 179 433 197 320 222 7.39 %

Total 2218 3018 2123 3151 2993 2527 2785 2518 4170 3840 3523 3158 3002 100 %

*Note: ND means not measured
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Fig. 2 Seasonal variations of phytoplankton abundance (unit/L) at the different stations in the eastern coast of Suez Gulf during 2012–2013
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phytoplankton sustained a maximum of 3.82 during
winter at St. 9, in which the highest numbers of phyto-
plankton species were observed (49 spp.). On the other
hand, the minimum diversity of 2.35 was found during
summer at St. 7, in which the lowest numbers of species
were recorded (19 spp.). On the temporal scale, the
winter season sustained relatively higher diversity
(3.43), whereas the other three seasons sustained rela-
tively closed diversities (Table 5). Spatially, St. 1 and 12
sustained the lowest average of diversity (2.97 and
3.03), respectively, against the highest diversity at St. 9
(3.47).

Statistical analysis

Correlation matrices and multiple regressions

The statistical analysis of the data indicated that the
phytoplankton abundance was positively correlated
with nitrate (r=0.66) and dissolved oxygen (r=0.51)
but inversely correlated with pH values (r=−0.63),
whereas the groups and dominant species showed varied
correlations with physicochemical characteristics as
shown in Table 6. The multiple regression analysis

indicated that the dissolved nitrate and pH values were
the most effective factors that controlled the seasonal
fluctuations of phytoplankton in the eastern coast of
Suez Gulf during 2012–2013. The regression model
was phytoplankton counts=1379.2341+0.662 NO3 –
0.33 pH (MR=0.662, N=47, p<0.1278). The similarity
index revealed four clusters (Fig. 3).

Discussion

Coastal waters are characterized by a high degree of
spatial and temporal variability of environmental param-
eters (Bosak et al. 2012). These ecosystems face increas-
ing anthropogenic influences, mainly due to the increas-
ing human population density in coastal areas, and are
described as “critical transition zones” because of their
position at terrestrial, freshwater, and marine interfaces
(Levin et al. 2001). Therefore, in any evaluation of the
ecological consequences of human activities, such as
urbanization and tourism, on the functioning of coastal
ecosystems, it is essential to determine the basic struc-
tural properties of phytoplankton assemblages in these
marine areas (Bosak et al. 2012). The reason is that they
play a central role in the structure and functioning of

Table 4 The number of species and abundance of phytoplankton in Suez Gulf

Western coast of Suez Gulf, Nassar
(2000)

Western coast of Suez Gulf, Nassar
(2007a)

Eastern coast of Suez Gulf (present
study)

Algal group G spp Total counts % G spp Total counts % G spp Total counts %

Diatoms 28 47 4252 72.53 40 89 10958 70.30 42 90 2019 67.54

Dinoflagellates 9 18 1278 21.80 11 30 957 6.13 12 28 245 8.20

Cyanophytes 3 4 314 5.35 7 12 802 5.14 9 16 507 17.00

Chlorophytes 0 0 0 0.00 10 12 2869 18.4 4 4 218 7.29

Euglenophytes 0 0 0 0.00 1 1 5 0.03 0 0 0 0.00

Silicoflagellates 1 1 17 0.29 0 0 0 0.00 0 0 0 0.00

Total 41 70 5862 100 69 144 15591 100 67 138 2989 100

Table 5 Seasonal variations of species diversity (nats) at the different stations in the eastern coast of Suez Gulf

Station 1 2 3 4 5 6 7 8 9 10 11 12 Average

Autumn 2012 2.71 3.28 3.02 3.06 3.13 3.06 3.09 3.22 3.43 3.35 3.44 2.75 3.13

Winter 2013 3.06 3.46 3.28 3.61 3.52 3.42 3.61 3.26 3.82 3.6 3.15 3.33 3.43

Spring 2013 3.00 3.43 3.11 3.67 3.27 3.37 3.34 3.12 3.41 ND 3.48 2.86 3.28

Summer 2013 3.11 3.4 2.88 3.00 2.88 2.93 2.35 3.14 3.24 3.36 3.33 3.19 3.06

Average 2.97 3.39 3.07 3.33 3.20 3.19 3.09 3.18 3.47 3.43 3.35 3.03 3.22
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freshwater and marine ecosystems (Pourafrasyabi and
Ramezanpour 2014). Phytoplankton populations are
well known to be influenced by space-time variations
in hydrochemical and physical parameters (Cloern et al.
1989), such as light, temperature, salinity, pH, nutrients,
and turbulence (Leterme et al. 2006).

Variations in pH can affect algal growth in a
number of ways. It can change the distribution of
carbon dioxide species and carbon availability,
alter the availability of trace metals and essential
nutrients, and at extreme pH levels potentially
cause direct physiological effects (Chen and

Durbin 1994). In general, changes in pH levels
in marine systems appear to correlate with chang-
es in temperature, dissolved oxygen, and phyto-
plankton production. Conditions of high pH, high
phytoplankton production, and low oxygen condi-
tions are characteristic of nutrient-enriched sys-
tems and often are found in the coastal waters
(Hinga 2002). However, high pH levels are com-
monly seen in the late afternoon of sunny sum-
mers after the consumption of the CO2 by photo-
synthesis process. After sunset, the pH level may
significantly be declined due to ending the pho-
tosynthesis process (Ghobrani et al. 2014. In the
present study, the highest pH value was recorded
during summer and a negative correlation was
found between the pH values and phytoplankton
(r=−0.63) and dissolved oxygen (r=−0.67).

Oxygen concentration is an index of the balance
between processes of food production and food con-
sumption. This balance is a key descriptor of the chang-
ing status of the ecosystem. When the balance is
disrupted, the oxygen concentration can fall to low
levels (Kemker 2013). Accordingly, the study area is
well balanced due to the recorded moderate to high
values of oxygen. These values synergized with that of
phytoplankton (r=0.51). Generally, the slight increase

Table 6 The correlations between total phytoplankton counts, phytoplankton classes, dominant species, and the physicochemical
parameters during 2012–2013

Temp pH DO PO4 NO3 NH4

°C – Mg O2/L μM

Total phytoplankton −0.20 −0.63 0.51 0.44 0.66 −0.47
Diatoms −0.51 −0.69 0.48 0.69 0.63 −0.46
Dinoflagellates 0.01 −0.22 0.52 0.33 0.34 −0.09
Cyanophytes 0.27 −0.18 0.19 0.14 0.27 −0.18
Chlorophytes 0.38 −0.08 −0.02 0.02 0.17 −0.22
Chaetoceros lorenzianus −0.08 −0.35 0.07 0.42 0.50 −0.51
Gyrosigma attenuatum 0.09 −0.20 0.14 0.39 0.49 −0.27
Pseudosolenia calcar-avis 0.10 −0.24 −0.03 0.28 0.40 −0.49
Pleurotaenium trabecula 0.38 −0.02 −0.05 −0.03 0.11 −0.16
Proboscia alata var. gracillima 0.33 0.27 0.07 −0.10 −0.15 0.23

Pseudo-nitzschia pungens −0.45 −0.43 0.31 0.63 0.52 −0.32
Trichodesmium erythraeum 0.29 −0.15 0.17 0.14 0.25 −0.17
Pseudanabaena limnetica 0.50 0.10 −0.01 −0.04 0.10 −0.03

Bold correlations are significant at p<0.05 and n=47)

Fig. 3 Bray-Curtis of similarity of phytoplankton abundance
between the different stations
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in dissolved oxygen during winter and spring may be
due to the increase of oxygen solubility (Nassar 1994).
However, the oxygen concentration in the Red Sea is
relatively low because of its high salinity and high
temperature characteristic of the area (Nassar 2007a).
This is also confirmed by Gab-Alla (2007) who reported
that Hammam Pharaon hot springs of eastern Suez Gulf
(St. 6 in the present study) was slightly acidic (pH 6.3–
7.6) and hot (temperature of 25–66 °C) with low oxygen
content (0.2–5.5 mg/L) and high salinity (43 %o).

The nutrient enrichment of coastal waters is generally
the main factor driving the succession and composition
of phytoplankton communities (Leterme et al. 2014).
Phosphorus availability can impact primary production
rates in the ocean as well as species distribution and
ecosystem structure and in some marine and estuarine
environments; P availability is considered the proximal
macronutrient that limits primary production (Paytan
andMcLaughlin 2007). Generally, the study area exhib-
ited low phosphate concentrations typical of oligotro-
phic areas (Taş 2013), except the high concentration
during autumn at St. 9 (0.30 μM), which may be due
to the effect of sewage and oil effluents. However,
compared with the water of the Red Sea proper, the Gulf
of Suez has very little phosphate and the Red Sea itself is
depleted in phosphate as compared to the Gulf of Aden
(El-Naggar et al. 2002). In the present study, only dia-
toms was positively correlated to dissolved phosphate
(r=0.69), whereas it was not a limiting factor for other
groups.

The inorganic nitrogen pollution in aquatic eco-
sy s t ems may s t imu l a t e t h e deve l opmen t ,
maintenance, and proliferation of primary producers
resulting in eutrophication of aquatic ecosystems.
T h e C y a n o p h y c e a e , D i n o p h y c e a e , a n d
Bacillariophyceae appeared to be the major groups
that may be stimulated by inorganic nitrogen pollu-
tion (Camargo and Alonso 2006).

In general, the high nitrate concentrations enhance
the phytoplankton growth during the study period. This
was confirmed by the positive correlation between NO3

and the total counts of phytoplankton (r=0.66) and the
regression analysis (phytoplankton counts =
1379.2341+0.662 NO3 – 0.33 pH). However, natural
phytoplankton communities typically prefer to take up
nitrogen in the reduced form of ammonium rather than
the oxidized forms nitrite and nitrate. In the present
study, there was no correlation between total phyto-
plankton abundance and ammonium, whereas there

was a negative correlation between diatoms and ammo-
nium (r=−0.46). This may be due to that various phy-
toplankton groups and taxa exhibit differential abilities
to take up and assimilate dissolved organic nitrogen vs.
dissolved inorganic nitrogen (Twomey et al. 2005).
According to the low values of dissolved phosphate
(0.025–0.3 μM), nitrate (0.18–1.26 μM), and ammoni-
um (0.81–5.36 μM) during 2012–2013, the eastern
coast of Suez Gulf is still healthy, relatively
unpolluted, and oligotrophic area. This is established
with the data reported by Fahmy (2003) who concluded
that nitrogen, phosphorus, and reactive silicate concen-
trations were generally low and allowed classifying the
Egyptian Red Sea coastal water as oligotrophic to me-
sotrophic. This is in addition to the relatively low total
abundance of phytoplankton (average of 2989 unit/L),
compared with the data reported in its western coast in
1995 (average of 5862 unit/L) by Nassar (2000) and in
2006 (average 15,591 unit/L) by Nassar (2007a), as well
as the data reported in 2002 by Shams El-Din et al.
(2005) along the both sides of Suez Gulf (average of
6284 unit/L). However, Ghobrani et al. (2014)) men-
tioned that oligotrophic waters are characterized by high
clarity and little counts of algae.

However, the relative high abundance of phytoplank-
ton in this study was found at St. 9 followed by St. 10
with total counts of 4169 and 3840 unit/L, respectively.
This may be due to their subject to fractions of petro-
leum hydrocarbons and sewage discharge, which could
promote the phytoplankton growth as reported by Nayar
et al. 2005 and Nassar et al. 2014. On the other hand, the
lowest occurrence of phytoplankton was recorded at St.
1 and St. 3, with similar total counts of 2218 and
2251 unit/L, respectively. This may be due to the effect
of thermal waters discharged from the cooling systems
of the Electrical Power Station of Ayon Mousa near St.
1, as well as the high tourist and human activities at the
beach of Ras Sudr near St. 3.

As all marine coastal areas, diatoms were the domi-
nant group forming high percentage (67.48 %) and
prevailed during the four seasons (53.03–82 %) and at
all stations (57–80 %). Whereas, the cyanophytes were
the second dominant group, indicating the presence of
freshwater discharge in the study area. On the other
hand, the contribution of three groups Cyanophyceae,
Dinogflagellates, and Chlorophyceae increased during
summer at high temperature (28.1–31.5 °C). Eker and
Kideyş (2000) suggest that there is a positive relation-
ship between dinoflagellates and water temperature;
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thus, dinoflagellates may be better adapted to the high
temperatures. Most dinoflagellates are found in temper-
ate waters, are most prevalent in summer months
(Taylor 1987), and dominate the phytoplankton in warm
seasons (Tait 1981). In this connection, Schabhüttl et al.
(2012) reported that green algae and diatoms showed a
trend to perform better at lower temperatures, while
Cyanobacteria showed stronger responses with increas-
ing temperatures in mixed communities. In the present
study, temperature was negatively correlated with dia-
toms (r=−0.51) and was positively correlated with
chlorophytes (r=0.38), whereas it was not a limiting
factor for dinoflagellates and cyanophytes.

However, the dominant species during this study
were C. lorenzianus, G. attenuatum, P. calcar-avis in
addition to the green alga P. trabecula, which appeared
at all stations and during all seasons, except winter,
indicating the freshwater discharge. Moreover, there
were dominant potentially harmful algae, and they ap-
peared frequently and were P. alata var. gracillima
(Özman-Say and Balkis 2012), P. pungens (IOC,
Casteleyn et al. 2008), and the two cyanophytes
T. erythraeum and P. limnetica (Ramos et al. 2005).
Whereas, other potential harmful algae appeared but
less frequently or occasionally, such as Chaetoceos
spp. (Malone 2007), Cyclotella meneghiana ,
Cylindrotheca closterium, Leptocylindrus minimus,
Skeletonema costatum (Ismael 2014), N. longissima,
Odentella auriata, Thalassionema nitzschioides,
Ceratium fusus,Ceratium furca (Özman-Say and Balkis
2012), Ceratium tripos (Ignatiades and Gotsis-Skretas
2010), and Prorocentrum micans (Tilstone et al. 2010).
The effect of these species is different, as water colora-
tion and foam or mucilage production (Méndez and
Ferrari 2002), clogging the fish gills (Malone 2007),
secreting domoic acid (Ignatiades and Gotsis-Skretas
2010), anatoxin, mycrocystins (Ramos et al. 2005), or
unknown toxins (Ignatiades and Gotsis-Skretas 2010).
Although the total count of these species did not exceed
100 cells/L, they are considered dangerous as they can
flourish at favorable conditions and they can potentially
threat the marine ecosystem (Van Dolah 2000). Thus,
the effect of the environmental conditions on the poten-
tial harmful dominant species was investigated. The
correlation coefficient between the dominant species
and the nutrients revealed that C. lorenzianus was pos-
itively correlated between phosphate (r=0.42) and ni-
trate (r=0.50) and negatively correlated with ammoni-
um (r=−0.51), whereas G. attenuatum was positively

correlated with nitrate (r=0.49). The diatomate species
P. calcar-avis was positively correlated with nitrate (r=
0.40) and negatively correlated with ammonium (r=
−0.49), and P. pungens was negatively correlated with
temperature and pH (r=−0.45 and −0.43), respectively,
and positively correlated with phosphate and nitrate (r=
0.63 and r=0.52), respectively. However, the
cyanophyte P. limneticawas influenced only by temper-
ature (r=0.50). On the other hand, P. trabecula, P. var.
gracillima, and T. erythraeum were not affected by any
of these physicochemical parameters.

Marine systems are highly dynamic, with biodi-
versity changing at seasonal and inter-decadal
timescales (Nicholas et al. 2010). The relationship
between diversity and productivity has been an
object of extensive research for both terrestrial
and aquatic ecosystems, and the global diversity
patterns observed for marine phytoplankton show a
unimodal relationship with productivity using phy-
toplankton biomass as surrogate (Irigoien et al.
2004). High diversity leads to greater community
stability and productivity and makes the system
less susceptible to invasions Tilman (1999). In this
trend, Friedly (2001)) found that diversity was
positively related to ecosystem stability, whereas
unstable ecosystem will be more likely losses di-
versity. Meanwhile, Whilm and Doris (1966) men-
tioned that diversity less than 1 indicates instabil-
ity or heavy pollution, whereas value exceeding 3
indicates stability or clean water. Accordingly, the
stations of study area can be considered stable,
where all values were closed to 3 or >3, except
St. 7 during summer (2.35), which may be attrib-
uted to the low number of the recorded species
(19 spp.) and the dominance of only three species:
P. trabecula (37.79 %), P. alata var. gracillima
(11.34 %), and P. limnetica (6.73 %).

The similarity index based on spatial and tem-
poral fluctuations of phytoplankton counts revealed
five clusters: cluster 1 (St. 1, 3, and 12), cluster 2
(St. 10), cluster 3 (St. 4, 6, and 9), cluster 4 (St.
2, 8, 5, 7, and 11). The lowest similarity level was
41.11 % between St. 1 and St. 10, whereas the
highest level was 76.91 % between St. 3 and St.
12. However, cluster 2, which includes only one
station, reflects the unique ecological conditions at
this station (oil effluents from Petropil Company).
In contrast, the other clusters indicated that the
included stations in each cluster have more or less
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similar ecological conditions, depending on the
degree of similarity.

Conclusion

The study area is considered as oligotrophic and healthy,
despite land-base, human, and tourism activities, since
the total counts of phytoplankton was low accompanied
with low nutrient concentrations and high values of
diversity. But due to the appearance of potentially harm-
ful algae species even in low counts, make the region of
the eastern coast susceptible to drastic effects at
flourishing of these species during favorable conditions.
Thus, monitoring continuously of this area is impera-
tive, to follow probable bloom of these species, to
predict negative effects resulting from increasing land-
based activities in order to protect the eastern coast of
Suez Gulf from any undesirable change there.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestrict-
ed use, distribution, and reproduction in any medium, provided
you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if
changes were made.
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