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Abstract This paper discusses the problem of assigning N streams of requests
(clients) to M related server machines with the objective to minimize the sum of
worst-case processing times. The completion time of a batch of requests is measured
as a sum of weights of the subset of clients which share a single machine. Such prob-
lem can be seen as minimizing the sum of total weights of blocks of M-partition,
each multiplied by the cardinality of a block. We prove that this problem can be
solved in polynomial time for any fixed M and present an efficient backward induction
algorithm.

Keywords Binary programming · Set partition · Exact algorithms

1 Introduction

Consider the following problem of assigning requests to processing servers in dis-
tributed computing system. We are given a set of M server machines, each with
processing speed 1/h j , j = 1, . . . , M , and a set of N clients, each with a weight
wi , i = 1, . . . , N . Parameter h j is the time of single request processing on j th server.
A weight wi represents the amount of client’s demand for processing (number of
requests sent in a unit of time), where client itself can be interpreted either as a sin-
gle application or whole local area network, issuing a continuous stream of requests.
The processing requirement after assigning i th client to j th machine is ci j = wi h j .
However, when multiple clients share the same machine, the order of request process-
ing is unknown, thus each client is interested in minimal worst-case processing time
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1184 M. Drwal

(e.g. due to the quality of service requirements). Hence the waiting (completion) time
of i th client’s batch of requests is defined as Ci = ∑M

j=1 xi j
∑N

k=1 xk j ck j , where
xi j = 1 if i th client is assigned to j th server, and xi j = 0 otherwise. It is assumed that
demand of each client is unsplittable.

The objective is to assign all clients in such a way so as to minimize the sum of
completion times,

∑N
i=1 Ci . The quadratic integer programming formulation is:

minimize
N∑

i=1

M∑

j=1

(

h j xi j

N∑

k=1

wk xk j

)

=
N∑

i=1

M∑

j=1

N∑

k=1

ck j xi j xk j (1)

subject to:

∀i

M∑

j=1

xi j = 1, (2)

∀i, j xi j ∈ {0, 1}. (3)

This problem can be seen as a special case of quadratic semi-assignment problem
(QSAP) [10,11], which is well-known to be NP-hard [1], and for which optimal
solutions are difficult to compute even for small-sized instances. QSAP is obtained by
relaxing the one-to-one constraint in generalized quadratic assignment problem [7].
One specific class of polynomially solvable instances of QSAP has been characterized
in [9], where its applications in flight scheduling are discussed. In this paper another
class of QSAP instances of practical importance is identified, which also can be solved
efficiently, under certain fixed-parameter assumption. In the presented formulation the
quadratic terms reflect the increased delays caused by multiple clients competing for
single processor [8]. Similar load balancing problems were of the interest in the context
of selfish resource allocation in the Internet, where each assigned task experiences the
machine completion time [5]. Other applications of the presented problem include
specialized variants of correlation clustering [2] and scheduling [6].

Since the instance size of this problem is characterized by two parameters, N and
M , in this paper we show fixed-parameter tractability of (1)–(3). The motivation is
based on the observation that in practical applications the number of servers M is
usually much smaller than the number of clients N needed to be assigned. In general,
when also M is considered as a part of the input, problem (1)–(3) is NP-hard [3].

2 Main results

In this paper we introduce the following equivalent formulation of (1)–(3) to develop
the analysis. Given a multiset U = {w1, . . . , wN } of positive integers (weights), find
such a partition of weights S1, S2, . . . , SM , that minimizes function:

f (S1, S2, . . . , SM ) =
M∑

j=1

⎛

⎝|S j |h j

∑

wi∈S j

wi

⎞

⎠ (4)
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where
⋃

j S j = U, Si ∩ S j = ∅, for all i, j = 1, . . . , M, i �= j . In this reformulation
of semi-assignment, the partition block sizes |S j | and reciprocals of speeds h j assume
the role of coefficients. Each S j represents a server. The presented technique is based
on the following simple observation:

Proposition 1 For M = 2 the problem (1)–(3) can be solved in polynomial time.

Proof For two machines the problem can be seen as follows. There is a multiset
of weights U = {w1, w2, . . . , wN }. We need to partition the set of indices T =
{1, 2, . . . , N } into two disjoint subsets, S and T − S, in such a way that the set-
function:

f (S) = h1|S|
∑

i∈S

wi + h2(N − |S|)
∑

i∈T−S

wi

is minimized.
Denote C =∑N

i=1 wi . Let us consider the following family of one-variable linear
functions:

gk(x) = h1kx + h2(N − k)(C − x) = ((h1 + h2)k − h2 N )x + h2(N − k)C.

Clearly, each gk coincides with f (·) on arguments x =∑
i∈S wi , where S belongs to

subset of f ’s domain given by {S ⊂ T : k = |S|}, for fixed k. Thus f can be written
as:

f (S) =
⎧
⎨

⎩

h2 NC, S = ∅,
h1 NC, S = T,

gk(x), x ∈ Ak, for k = |S| = 1, . . . , N − 1,

where

Ak =
{

x =
∑

i∈S

wi : S ⊂ T, k = |S|
}

.

If d
dx gk(x) = ((h1 + h2)k − h2 N ) ≥ 0 then gk attains minimum for the smallest

x ∈ Ak , and otherwise for the largest x ∈ Ak . Such x can be computed by sorting
elements of Ak and summing k first weights [k last, in case of ((h1+h2)k−h2 N ) < 0].
Thus minimum of f can be found by computing gk(min Ak) or gk(max Ak) for all
k = 1, . . . , N − 1. Since sorting requires O(N log N ) time, and precomputing all
partial sums w1 + · · · + wk can be accomplished in O(N ) time, thus finding the
minimum (or maximum) of gk can be performed in constant time for every k. The
overall complexity is O(N log N ). 	


The above argument shows that the size of the set of feasible solutions, which is
exponential in N , can be easily reduced, by leaving only polynomially many potential
solutions to check. It turns out that this technique can be generalized. For any fixed
M ∈ N the number of integer solutions of the equation k1 + k2 + · · · + kM = N is
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1186 M. Drwal

bounded by O(N M−1) [the asymptotics is in fact N M−1/M !(M−1)! see [4] for more
details on counting integer partitions].

The idea is to search for the solutions on properly constructed hyperplanes in R
m .

Given a hyperplane
∑m

i=1 αi xi = γ , we can determine its orientation by analyzing
signs of coefficients αi . For positive αi the corresponding coordinate xi should be
as small as possible, which amounts to taking the sum of smallest weights, since
the hyperplane-defining function increases in these directions. On the other hand, for
negative αi the corresponding xi should be as large as possible, which amounts to
taking the sum of largest weights, since the hyperplane-defining function decreases
in these directions. Utilizing the fact that the sum of coordinates

∑m
i=1 xi must be

equal to the total weight of clients in U , we can reduce the problem of searching for
values of x = (x1, . . . , xm) on hyperplane in R

m to a smaller problem of searching
on a hyperplane in R

m−1, by expressing a variable x j in terms of other coordinates.
Starting from m = M , and repeating until m = 1, we obtain an algorithm which runs
in time polynomial in N = |U |.
Theorem 1 For any fixed M ∈ N the problem (1)–(3) can be solved in polynomial
time.

Proof Since the sets S1, . . . , SM are disjoint and must cover exactly N elements wi ,
there are polynomially many possible combinations of cardinalities of sets S1, . . . , SM .
It is enough to consider one fixed choice of partition blocks sizes. Let us fix k j = |S j |,
for all j = 1, . . . , M . Observe that function (4) satisfies:

min{ f (S1, . . . , SM ) : |S j | = k j , j = 1, . . . , M}

= min

⎧
⎨

⎩
g(x) =

M∑

j=1

h j k j x j : x j =
∑

wi∈S j

wi , |S j | = k j , j = 1, . . . , M

⎫
⎬

⎭
.

Consider a hyperplane given by equation g(x) =∑m
j=1 α j x j − γ . Let us separate

the indices of variables x into two disjoint sets A+ and A−:

A+ =
{

j : ∂

∂x j
g(x) ≥ 0

}

and A− = {1, . . . , m}\A+. Observe that the minimum of (4) lies on the hyperplane
g(x), with m = M, α j = h j k j and γ = 0, for some x satisfying

∑M
i=1 xi =∑

w∈U w.
Clearly, since in directions x j for j ∈ A+ the function g is nondecreasing, an optimal
x must attain the smallest possible values on these coordinates. Similarly, for optimal
x the coordinates x j for j ∈ A− should be as large as possible, since g decreases in
those directions. Denote kmin = ∑

j∈A+ k j and kmax = ∑
j∈A− k j . Without the loss

of generality, let w1 ≤ w2 ≤ · · · ≤ wN . Since kmin + kmax = N , thus coordinates
j ∈ A+ should sum up to the value of sum of exactly kmin smallest weights:

∑

j∈A+
x j =

kmin∑

i=1

wi , (5)
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and the remaining coordinates should sum up to the value of sum of kmax largest
weights:

∑

j∈A−
x j =

N∑

i=N−kmax+1

wi . (6)

Let x j+ be any variable such that j+ ∈ A+, and let x j− be any variable such that
j− ∈ A− (at least one of these sets must be nonempty). From (5) and (6) we get:

x j+ =
kmin∑

i=1

wi −
∑

i∈A+\{ j+}
xi (7)

and:

x j− =
N∑

i=N−kmax+1

wi −
∑

i∈A+\{ j−}
xi . (8)

Substituting x j+ and x j− into the hyperplane equation g(x) we obtain an equivalent
function ĝ(x̂) of m− 2 variables (or m− 1 variables, in case if one of the sets A+ and
A− was empty):

ĝ(x̂) =
∑

j∈A+\{ j+}
(α j − α j+)x j +

∑

j∈A−\{ j−}
(α j − α j−)x j

+α j+
kmin∑

i=1

wi + α j−
N∑

i=N−kmax+1

wi . (9)

This implies that, assuming optimal x̂ is known, remaining variables of optimal x,
namely x j+ and x j− , can be computed from relations (7) and (8), by backward induc-
tion.

Observe that the above reasoning can be applied again to the obtained hyperplane
ĝ(x̂) = ∑m′

j=1 α̂ j x j − γ̂ , with parameters α̂ j and γ̂ defined as in Eq. (9). Moreover,
the choice of weights is now narrowed for all coordinates x j with α j ≥ 0 to the subset
of kmin − k j+ first elements of the sorted sequence of weights, and for all coordinates
x j with α j < 0 to the subset of kmax− k j− its last elements. Thus the set of remaining
weights to allocate has now N − k j+ − k j− elements.

After at most M − 1 steps we obtain a 1-dimensional hyperplane ĝ(x) = α̂1x − γ̂ ,
which allows computing the final variable x by inspection, as in the proof of Theorem 1.
The whole process can be accomplished in Ω(N log N )+ O(M N ) steps [for each of
O(N M−1) choices of partition block sizes]. 	


Algorithm 1 implements the presented idea. To solve the problem (1)–(3) it is
enough to run Algorithm 1 with arguments (U, M, h1k1, . . . , hM kM , 0) subsequently
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1188 M. Drwal

Algorithm 1 Procedure for finding optimal partition for given block sizes.
Require: W = {w1, . . . , wN } (sorted multiset of weights, w1 ≤ . . . ≤ wN ), m (number of unknown

blocks in partition), k1, . . . , km (requested sizes of partition blocks), α1, . . . , αm , γ (coefficients of
hyperplane in R

m )
Ensure: X1, . . . , Xm (m blocks of computed partition)

1: function Solve(W, m, k1, . . . , km , α1, . . . , αm , γ )
2: if m = 1 then
3: return W
4: end if
5: n← arg min{αi : i = 1, . . . , m}
6: for j = 1, . . . , m do
7: α′j ← α j − αn

8: end for
9: kmin ←

∑m
i=1 ki − kn

10: γ ′ ← γ + αn
∑kmin

i=1 wi
11: W ′ ← {w1, . . . , wkmin }
12: (X1, . . . , Xn−1, Xn+1, . . . , Xm )←
13: Solve(W ′, m − 1, k1, . . . , kn−1, kn+1, . . . , km , α′1, . . . , α′n−1, α′n+1, . . . , α′m , γ ′)
14: return (X1, . . . , Xn−1, W\W ′, Xn+1, . . . , Xm )

15: end function

for all allowed partition sizes k1, . . . , kM . Correctness of the routine follows from the
following fact:

Proposition 2 Given an instance of problem (1)–(3) and a sequence of integers
k1, . . . , kM , Algorithm 1 computes M-partition of set {w1, w2, . . . , wN }, such that
each nth block has kn elements, and the cost (1) is minimal.

Proof Suppose m ≥ 2, as when m = 1 a trivial 1-partition S1 = W is returned.
Observe that initially all parameters α j = h j k j are nonnegative. In step 5 the Algo-
rithm 1 finds such n that αn is minimal. This guarantees that in step 7 all resulting
parameters α′j remain nonnegative. These parameters correspond to α̂ j =

(
α j − α j+

)

in (9). Consequently, A− = ∅ and only set A+ is nonempty in each recursive call
(step 13). Thus the current hyperplane is always defined exclusively by nonnegative
parameters α̂ j and γ̂ .

Due to this, since given m-dimensional hyperplane determines the allocation of∑m
i=1 ki smallest weights, the next hyperplane (of dimension m − 1) determines the

allocation of
∑m

i=1 ki − kn smallest weights, as kn largest of them correspond to the
partition block Sn = W\W ′, where W ′ is as given in step 11. The contents of all
but nth block is determined by calling the procedure recursively for the subsequent
hyperplane. This results in computing (m − 1)-partition of set W ′, until m = 1. In
step 14, after returning from the recursive call, the final partition vector is updated by
inserting Sn . 	


As an example, consider five servers with parameters h j = 2, 1, 5, 3, 1, respec-
tively, and five clients with demands wi = 5, 3, 1, 2, 2, respectively. The optimal par-
tition block sizes are 1, 2, 0, 1, 1. The algorithm allocates total demand 13 to servers
1, 2, 4 and 5. In the second iteration variable x5 is eliminated, leaving total demand 8 to
allocate among servers 1, 2, 4. Next, x1 is eliminated, leaving demand 5 for servers 2

123



Algorithm for quadratic semi-assignment problem 1189

Table 1 Solutions of example problem instances computed by Algorithm 1 along with their respective
running times

N (M) Partition Solution value Running time (s)

5 8 (1, 1, 1, 2) 1297.6 2.2

5 9 (1, 1, 1, 2) 921.6 23.3

5 10 (1, 1, 2, 1) 1,107.1 441.0

30 6 (4, 8, 5, 5, 4, 4) 38,024.3 57.8

30 7 (5, 7, 4, 4, 4, 3, 3) 32,427.1 438.1

30 8 (3, 5, 3, 2, 3, 3, 2, 9) 19,895.1 3,016.9

50 2 (27, 23) 381,107.0 1.13

50 3 (18, 16, 16) 223,302.9 1.25

50 4 (12, 14, 11, 13) 163,382.3 4.52

50 5 (9, 13, 10, 10, 8) 139,832.9 61.1

75 2 (41, 34) 883,630.5 57.9

75 3 (28, 23, 24) 512,673.5 56.6

75 4 (23, 18, 17, 17) 375,971.1 70.6

75 5 (14, 17, 16, 18, 10) 321,947.7 481.4

100 2 (54, 46) 14,89,909.4 1,544.1

100 3 (38, 31, 31) 865,279.5 1,516.5

100 4 (21, 26, 31, 22) 635,263.0 1,558.1

100 5 (20, 23, 19, 22, 16) 539,244.1 3,308.6

and 4. Finally, x2 is eliminated. This results in optimal solution {3}, {2, 2},∅, {1}, {5},
with value 22.

3 Computational experiments

An experimental study has been carried out in order to evaluate the efficiency of
Algorithm 1 in practice. The most time-consuming part in computing optimal solution
is the searching among all feasible partition sizes k1, k2, . . . , kM , since their number
is bounded by a polynomial of degree M − 1, while the routine which computes the
partition itself has complexity bounded by O(N log N ). For relatively small M the
algorithm is very fast, but its performance drops dramatically with the increase of
M . This is illustrated in Table 1, where example solutions are presented, along with
corresponding partition sizes and respective running times (in seconds). The instances
were randomly generated by drawing wi ∈ (0, 100) and h j ∈ (0, 10) from uniform
distributions.

4 Conclusions

The class of quadratic semi-assignment problem instances presented in this paper
models the task of assigning streams of requests to a group of related server machines.
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1190 M. Drwal

In the presence of unknown exact request schedules, the objective is to minimize the
sum of the worst-case processing times, which are equal for a subset of clients sharing
the same machine. Although the corresponding generalization is NP-hard, in practical
applications the number of servers is usually much smaller than the number of clients
to assign. Thus especially important is the case with fixed number of servers, for which
exact polynomial time algorithm was given. The demonstrated reformulation of the
problem, minimizing sum of partition blocks with block size-dependent weights may
also be useful in the design of algorithms for other combinatorial problems involving
operations on set partitions.
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