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Abstract For an ordinary abelian variety X , Fe∗OX is decomposed into line bundles
for every positive integer e. Conversely, if a smooth projective variety X satisfies this
property and theKodaira dimension of X is non-negative, then X is an ordinary abelian
variety.
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1068 A. Sannai, H. Tanaka

1 Introduction

Let k be an algebraically closed field of characteristic p > 0. Let X be a smooth
proper variety over k. When does X satisfy the following property (∗)?

(∗) F∗OX � ⊕
j M j where F : X → X is the absolute Frobenius morphism and

each Mj is a line bundle.

For example, an arbitrary smooth proper toric variety satisfies this property (∗)

(cf. [1,19]). Thus there are many varieties which satisfy (∗). But every toric variety
has negative Kodaira dimension. On the other hand, we show that ordinary abelian
varieties satisfy (∗). The main theorem of this paper is the following inverse result.

Theorem 1.1 (Theorem 4.7) Let k be an algebraically closed field of characteristic
p > 0. Let X be a smooth projective variety over k. Assume the following conditions.

• For infinitely many e ∈ Z>0, Fe∗OX � ⊕
j M

(e)
j where each M (e)

j is an invertible
sheaf.

• KX is pseudo-effective (e.g. the Kodaira dimension of X is non-negative).

Then X is an ordinary abelian variety.

On the other hand, how about the opposite problem? More precisely, when does X
satisfy the following property (∗∗)?

(∗∗) F∗OX is indecomposable, that is, if F∗OX = E1⊕E2 holds for some coherent
sheaves E1 and E2, then E1 = 0 or E2 = 0.

We study this problem for abelian varieties and curves.

Theorem 1.2 (Theorem 5.3) Let k be an algebraically closed field of characteristic
p > 0. Let X be an abelian variety over k. Set rX to be the p-rank of X. Then, for
every e ∈ Z>0,

Fe∗OX � E1 ⊕ · · · ⊕ EperX

where each Ei is an indecomposable locally free sheaf of rank pe(dim X−rX ). In par-
ticular, Fe∗OX is indecomposable if and only if rX = 0.

Theorem 1.3 (Theorem 5.5) Let k be an algebraically closed field of characteristic
p > 0. Let X be a smooth projective curve of genus g. Fix an arbitrary integer
e ∈ Z>0. Then the following assertions hold.

(0) If g = 0, then Fe∗OX � ⊕
L j where every L j is a line bundle.

(1or) If g = 1 and X is an ordinary elliptic curve, then Fe∗OX � ⊕
L j where every

L j is a line bundle.
(1ss) If g = 1 and X is a supersingular elliptic curve, then Fe∗OX is indecompos-

able.
(2) If g ≥ 2, then Fe∗OX is indecomposable.
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Frobenius push-forward of the structure sheaf. . . 1069

By Theorem 1.3(2), it is natural to ask whether F∗OX is indecomposable for every
smooth projective variety of general type X . If we drop the assumption that X is
smooth, then the following theorem gives a negative answer to this question.

Theorem 1.4 Let k be an algebraically closed field of characteristic p > 0. Then,
there exists a projective normal surface X over k which satisfies the following prop-
erties.

(1) The singularities of X are at worst canonical.
(2) KX is ample.
(3) F∗OX is not indecomposable.

Remark 1.5 By [17], if X is a smooth projective curve of genus g ≥ 2, then F∗E
is a stable vector bundle whenever so is E . Theorem 1.4 shows that there exists a
projective normal canonical surface of general type X such that F∗OX is not a stable
vector bundle with respect to an arbitrary ample invertible sheaf H on X .

Proof of Theorem 1.1: We overview the proof of Theorem 1.1. First of all, we can
show that X is F-split, that is,OX → F∗OX splits as anOX -module homomorphism.
This implies

H0(X,−(p − 1)KX ) �= 0.

Since KX is pseudo-effective, we obtain (p − 1)KX ∼ 0. Then, by [6], we see that
the Albanese map α : X → Alb(X) is surjective. There are two main difficulties as
follows.

(1) To show that α is generically finite.
(2) To treat the case where α is a finite surjective inseparable morphism.

(1) Let us overview how to show that α is generically finite. Set rX to be the p-rank
of Alb(X). It suffices to show dim X = rX . Note that α : X → Alb(X) induces the
following bijective group homomorphism:

α∗ : Pic0(Alb(X))
�→ Pic0(X), L 
→ α∗L .

Roughly speaking, since Picτ (X)/Pic0(X) is a finite group, rX can be calculated by
the asymptotic behavior of the number of pe-torsion line bundles on X . Thus, we
count the number of pe-torsion line bundles on X . More precisely, we prove that the
number of pe-torsion line bundles on X is pe dim X for infinitely many e.

Now we have

Fe∗OX =
⊕

1≤ j≤pe dim X

M j

where eachMj is a line bundle. In our situation, we can show that every pe-torsion line
bundle L is isomorphic to some Mj (cf. Lemma 3.3). Therefore, it suffices to prove
that each Mj is pe-torsion. Tensor M−1

j with the above equation and take H0. Then,
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1070 A. Sannai, H. Tanaka

we obtain H0(X, M−pe

j ) �= 0. If we have H0(X, Mpe

j ) �= 0, then we are done. For
this, we take the duality, that is, apply HomOX (−, ωX ) to the above direct summand
decomposition. Then we can also show H0(X, Mpe ) �= 0. For more details on this
argument, see Lemma 4.4.

(2) We overview how to treat the inseparable case. To clarify the idea, we assume
that α is a finite surjective purely inseparable morphism of degree p. Then, Frobenius
map FA of A factors through α:

FA : A → X
α→ A.

By using the fact that X is F-split, we can show that

(FA)∗OA � α∗OX ⊕ E

for some coherent sheaf E . Since (FA)∗OA is the direct sum of the p-torsion line
bundles, we obtain

α∗OX �
p⊕

j=1

Mj

where M1, . . . , Mp are mutually distinct p-torsion line bundles. One of them, say M1,
satisfies α∗M1 �� OX . By tensoring M−1

1 , we obtain

α∗(α∗M−1
1 ) � OA ⊕

p⊕

j=2

(Mj ⊗OA M−1
1 )

which induces the following contradiction:

0 = H0(X, α∗M−1
1 ) � H0(A,OA) ⊕ H0

⎛

⎝A,

p⊕

j=2

(
Mj ⊗OA M−1

1

)
⎞

⎠ �= 0.

In the proof of Theorem 1.1, there appear other technical difficulties. For more details
on the inseparable case, see Step 5 of the proof of Theorem 4.7.

Related results:

(1) In [6], Hacon and Patakfalvi give a characterization of the varieties birational to
ordinary abelian varieties.

(2) Achinger [1] gives a characterization of smooth projective toric varieties as fol-
lows. For a smooth projective variety X in positive characteristic, X is toric if
and only if F∗L splits into line bundles for every line bundle L .
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Frobenius push-forward of the structure sheaf. . . 1071

2 Preliminaries

2.1 Notation

We will not distinguish the notations line bundles, invertible sheaves and Cartier divi-
sors. For example, we will write L + M for line bundles L and M .

Throughout this paper, wework over an algebraically closed field k of characteristic
p > 0. For example, a projective scheme means a scheme which is projective over k.

Let X be a noetherian scheme. For a coherent sheaf F on X and a line bundle L on
X , we define F(L) := F ⊗OX L .

In this paper, a variety means an integral scheme which is separated and of finite
type over k. A curve or a surface means a variety whose dimension is one or two,
respectively.

For a proper scheme X , let Pic(X) be the group of line bundles on X and let Pic0(X)

(resp. Picτ (X)) be the subgroup of Pic(X) of line bundleswhich are algebraically (resp.
numerically) equivalent to zero:

Pic0(X) ⊂ Picτ (X) ⊂ Pic(X).

For a normal variety X and a coherent sheaf M on X , we say M is reflexive if the
natural map M → HomOX (HomOX (M,OX ),OX ) is an isomorphism. We say M is
divisorial if M is reflexive and M |OX,ξ

is rank one where ξ is the generic point. It is
well-known that a divisorial sheaf M is isomorphic to the sheaf OX (D) associated to
a Weil divisor D on X .

Let X be a scheme of finite type over k.We say X is F-split if the absolute Frobenius

OX → F∗OX , a 
→ a p

splits as an OX -module homomorphism.
We say a coherent sheaf F is indecomposable if, for every isomorphism F �

F1 ⊕ F2 with coherent sheaves F1 and F2, we obtain F1 = 0 or F2 = 0.
We recall the definition of ordinary abelian varieties.

Definition-Proposition 2.1 Let X be an abelian variety. We say X is ordinary if one
of the following conditions hold. Moreover, the following conditions are equivalent.

(1) For some e ∈ Z>0, the number of pe-torsion points is pe·dim X .
(2) For every e ∈ Z>0, the number of pe-torsion points is pe·dim X .
(3) F : H1(X,OX ) → H1(X,OX ) is bijective.
(4) F : Hi (X,OX ) → Hi (X,OX ) is bijective for every i ≥ 0.
(5) X is F-split.

Proof (1) and (2) are equivalent by [13, Section 15, Thep-rank]. (2) and (3) are
equivalent by [13, Section 15, Theorem 3]. (Note that, in older editions of [13], there
are two Theorem 2 in Section 15.) (3) and (4) are equivalent by [14, Example 5.4]. (4)
and (5) are equivalent by [12, Lemma 1.1]. ��
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1072 A. Sannai, H. Tanaka

2.2 Albanese varieties

In this subsection, we recall the definition and fundamental properties of the Albanese
varieties. For details, see [4, Section 9].

For a projective normal variety X and a closed point x ∈ X , there uniquely exists
a morphism αX : X → Alb(X) to an abelian variety Alb(X), called the Albanese
variety of X , such that αX (x) = 0 and that every morphism to an abelian variety
g : X → B, with g(x) = 0B , factors through αX (cf. [4, Remark 9.5.25]). Note that
Alb(X) � Pic0(Pic0(X)red), where Pic(X) := PicX/k in the sense of [4, Section 9].

The Albanese morphism αX : X → Alb(X) induces a natural morphism

α∗
X : Pic0(Alb(X)) → Pic0(X)red.

It is well-known that α∗
X is an isomorphism. In particular, the induced group homo-

morphism

α∗
X : Pic0(Alb(X)) → Pic0(X)

is bijective.

2.3 The number of pe-torsion line bundles

The asymptotic behavior of the number of pe-torsion line bundles is determined by
the p-rank of the Picard variety Pic0(X)red.

Proposition 2.2 Let X be a projective normal variety. Then, the following assertions
hold.

(1) There exists the following exact sequence

0 → Pic0(X) → Picτ (X) → G(X) → 0

where G(X) is a finite group.
(2) If rX is the p-rank of Pic0(X)red, then there exists ξ ∈ Z>0 such that

perX ≤ |Pic(X)[pe]| ≤ perX × ξ

for every e ∈ Z>0 where Pic(X)[pe] is the group of pe-torsion line bundles.

Proof The assertion (1) holds by [4, 9.6.17]. The assertion (2) follows from (1). ��
As a consequence, we see that the p-rank of the Picard variety is stable under purely

inseparable covers.

Proposition 2.3 Let f : X → Y be a finite surjective purely inseparable morphism
between projective normal varieties. Set rX and rY to be the p-ranks of Pic0(X)red
and Pic0(Y )red, respectively. Then, rX = rY .
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Frobenius push-forward of the structure sheaf. . . 1073

Proof We may assume that [K (X) : K (Y )] = p. Then, the absolute Frobenius
morphism F : Y → Y factors through f : X → Y :

F : Y g→ X
f→ Y.

Thus, it suffices to show rY ≤ rX .
We show that the following inequality

perY ≤ |Pic(X)[pe+1]|

holds for every e ∈ Z>0. Fix e ∈ Z>0. Let L1, . . . , L perY be mutually distinct pe-
torsion line bundles in Pic0(Y ). Then, since Pic0(Y )red is an abelian variety, we can
find line bundles M1, . . . , MperY such that Mp

j � L j for every 1 ≤ j ≤ perY . We see
that, for each j ,

L j � Mp
j = F∗Mj � g∗ f ∗Mj

and that f ∗M1, . . . , f ∗MperY are mutually distinct pe+1-torsion line bundles on X .
Thus, we obtain the required inequality perY ≤ |Pic(X)[pe+1]|.

By Proposition 2.2(2), we can find ξ ∈ Z>0 such that the inequalities

perY ≤ |Pic(X)[pe+1]| ≤ p(e+1)rX × ξ

hold for every e ∈ Z>0. By taking the limit e → ∞, we obtain rY ≤ rX . ��

3 Basic properties

In the main theorem (Theorem 1.1), we treat varieties such that Fe∗OX is decomposed
into line bundles. In this section, we summarize basic properties of such varieties.
Since such varieties are F-split (Lemma 3.2), we also study F-split varieties. First,
we give characterizations of F-split varieties.

Lemma 3.1 Let X be a scheme of finite type over k. Then, the following assertions
are equivalent.

(1) X is F-split.
(2) For every e ∈ Z>0, there exists a coherent sheaf E such that Fe∗OX � OX ⊕ E.
(3) Fe∗OX � OX ⊕ E for some e ∈ Z>0 and coherent sheaf E.
(4) Fe∗OX � L ⊕ E for some e ∈ Z>0, pe-torsion line bundle L and coherent sheaf

E.

Proof It is well-known that (1), (2) and (3) are equivalent. It is clear that (3) implies
(4). We see that (4) implies (3) by tensoring L−1 with Fe∗OX � L ⊕ E . ��

We are interested in varieties such that Fe∗OX is decomposed into line bundles. By
the following lemma, such varieties are F-split.
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1074 A. Sannai, H. Tanaka

Lemma 3.2 Let X be a proper normal variety. Assume that Fe∗OX � ⊕
j M j for

some e ∈ Z>0 and divisorial sheaves M j . Then, X is F-split.

Proof We obtain the following

0 �= H0(X, Fe∗OX ) �
⊕

j

H0(X, Mj ).

Therefore, we see H0(X, Mj0) �= 0 for some j0.
We have Mj0 � OX (E) for some effective divisor E on X . By Lemma 3.1, it is

enough to show E = 0. Tensor OX (−E) with

Fe∗OX �
⊕

j

M j � OX (E) ⊕
⎛

⎝
⊕

j �= j0

Mj

⎞

⎠

and take the double dual. We obtain the following decomposition:

Fe∗ (OX (−peE)) � OX ⊕
⎛

⎝
⊕

j �= j0

(
Mj ⊗OX (−E)

)∗∗
⎞

⎠ .

Thus, H0(X,OX (−peE)) �= 0. This implies E = 0. ��
The following result gives an upper bound of the number of pe-torsion line bundles

for F-split varieties.

Lemma 3.3 Let X be a proper variety. Assume that X is F-split. Fix e ∈ Z>0. Let
Fe∗OX � ⊕

j∈J M j be a decomposition into indecomposable coherent sheaves M j .
Then, the following assertions hold.

(1) Let L be a line bundle with L pe � OX . Then, L � Mj1 for some j1 ∈ J .
(2) Let j1, j2 ∈ J with j1 �= j2. If M j1 and Mj2 are line bundles and satisfy

M pe

j1
� OX and M pe

j2
� OX , then M j1 �� Mj2 .

(3) The number of pe-torsion line bundles on X is at most pe·dim X .

Proof (1) Tensor L−1 with Fe∗OX � ⊕
j M j and we obtain

Fe∗OX � Fe∗ (L−pe ) � Fe∗OX ⊗OX L−1 �
⊕

j

(
Mj ⊗OX L−1).

Since X is F-split, we have

Fe∗OX � OX ⊕
(

⊕

i

Ni

)

where each Ni is an indecomposable sheaf. Then, the Krull–Schmidt theorem
([2, Theorem 2]) implies Mj1 ⊗OX L−1 � OX for some j1.
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Frobenius push-forward of the structure sheaf. . . 1075

(2) Assume that, for some j1 �= j2, Mj1 and Mj2 are line bundles such that Mpe

j1
�

OX , M
pe

j2
� OX and Mj1 � Mj2 . Let us derive a contradiction. Tensor M

−1
j1

and
we obtain

Fe∗OX � Fe∗ (M−pe

j1
) � OX ⊕ OX ⊕

⎛

⎝
⊕

j �= j1, j2

(
Mj ⊗ M−1

j1

)
⎞

⎠ .

Taking H0, we obtain a contradiction.
(3) The assertion immediately follows from (1) and (2).

��

The following lemma is used in the next section and well-known for experts on
F-singularities (cf. the proof of [16, Theorem 4.3]).

Lemma 3.4 Let X be a smooth proper variety. Assume that X is F-split. Then, for
every e ∈ Z>0,

H0(X,−(pe − 1)KX ) �= 0.

In particular, κ(X) ≤ 0.

Proof By the Grothendieck duality, we can check

HomOX (Fe∗OX , ωX ) � Fe∗ ωX .

This implies thatωX is a direct summand of Fe∗ωX , which is equivalent to the assertion

that OX is a direct summand of Fe∗ (ω
1−pe

X ). ��

4 A characterization of ordinary abelian varieties

In this section, we show the main theorem of this paper: Theorem 4.7. In the proof,
we use [6, Theorem 1.1.1]. For this, it is necessary to show κS(X) = 0. We check this
in Lemma 4.3. First, we recall the definition of κS(X).

Definition 4.1 Let X be a smooth proper variety.

(1) Fix m ∈ Z>0. We define

S0(X,mKX ) :=
⋂

e≥0

Image
(
Tr : H0(X, KX + (m − 1)peKX ) → H0(X,mKX )

)
.

where Tr is defined by the trace map Fe∗ ωX → ωX . For more details, see
Remark 4.2 and [6, Lemma 2.2.3].
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1076 A. Sannai, H. Tanaka

(2) We define

κS(X) := max{r | dim S0(X,mKX ) = O(mr ) for sufficiently divisible m}.

This definition is the same as the one of [6, Subsection 4.1].

Remark 4.2 The trace map Fe∗ ωX → ωX in Definition 4.1 is obtained by applying the
functor HomOX (−, ωX ) to the Frobenius OX → Fe∗OX . Indeed, the Grothendieck
duality implies HomOX (Fe∗OX , ωX ) � Fe∗ ωX . Thus, we obtain the trace map
Fe∗ωX → ωX .

By the construction, if X is F-split, then the trace map Fe∗ ωX → ωX is a split
surjection. Therefore, in this case, H0(X,mKX ) �= 0 (resp. κ(X) ≥ 0) implies
S0(X,mKX ) �= 0 (resp. κS(X) ≥ 0).

We check κS(X) = 0 to apply [6, Theorem 1.1.1] in the proof of Theorem 4.7.

Lemma 4.3 Let X be a smooth projective variety. If X is F-split and KX is pseudo-
effective, then the following assertions hold.

(1) (pe − 1)KX ∼ 0 for every e ∈ Z>0.
(2) κS(X) = 0.

Proof (1) By Lemma 3.4, we obtain −(pe − 1)KX ∼ E where E is an effec-
tive divisor. Then, the pseudo-effectiveness of KX implies that E = 0 (cf. [5,
Lemma 5.4]).

(2) By (1), we obtain κ(X) = 0. By [6, Lemma 4.1.3], it suffices to show κS(X) ≥ 0.
By Remark 4.2, κ(X) ≥ 0 implies κS(X) ≥ 0.

��
The following lemma is a key to show Theorem 4.7.

Lemma 4.4 Let X be a smooth projective variety. Fix e ∈ Z>0. Assume the following
conditions.

• Fe∗OX � ⊕
j M j where each M j is a line bundle.

• KX is pseudo-effective.

Then, the following assertions hold.

(1) Mpe

j � OX for every j .

(2) The number of pe-torsion line bundles on X is equal to pe·dim X .

Proof (1) By Lemma 3.2, X is F-split. Thus, Lemma 4.3 implies (pe − 1)KX ∼ 0.
Fix an index j0 and we show Mpe

j0
� OX . We can write

Fe∗OX = Mj0 ⊕
⎛

⎝
⊕

j �= j0

Mj

⎞

⎠ .
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Frobenius push-forward of the structure sheaf. . . 1077

Tensor M−1
j0

and we obtain

H0(X, M−pe

j0
) � H0(X,OX ) ⊕ · · · .

In particular, we obtain H0(X, M−pe

j0
) �= 0. On the other hand, by applying

HomOX (−, ωX ), we have

Fe∗ωX � HomOX

(
Fe∗OX , ωX

)

� HomOX

⎛

⎝
⊕

j

M j , ωX

⎞

⎠

�
⊕

j

(
M−1

j ⊗ ωX
)

where the first isomorphism follows from the Grothendieck duality theorem for
finite morphisms. Tensor ω−1

X and we obtain

Fe∗OX � Fe∗ (ω
1−pe

X ) � (Fe∗ωX ) ⊗OX ω−1
X �

⊕

j

M−1
j .

Then, tensor Mj0 , and we obtain H0(X, Mpe

j0
) �= 0. Therefore, Mpe

j0
� OX .

(2) ByLemma 3.2, X is F-split. Then, the assertion follows from (1) and Lemma 3.3.
��

Ordinary abelian varieties satisfy the condition that Fe∗OX is decomposed into line
bundles.

Lemma 4.5 Let A be a d-dimensional ordinary abelian variety. Fix e ∈ Z>0. Let
{M (e)

j } j∈J be the set of the pe-torsion line bundles on X. Then, the following assertions
hold.

(1) Fe∗OA � ⊕
j∈J M

(e)
j .

(2) M (e)
j ∈ Pic0(A) for every j ∈ J .

Proof The number of pe-torsion line bundles in Pic0(X) is ped . Apply Lemma 3.3
and we obtain the assertion. ��

We also need the following lemma.

Lemma 4.6 Let X be a proper normal variety. Fix e ∈ Z>0. Assume that there are
mutually distinct pe-torsion line bundles L1, . . . , L pe dim X on X. Let Fe∗OX � E ⊕ E ′
where E �= 0 is an indecomposable coherent sheaf and E ′ is a coherent sheaf. Then,
the following assertions hold.

(1) If rank E < p, then Fe∗OX � ⊕pe dim X

i=1 Li .

123



1078 A. Sannai, H. Tanaka

(2) If rank E = p, then E ⊗OX Li � E ⊗OX L j for some 1 ≤ i < j ≤ pe dim X .

Proof Set Xreg ⊂ X to be the regular locus of X . Since (Fe∗OX )|Xreg is locally free,
E |Xreg is also locally free.

We show that E is reflexive. Let

Fe∗OX � E1 ⊕ · · · ⊕ Es

be a decomposition into indecomposable sheaves with E1 � E . Take the double
dual. Since Fe∗OX is reflexive, each Ei is reflexive by the Krull–Schmidt theorem ([2,
Theorem 2]).

(1) We show that

E ⊗OX Li �� E ⊗OX L j

for every 1 ≤ i < j ≤ pe dim X . Assume E ⊗OX Li � E ⊗OX L j for some
1 ≤ i < j ≤ pe dim X . Then, we obtain

det (E |Xreg) ⊗OXreg
(Li |Xreg)

rank E � det (E |Xreg) ⊗OXreg
(L j |Xreg)

rank E .

By 1 ≤ rank E < p, we obtain Li � L j , which is a contradiction.

Thus E ⊗OX Li is also an indecomposable direct summand of Fe∗OX . Therefore,
we see rank E = 1 and

Fe∗OX �
pe dim X
⊕

i=1

E ⊗OX Li .

Since E is a divisorial sheaf, X is F-split by Lemma 3.2. Then, the assertion
follows from Lemma 3.3.

(2) Assume that E ⊗OX Li �� E ⊗OX L j for every 1 ≤ i < j ≤ pe dim X . Let
us derive a contradiction. Since E is indecomposable, so is E ⊗OX Li for
every i . Moreover, E ⊗OX Li is also a direct summand of Fe∗OX . Thus, by
the Krull–Schmidt theorem ([2, Theorem 2]), we obtain

Fe∗OX �
pe dim X
⊕

i=1

E ⊗OX Li ⊕ · · · .

Then, we obtain the following contradiction:

pe dim X = rank(Fe∗OX ) ≥ pe dim X × rank E = pe dim X × p.
��

We show the main theorem of this paper.
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Theorem 4.7 Let X be a smooth projective variety. Assume that the following condi-
tions hold.

• For infinitely many e ∈ Z>0, Fe∗OX � ⊕
j M

(e)
j where each M (e)

j is a line bundle.
• KX is pseudo-effective.

Then, X is an ordinary abelian variety.

Proof Let

α : X → A := Alb(X)

be the Albanese morphism.

Step 1. In this step, we show the following assertions.

(1) The Albanese morphism α : X → A is surjective.
(2) The Albanese variety A is an ordinary abelian variety such that dim X = dim A.
(3) For every e ∈ Z>0, Fe∗OX � ⊕

j M
(e)
j where each M (e)

j is a pe-torsion line
bundle.

Proof of Step 1. (1) Lemma 3.2 implies that X is F-split. By Lemma 4.3, we see
κS(X) = 0. Thus we can apply [6, Theorem 1.1.1(1)]. Then, the Albanese mor-
phism α : X → Alb(X) is surjective.

(2) By (1), we obtain dim Pic0(X)red ≤ dim X . Set rX to be the p-rank of Pic0(X)red.
It suffices to show that rX = dim X . By Lemma 4.4 and an assumption, the
number of pe-torsion line bundles is equal to pe dim X for infinitelymany e ∈ Z>0.
By Proposition 2.2(2), we can find an integer ξ > 0 such that

perX ≤ pe dim X = |Pic(X)[pe]| ≤ perX × ξ,

for infinitely many e > 0. Taking the limit e → ∞, we obtain rX = dim X.

(3) The assertion follows from (2) and Lemma 3.3. This completes the proof of
Step 1.

��
By Step 1, the Albanese morphism α : X → A is a generically finite surjective

morphism and A is an ordinary abelian variety.Weobtain the following decomposition

α : X f→ Y
g→ Z

h→ A

such that

• Y and Z are projective normal varieties.
• f is a birational morphism, and g and h are finite surjective morphisms.
• g is purely inseparable and h is separable.

Note that we can find such a decomposition as follows. First, we take the Stein
factorization of α and we obtain Y . Then f : X → Y is birational and Y → A is
finite. Second, take the separable closure L of K (A) in K (X) = K (Y ) and consider
the normalization Z of A in L .
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Step 2. Y is smooth.

Proof of Step 2. Since f∗OX = OY , Y is F-split. By Lemma 4.5, there are the mutu-
ally distinct p-torsion line bundles M1, . . . , Mpdim X on A such that Mi ∈ Pic0(A).
By Sect. 2.2, α∗M1, . . . , α

∗Mpdim X are mutually distinct p-torsion line bundles on X .
Thus, the number of p-torsion line bundles on Y is at least pdim X = pdim Y . Then, by
Lemma 3.3, F∗OY � ⊕

j∈J L j for some p-torsion line bundles L j on Y . Therefore
Y is smooth by Kunz’s criterion. ��
Step 3. f is an isomorphism.

Proof of Step 3. We can write

KX = f ∗KY + E

where E is an f -exceptional divisor. Since Y is smooth and hence terminal (cf. [9,
Section 2.3]), E is effective. Since KX ≡ 0, we see that E is f -nef. By the neg-
ativity lemma (cf. [9, Lemma 3.39]), we see E = 0. Therefore, KX = f ∗KY .
Thus, the codimension of Ex( f ) in X is at least two. Since Y is smooth, f is an
isomorphism. ��

Now, we have

α : X g→ Z
h→ A

such that

• Z is projective normal variety.
• g is a finite surjective purely inseparable morphism.
• h is a finite surjective separable morphism.

Step 4. If g is an isomorphism, then α is also an isomorphism.

Proof of Step 4. We see that the albanese morphism

α = h : X → A

is a finite surjective separable morphism. Since KX is numerically trivial and KA ∼ 0,
α : X → A is etale in codimension one. Then, by the Zariski–Nagata purity, α is etale.
By [13, Section 18, Theorem], X is also an ordinary abelian variety. This completes
the proof of Step 4. ��
Step 5. g is an isomorphism.

Proof of Step 5. Assume that g is not an isomorphism. Then, we can find

α : X ϕ→ W → Z → A, β : W → A

which satisfies the following properties.
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• W is a projective normal variety.
• ϕ : X → W and W → Z are finite surjective purely inseparable morphisms with

[K (X) : K (W )] = p.

Since A is an ordinary abelian variety, there aremutually distinct p-torsion line bundles
M1, . . . , Mpdim X on A which form a subgroup of Pic0A (Lemma 4.5).
Claim We prove the following assertions.

(a) F∗OW � ϕ∗OX ⊕ E for some coherent sheaf E .
(b) F∗OW � β∗M1 ⊕ · · · ⊕ β∗Mpdim X .

Proof of Claim (a) Since [K (X) : K (W )] = p, the Frobenius map FW factors through
ϕ:

FW : W μ→ X
ϕ→ W.

Since μ is a finite purely inseparable morphism, there is e ∈ Z>0 such that Fe
X factors

through μ:

Fe
X : X → W

μ→ X.

Since X is F-split, the identity homomorphism idOX factors through μ∗OW :

idOX : OX → μ∗OW → (Fe
X )∗OX → OX .

Thus, we see

μ∗OW � OX ⊕ E1

for some coherent sheaf E1 on X . Take the push-forward by ϕ and we obtain

(FW )∗OW � ϕ∗OX ⊕ ϕ∗E1.

(b) Set Li := β∗Mi . By Sect. 2.2, L1, . . . , L pdim X are mutually distinct p-torsion
line bundles on W such that {L1, . . . , L pdim X } forms a subgroup of PicW and that

ϕ∗Li �� ϕ∗L j

for every 1 ≤ i < j ≤ pdim X . There are the following two cases:

• ϕ∗OX is not indecomposable.
• ϕ∗OX is indecomposable.

Assume that ϕ∗OX is not indecomposable. Then, F∗OW has an indecomposable
direct summand of rank < p. Therefore, by Lemma 4.6(1), we obtain

F∗OW � β∗M1 ⊕ · · · ⊕ β∗Mpdim X .

123



1082 A. Sannai, H. Tanaka

This is what we want to show.
Assume that ϕ∗OX is indecomposable. Since rank(ϕ∗OX ) = p, we can apply

Lemma 4.6(2) and can find

ϕ∗OX ⊗ Li � ϕ∗OX ⊗ L j

for some 1 ≤ i < j ≤ pdim X . Since {L1, . . . , L pdim X } is a group, we obtain L−1
i ⊗OX

L j � Lr for some 1 ≤ r ≤ pdim X with ϕ∗Lr �� OX . Tensor L
−1
i and we see

ϕ∗OX � ϕ∗OX ⊗ Lr � ϕ∗(ϕ∗Lr ).

Then, taking H0, we obtain the following contradiction

0 �= H0(X,OX ) � H0(X, ϕ∗Lr ) = 0,

where the last equality holds because ϕ∗Lr is a non-trivial p-torsion line bundle. This
completes the proof of Claim.

By the Krull–Schmidt theorem ([2, Theorem 2]), the assertions (a) and (b) in Claim
imply

ϕ∗OX =
⊕

j∈J

β∗Mj

for some J ⊂ {1, . . . , pdim X }. Since #J = p, we obtain Mj0 �� OA for some j0 ∈ J .
By Sect. 2.2, we see that α∗Mj0 �� OX . Since α∗Mj0 is a non-trivial p-torsion line

bundle, we obtain

H0(X, α∗M−1
j0

) = 0.

On the other hand, we obtain

ϕ∗α∗M−1
j0

� ϕ∗ϕ∗β∗M−1
j0

� ϕ∗OX ⊗ β∗M−1
j0

�
⎛

⎝
⊕

j∈J

β∗Mj

⎞

⎠ ⊗ β∗M−1
j0

� OW ⊕
⎛

⎝
⊕

j �= j0

β∗Mj ⊗ β∗M−1
j0

⎞

⎠ ,

which implies

H0(X, α∗M−1
j0

) �= 0.

This is a contradiction. Thus, g : X → Z is an isomorphism. This completes the proof
of Step 5. ��

Step 4 and Step 5 imply the assertion in the theorem. ��
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5 On the behavior of Fe∗OX for some special varieties

In the former sections, we investigate varieties X such that F∗OX is decomposed into
line bundles. In this section, we study the behavior of F∗OX for some special varieties.

5.1 Abelian varieties

In this subsection, we show Theorem 5.3. We recall some results essentially obtained
by [15].

Theorem 5.1 (Oda) Let f : X → Y be an isogeny of abelian varieties over k. Set
f̂ : Ŷ → X̂ to be the dual of f . Let L ∈ Pic0(X). Then,

f∗L � pr1∗(PY |Y× f̂ −1([L]))

wherePY is the normalizedPoincare line bundle of (Y, 0) and pr1 is the first projection.

Proof We can apply the same argument as [15, Corollary 1.7]. ��
Theorem 5.2 (Oda) Let X be an abelian variety. Let S ⊂ X̂ be a closed subscheme of
the dual abelian variety X̂ . If S is zero-dimensional and Gorenstein, then the following
assertions hold.

(1) There exists an isomorphism between non-commutative k-algebras:

EndOX (pr1∗(PX |X×S)) � 	(S,OS).

In particular, EndOX (pr1∗(PX |X×S)) is a commutative ring.
(2) If S is one point, that is, 	(S,OS) is a local ring, then pr1∗(PX |X×S) is an

indecomposable sheaf.

Proof (1) holds from [15, Corollary 1.12]. We show (2). Assuming pr1∗(PX |X×S) �
E1⊕E2 with Ei �= 0,wederive a contradiction.By (1), the ringEndOX (pr1∗(PX |X×S))

is a commutative ring. We obtain idempotents idE1 × 0E2 and 0E1 × idE2 such that
idE1 × 0E2 + 0E1 × idE2 is the unity of the ring EndOX (pr1∗(PX |X×S)). Therefore,
we obtain

	(S,OS) � EndOX (pr1∗(PX |X×S)) � A × B

for some non-zero rings A and B. But,	(S,OS) is a local ring. This is a contradiction.
��

We show the main theorem of this subsection.

Theorem 5.3 Let X be an abelian variety. Set rX to be the p-rank of X. Let L ∈
Pic0(X). Then, for every e ∈ Z>0, we obtain

Fe∗ L � E1 ⊕ · · · ⊕ EperX

where each Ei is an indecomposable locally free sheaf of rank pe(dim X−rX ).
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Proof Fix e ∈ Z>0. Consider the absolute Frobenius morphism Fe
X : X → X. Set

X (pe) := X ×k,Fe
k
k and we obtain

Fe
X : X Fe,rel

X−−−→ X (pe) β→ X.

where β is a non-k-linear isomorphism of schemes and

Fe,rel
X : X → X (pe)

is k-linear. Thus, it suffices to show that

(Fe,rel
X )∗L � E ′

1 ⊕ · · · ⊕ E ′
perX

for some indecomposable locally free sheaves E ′
i of rank pe(dim X−rX ). Take the dual

of Fe,rel
X :

̂
(Fe,rel

X ) : ̂X (pe) → X̂ .

We show that the number of the fiber of every closed point of ̂(Fe,rel
X

)
is perX . Since

̂(Fe,rel
X

)
(k) is a group homomorphism, the numbers of all the fibers are the same. Thus,

it suffices to prove that the number of ̂(Fe,rel
X

)−1
(0X̂ ) = Ker

( ̂(Fe,rel
X

)
(k)

)
is perX . This

is equivalent to show that the number of line bundles M ∈ Pic0(X (pe)) = ̂X (pe)(k)
such that (Fe,rel

X )∗M � OX is perX . Since β : X (pe) → X is an isomorphism, we
prove that the number of line bundles N ∈ Pic0(X) such that N pe = (Fe

X )∗N � OX

is perX . This follows from the definition of the p-rank.
Taking the separable closure, we obtain

̂(Fe,rel
X

) : ̂X (pe) g→ Y
h→ X̂ ,

where Y is a normal projective variety, g is a finite surjective purely inseparable
morphism and h is a finite surjective separable morphism. Since the numbers of every

fiber of ̂(Fe,rel
X

)
are the same, h is an etale morphism. In particular, Y is an abelian

variety ([13, Section 18, Theorem]) and we may assume that g and h are isogenies.
Take the duals again and we obtain

Fe,rel
X : X ĥ−→ Ŷ

ĝ−→ X (pe).

Let

Ker( ̂Fe,rel
X ) = g−1([M1]) � · · · � g−1([MperX ])

123



Frobenius push-forward of the structure sheaf. . . 1085

be the decomposition into one point schemes. By Theorem 5.1, we obtain

(Fe,rel
X )∗OX � pr1∗(PX (pe) |

X (pe)×Ker(̂Fe,rel
X )

)

� pr1∗(PX (pe) |X (pe)×g−1([M1])) ⊕ · · · ⊕ pr1∗(PX (pe) |X (pe)×g−1([MperX ]))

� ĝ∗M1 ⊕ · · · ⊕ ĝ∗MperX .

Thus, it suffices to show that each locally free sheaf

pr1∗(PX (pe) |X (pe)×g−1([Mj ])) � ĝ∗Mj

is indecomposable. We see that g−1([Mj ]) is one point. Thus, if g−1([Mj ]) is Goren-
stein, then pr1∗(PX (pe) |X (pe)×g−1([Mj ])) is indecomposable by Theorem 5.2(2). Since

g is finite and Y is smooth, g−1([Mj ]) is a local complete intersection scheme. In
particular, g−1([Mj ]) is Gorenstein. ��

5.2 Curves

In this subsection, we showTheorem 5.5.We need the following result from the theory
of stable vector bundles.

Theorem 5.4 Let X be a smooth projective curve of genus g ≥ 2. Let L be a line
bundle on X. Then, Fe∗ L is indecomposable for every e ∈ Z>0.

Proof Since L is a line bundle, L is a stable vector bundle. Then, by [17, Theorem 2.2],
Fe∗ L is also a stable vector bundle. Since stable vector bundles are indecomposable,
Fe∗ L is indecomposable. ��

We show the main theorem of this subsection.

Theorem 5.5 Let X be a smooth projective curve of genus g. Fix an arbitrary positive
integer e. Then the following assertions hold.

(0) If g = 0, then Fe∗OX � ⊕
L j where every L j is a line bundle.

(1or) If g = 1 and X is an ordinary elliptic curve, then Fe∗OX � ⊕
L j where every

L j is a line bundle.
(1ss) If g = 1 and X is a supersingular elliptic curve, then Fe∗OX is indecompos-

able.
(2) If g ≥ 2, then Fe∗OX is indecomposable.

Proof The assertion (0) immediately follows from the fact that every locally free sheaf
of finite rank on P

1 is decomposed into the direct sum of line bundles.
The assertions (1or) and (1ss) hold by Theorem 5.3. The assertion (2) follows from

Theorem 5.4. ��
By Theorem 5.5, it is natural to ask the following question.
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Question 5.6 If X is a smooth projective surface X of general type, then is F∗OX

indecomposable?

As far as the authors know, this question is open. On the other hand, if we drop the
assumption that X is smooth, then there exists a counter-example as follows. For a
related result, see also [7, Example 3.5].

Theorem 5.7 There exists a projective normal surface X which satisfies the following
properties.

(1) The singularities of X are at worst canonical.
(2) KX is ample.
(3) F∗OX is not indecomposable.

Proof Let S be an ordinary abelian surface. Fix a very ample line bundle H on S. Let
s ∈ H0(X, H p) be a general element and set

π : X := SpecS
(OS ⊕ H−1 ⊕ · · · ⊕ H−(p−1)) → S

to be the finite purely inseparable morphism where theOS-algebraOS ⊕H−1⊕· · ·⊕
H−(p−1) is defined by s ∈ H0(X, H p). By [10, Remark 3.5(1)], we can apply [10,
Theorem 3.4] for L := H . Since the scheme X constructed above is the same as the
αL-torsor δ(s) appearing in [10, Theorem 3.4]. Therefore, X is normal and has at
worst Ap−1-singularities. Thus (1) holds. We see

KX = π∗KS + (p − 1)π∗H ∼ (p − 1)π∗H,

which implies (2).
We show (3). Since π : X → S is a finite purely inseparable morphism of degree

p, the absolute Frobenius morphisms of X and S factors through π :

FS : S → X
π→ S, FX : X π→ S

ϕ→ X.

Since S is F-split, the identity homomorphism idOS factors through π∗OX :

idOS : OS → π∗OX → (FS)∗OS → OS .

This implies

π∗OX � OS ⊕ E

for some coherent sheaf E . Taking the push-forward by ϕ, we see

(FX )∗OX = ϕ∗π∗OX � ϕ∗OS ⊕ ϕ∗E .

This implies (3). ��
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Remark 5.8 If X is a smooth projective curve of general type, then F∗OX is inde-
composable by Theorem 5.4. Theorem 5.4 depends on the theory of the stable vector
bundles. For the 2-dimensional case, a similar result is obtained by Kitadai–Sumihiro
[8], Liu–Zhou [11], and Sun [18]. For example, [18, Theorem 4.9 and Remark 4.10]
imply that F∗OX is indecomposable under the assumptions that μ(�1

X ) > 0 and �1
X

is semi-stable.
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