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Abstract BAG3 is a cellular protein that is expressed

predominantly in skeletal and cardiac muscle but can also

be found in the brain and in the peripheral nervous system.

BAG3 functions in the cell include: serving as a co-chap-

erone with members of the heat-shock protein family of

proteins to facilitate the removal of misfolded and de-

graded proteins, inhibiting apoptosis by interacting with

Bcl2 and maintaining the structural integrity of the Z-disk

in muscle by binding with CapZ. The importance of BAG3

in the homeostasis of myocytes and its role in the devel-

opment of heart failure was evidenced by the finding that

single allelic mutations in BAG3 were associated with fa-

milial dilated cardiomyopathy. Furthermore, significant

decreases in the level of BAG3 have been found in end-

stage failing human heart and in animal models of heart

failure including mice with heart failure secondary to trans-

aortic banding and in pigs after myocardial infarction.

Thus, it becomes relevant to understand the cellular bi-

ology and molecular regulation of BAG3 expression in

order to design new therapies for the treatment of patients

with both hereditary and non-hereditary forms of dilated

cardiomyopathy.
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Introduction

Bcl2-associated athanogene 3 (BAG3) is a 575 amino acid

anti-apoptotic protein that is constitutively expressed in

the heart, skeletal muscle and some cancers and serves as

a co-chaperone of both the constitutively and non-con-

stitutively expressed heat-shock proteins (Hsc/Hsp) [1, 2]

(Fig. 1). When bound to Hsp’s, BAG3 plays a critical

function in regulating protein quality control (PQC) [2]

and by interacting with Bcl2, it protects cells from

apoptotic death [3]. The BAG3-HSP protein–protein in-

teraction is increasingly recognized as a therapeutic target

in the treatment of cancer [4, 5]. Recently, it has been

shown that BAG3 plays a role in the stability of the

cardiac sarcomere through regulation of filamin clearance

and production and by binding to CapZ [6] (Fig. 2). Two

seminal findings led to the recognition that BAG3 could

play a substantive role in the development of or pro-

gression of heart failure. First, Homma showed that mice

with homozygous disruption of BAG3 developed a ful-

minant myopathy characterized by non-inflammatory

myofibrillar degeneration, disruption of Z-disk architec-

ture, apoptotic features in the early postnatal period and

death by 4 weeks of age [7]. Second, Selcen reported

three children with myofibrillar myopathy who harbored a
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single allelic substitution of BAG3 [8]. In addition,

knockdown of BAG3 in zebrafish [9] or in neonatal car-

diomyocytes [10] leads to significant cardiac dysfunction.

Thus, BAG3 appears to be an exciting new target for

therapeutic intervention in patients with heart failure.

Here, we review our current understanding of the biology

and pathobiology of BAG3 as it relates to the heart.

BAG3 mutants, myofibrillar myopathy and dilated
cardiomyopathy

The first evidence that BAG3 could play an important role

in the pathobiology of the heart came from a study by

Homma which demonstrated that mice in which BAG3 had

been knocked out had non-inflammatory myofibrillar

Fig. 1 BAG3 protein adapted

from McCollum et al. [118]

Fig. 2 Role of BAG3 in the cell
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degeneration, disruption of Z-disk architecture, apoptotic

features in the early postnatal period and death by 4 weeks

of age [7]. However, it was the finding that mutations in

BAG3 were associated with the development of muscle

disease in children that led investigators to propose that

changes in BAG3 function could result in the development

of left ventricular dysfunction and heart failure. Selcen and

co-workers first reported three children with myofibrillar

myopathy who harbored a single allelic substitution of

Leucine (Leu) for Proline (Pro) at position 209 (exon 3 of

BAG3) of BAG3 [8]. All three patients presented in child-

hood with progressive muscle weakness, respiratory insuf-

ficiency and cardiac dilatation with systolic dysfunction. The

parents were asymptomatic and did not have the Pro209Leu

genotype. Odgerel et al. [11] reported an additional three

families with the same BAG3 p.Pro209Leu genotype, but

the severe myofibrillar myopathy in these patients was ac-

companied by axonal neuropathy with giant axons. One

asymptomatic parent showed somatic mosaicism, whereas in

the other two families, the parents had a normal genotype

supporting the observation by Selcen that spontaneous mu-

tations could occur. In this group of patients, early respira-

tory failure was more common than heart failure [12].

The first suggestion that BAG3 could play a role in adult-

onset familial dilated cardiomyopathy came from a study of

patients with a dilated cardiomyopathy, diffuse myocardial

fibrosis and sudden death. The phenotype was associated with

a locus on chromosome 10q2-26, a region that included the

BAG3 gene [13]. Two mutations in BAG3 were subsequently

identified in Japanese patients with familial dilated car-

diomyopathy (Arg218Trp and Leu462Pro). When these mu-

tations were expressed in neonatal rat cardiomyocytes,

functional studies showed impaired Z-disk assembly and in-

creased sensitivity to stress-induced apoptosis [14]. Norton

et al. [9] identified a deletion of BAG3 exon 4 as causative of

familial dilated cardiomyopathy in a family without neuropa-

thy or peripheral muscle weakness. Zebrafish expressing this

mutation demonstrated cardiac enlargement and hypertrophy.

Subsequent sequencing of BAG3 in subjects diagnosed with

idiopathic dilated cardiomyopathy (IDC) identified four ad-

ditionalmutations that segregatedwith all relatives affected by

the disease. A genome-wide association study (GWAS) con-

ducted in patients with HF secondary to IDC implicated a non-

synonymous single nucleotide polymorphism (SNP) (c.757T[
C, [p. Cys151Arg]) located within the BAG3 gene as con-

tributing to sporadic dilated cardiomyopathy [15]. More re-

cently, we found a 10 nucleotide mutation in exon 6 of the

BAG3 gene in a large family with familial dilated cardiomy-

opathy [16]. The mutation segregated with all affected family

members and predicted a shift in the reading frame that would

result in thedeletionof 135aminoacids from theC-terminal end

of the protein that encompassed a large portion of the BAG

region [16].

Interestingly, a western blot of protein extracted from the

left ventricular myocardium of a family member who under-

went heart transplantationdemonstrated a level ofBAG3 in the

heart that was less than half of that seen in non-failing control

hearts obtained from organ donors whose hearts could not be

used for transplant because of blood type or size incom-

patibility. However, our finding that levels of BAG3were also

diminished by nearly 50 % in hearts from patients with end-

stage heart failure undergoing cardiac transplantation that had

a normal BAG3 genotype led us to propose that deficiencies in

BAG3 might be a critical component in the progression of

heart failure humans [16]. Indeed, as seen in Fig. 3, we have

also found that mice with severe heart failure 18 weeks after

trans-aortic banding demonstrate significant decreases in

BAG3 levels that are comparable to the decrease seen in pa-

tients with heart failure. Similarly, pigs with HF secondary to

occlusion of the left anterior descending coronary artery

(Fig. 4a–d) also demonstrated significant reductions in levels

of BAG3 (Fig. 4e, f). The decrease in BAG3 in humans, pigs

andmicewith heart failurewas not associatedwith a change in

the levels of BAG3 mRNA suggesting that posttranslational

modifications account for the decrease. A recent report

demonstrates that BAG3 levels are increased in the sera of

patients with HF [17]. The same group also reported increased

levels of BAG3 antibodies in the sera of patients with HF [18].

However, by contrast with most biomarkers including BNP

and TNFx [19], BAG3 levels were only decreased in patients

withNYHAClass IVHF, although these resultswill need to be

confirmed in a larger group of patients.

Genetic heterogeneity is a common feature of genetic

mutations in cardiac genes, and thus, it is not surprising

that individuals with mutations in BAG3 can present with a

variety of cardiovascular phenotypes. For example, in the

family that we reported, the onset of symptomatic heart

failure occurred as early as 18 years of age and as late as

48 years of age. BAG3 mutations can also be associated

with a diverse set of phenotypes. For example, a Chinese

patient with restrictive lung disease, a rapidly progressive

proximal myopathy, rigid spine, bilateral Achilles tendon

tightening, hypertrophic cardiomyopathy with restrictive

physiology and a prolonged QT interval had de novo mu-

tation at c.626C[T (p.Pro209Leu) which is situated in the

conserved Ile-Pro-Val motif that is a site of interaction

between BAG3 and the Hsps as well as a second non-

synonymous change c.772C[T (p.Arg258Trp) which was

not situated in a known structural domain [20]. Interest-

ingly, polymorphisms of BAG3 may also play a role in the

pathogenesis of tako-tsubo cardiomyopathy [21].

Structure–function relationships of BAG3

A partial sequence of BAG3 protein was first isolated in

1999 using a yeast two-hybrid screen with Hsp70 as bait
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[22] (Fig. 1). Investigators cloned BAG3 from cDNA li-

braries using recombinant Bcl2 [23, 24]. BAG3 is highly

conserved in nature at both the gene and protein level with

significant homology across mice, pigs and humans [25].

By contrast, BAG3 has little in common with the other

members of the BAG family with the exception that all

members of the family share a common BAG domain.

Located at the C-terminal end of the protein, this region

consists of three alpha helices of 30–40 amino acids each

that bind to a motif in the ATPase domain of Hsp70, to

Bcl2 and to small heat-shock proteins (HspX or sHsp) [26].

The length of the BAG domains varies with two distinct

forms: A ‘long’ BAG domain that is specific for BAG1 and

a ‘short’ domain that is found in BAG3, BAG4 and BAG5

[27]. Only BAG1 and BAG3 interact with Bcl2, and BAG4

is physiologically distinguishable from the other BAG

family members in that it blocks TNF receptor signaling

[24, 28–32]. BAG6 (Scythe) regulates nuclear pathways

and cytochrome c release [33, 34]. BAG3 also contains a

WW domain near its N-terminal region [35] and a PXXP

domain that binds phospholipase Cc-1 [36]. The WW

domain and the PXXP domain may also connect BAG3 to

the SH3 domain of Src thereby mediating the effects of

Hsp70 on Src signaling and to PPxY motifs of signaling

proteins providing a platform for the assembly of multi-

protein networks [37]. BAG3 also binds to aB-crystallin
via a highly conserved intermediate domain (Ile-Pro-Val)

that facilitates its ability to inhibit protein aggregation [38].

Studies using Htt43Q, a pathogenic form of huntingtin

that is responsible for Huntington’s disease, as a molecular

probe have helped to define the role of some of the motifs

found in BAG3. The BAG domain is required for inter-

action with Hsp70 and Bcl-2 but not with HspB8 (HspB8

and HspB6 bind to IPV domains) yet BAG3 is able to clear

huntingtin even in the absence of the BAG region [39, 40].

By contrast, deletion of the WW domain had no effect on

Hsp70, Bcl-2 or HspB8 binding and had no effect on Ht-

t43Q degradation. Deletion of the proline-rich PXXP re-

gion also did not alter Hsp70, Bcl-2 or HspB8 binding—

but abrogated the ability of the cell to clear Htt43Q [40].

The only protein known to interact with the PXXP proline-

rich region of BAG3 is phospholipase Cc-1 which

18 Week TAC Mice 

Unpaired T-test P=0.0073

Gapdh

BAG3

SHAM_____ ______TAC______

BA

DC

Fig. 3 BAG3 levels in failing murine hearts. Wild-type c57BL/6

mice underwent trans-aortic banding (TAC) as has been described

previously [119]. Eighteen weeks after TAC, left ventricular

contractility was measured using a conductance catheter inserted into

the left ventricle through a carotid approach as described previously.

Heart weight to body weight ratios were calculated after killing (a).
Contractility was measured during intravenous infusion of increasing

doses of catecholamine (b). b Sham-operated hatched line = control;

solid line = TAC mice. Hearts were then frozen for subsequent

measurement of BAG3 levels. Myocardial proteins were extracted as

we have described previously separated by gel electrophoresis and

probed with a murine BAG3 antibody. As seen in c, there was a

significant decrease in BAG3 levels by western blotting in TAC mice

when compared with sham-operated controls. A representative

western blot is seen in d
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modulates microtubule assembly [36, 41]. However,

PKCc-1 knockdown had no affect on the ability of BAG3

to clear Htt43Q. Taken together, these results suggest that

HspB8 plays an important role in the clearance of mutated

proteins such as Htt43Q; however, the specific role of the

PXXP region remains to be defined.

Regulation of BAG3 expression

BAG3 expression is increased by the stress associated with

heavy metals, high temperature [42, 43] oxidants [44],

proteasome inhibitors [45], serum starvation [46] light

damage in the retina [47]; seizure activity [48];
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Fig. 4 Hemodynamic indices and BAG3 levels in non-infarcted left

ventricular myocardium from a pig 4 weeks after balloon occlusion

of the left anterior descending coronary artery. a ejection fraction;

b fractional shortening; c end diastolic volume; d end systolic

volume; e BAG3 levels; f representative western blot
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hemodialysis [49]; hypoxia [50]; and HIV infection [51]. In

addition, BAG3 expression is increased in a large number

of cancers including: acute lymphocytic and B cell chronic

lymphocytic leukemia [52, 53] thyroid carcinoma [54];

melanomas [55] non-small-cell lung cancer [56]; hepato-

cellular carcinoma [57]; pancreatic adenocarcinoma [58],

small cell carcinoma of the lung [59] and glioblastoma

[60]. The overexpression of BAG3 in malignant cells in-

creased motility and metastasis, whereas reduction in

BAG3 protein by RNA interference decreased cell motility.

Cells from BAG3-deficient mice showed delayed forma-

tion of filopodia and focal adhesion complexes—putatively

mediated by decreased activity of the small GTPase Rac1

that is involved in actin cytoskeleton dynamics. Further-

more, mice with reduced BAG3 showed suppressed inva-

sion and metastasis of a human tumor xenograft [61].

Consistent with the finding that BAG3 is involved in cell

adhesion, motility and metastasis of cancer cells, Franco

et al. [55] demonstrated that melanoma tumors that have

metastasized to distant organs had high levels of BAG3

expression. Interestingly, BAG3 is able to modulate its own

transcription through a positive feedback loop involving its

50-untranslated region (UTR) sequence—a process that is

mediated by the BAG domain but is independent of BAG3

association with the UTR sequence [62]. This ability to

self-regulate in a positive manner may account for the

long-term survival of malignant cells.

The predominant mechanism through which stress in-

creases BAG3 expression is induction of heat-shock factor

1 (HSF1) [63]. Stress causes induction of both HSF1 and

the HSF target gene DNAJB1 in smooth muscle although

the predominant factors regulating BAG3 expression in the

heart have not been defined [64]. WT1, an oncogene that is

expressed in a variety of tumors and that is associated with

a poor response to therapy also induces BAG3 expression

by binding to sequences in the promoter region of BAG3

[65, 66]. By contrast, serum starvation downregulates

BAG3 expression at the transcriptional level via c-Jun [46].

BAG3 expression is also regulated by the transcription

factors Egr1 and AibZIP [67, 68]. Importantly, BAG3

function and levels can also be regulated by posttransla-

tional modification. For example, phosphorylation of

Ser187 of BAG3 by protein kinase C delta (PKCD) leads to
increased epithelial-mesenchymal transition, motility and

invasiveness of cancer cells [69, 70]. Expression of ex-

ogenous Tat, a protein expressed by the HIV virus, in

glioblastoma cell lines enhances BAG3 protein but not

mRNA levels [71]. BAG3 levels are also increased by

drugs including: TNF-related apoptosis-inducing ligand,

fludarabine, cytosine arabinoside and etoposide [1, 45, 54,

72]. Proteasome inhibitors induce a BAG3-dependent non-

canonical autophagy in HepG2 cells although the specific

mechanism for this effect has not been elucidated [73].

BAG3 levels are also enhanced by decreased calcium in-

flux as caused by exposure to carboxyamido-triazole (CAI)

an inhibitor of non-voltage-gated calcium channels [36].

The physiologic significance of this finding in cardiomy-

ocytes is under investigation in our own laboratories. Both

JNK and NF-kB induce BAG3 expression in the presence

of lipopolysaccharide suggesting that BAG3 is also re-

sponsive to the stress associated with enhanced expression

of pro-inflammatory cytokines and therefore may par-

ticipate in inflammatory diseases including that of the heart

[74]. The p38 MAP kinase increases BAG3 transcription in

HeLa cells exposed to oxidative stress, although the pres-

ence of this pathway in cardiac cells has not be elucidated

[75].

Autophagy and apoptosis

All eukaryotic cells depend on the presence of a system for

protein quality control (PQC). PQC acts as a surveillance

system that assures proper protein folding as well as

recognition of misfolded and dysfunctional proteins or

protein aggregates and initiates protein refolding or clear-

ance. BAG3 plays a critical role in this process (Fig. 2).

PQC relies on molecular chaperons and co-chaperons that

can sense misfolded proteins and then either initiate re-

folding or elimination of the folded or damaged proteins

from the cell. Eukaryotic cells have two major intracellular

protein degradation pathways, ubiquitin–proteasome and

autophagy-lysosome systems. The ubiquitin–proteasome

system (UPS) is composed of a barrel-shaped protein

complex with a 13-A wide opening through which

ubiquinated misfolded proteins have to pass in order to be

degraded into smaller reusable peptides [76]. Some protein

aggregates are too large to fit into the 13-A wide channel of

the proteasome. These large aggregates are degraded by the

aggresome-autophagy system. Chaperones and co-chaper-

ones can participate in both of these systems by identifying

selective proteins for destruction. In fact, the BAG family

of proteins can regulate whether misfolded proteins are

degraded by the proteasomal or by the autophagy path-

ways. Autophagy systems can be divided into macroau-

tophagy, microautophagy and chaperone-mediated

autophagy [77] (Figs. 1, 2).

In a multi-step process, macroautophagy sequesters

protein aggregates in autophagasomes, double-layered

membrane structures found in the cytoplasm. The protein

aggregates are then transported to and fused with the

lysosome for degradation by lysosomal hydrolases [78]. In

microautophagy, the cargo enters lysosomes directly by

invagination of the lysosomal membrane resulting in

degradation of the aggregated protein content by lysosomal

enzymes. Macroautophagy is a somewhat promiscuous
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system; however, recent studies have shown that BAG3

also participates in selective macroautophagy that is re-

sponsible for homeostatic regulation of specific proteins.

When these clearance mechanisms become overwhelmed

in neuronal cells, increased levels of abnormal protein

aggregates can lead to the progression of a number of

neurologic diseases including Alzheimer’s disease,

Parkinson’s disease, Huntington’s disease and spinocere-

bellar ataxia type 3 [79–82]. Indeed, overexpression of

BAG3 induced decreases in tau, a protein that plays a

fundamental role in the pathogenesis of Alzheimer’s dis-

ease [83].

In selective macroautophagy, BAG3 is coupled with the

chaperone Hsp70 and the co-chaperone ubiquitin ligase

carboxyl terminal of Hsp70/Hsp90 interacting protein

(CHIP) and facilitates the sequestration of misfolded pro-

teins into autophagasomes [84]. Investigators have recently

focused their interest on two IPV (Ile-Pro-Val) motifs in

BAG3 that regulate its stoichiometric interaction with the

small heat-shock proteins (sHsp) sHsp6 and sHsp8 [40, 85,

86]. The multi-chaperone complex of BAG3-HspB8-Hsp70

can selectively cause misfolded proteins to be degraded by

macroautophagy—a function that may require the coop-

eration of the macroautophagy receptor protein p62/

SQSTMI. These proteins in concert can bind simultane-

ously to ubiquitin and the autophagasome membrane-as-

sociated protein LC3 [85, 87–90]. Once coupled to the

chaperone and co-chaperone complexes, misfolded pro-

teins as well as autophagic vacuoles are transported retro-

grade along cytoskeletal tracks by ATP-fueled motor

proteins called dynein motor proteins to perinuclear mi-

crotubule organizing centers or MTO’s. Once there, they

are packaged in protein structures called aggresomes for

eventual disposal or engulfed and degraded by the au-

tophagic vacuoles [91–94]. Recently, Gamerdinger and

colleagues have reported that BAG3 mediates the transport

of proteins to the aggresome by catalyzing substrate

transfer from Hsp70 to the dynein motor complex [78, 89].

A second major role for BAG3 is that it inhibits apop-

tosis through multiple mechanisms—many of which have

been elucidated in cancer cells. Multiple forms of cellular

stress and noxious stimuli activate signals that converge

into a common pathway that is triggered by caspases [95–

97]. The anti-apoptotic members of the Bcl-2 family of

proteins (Bcl-2 and Bcl-x) inhibit caspase activation by

blocking the release of apoptogenic cytochrome c from the

mitochondria and by sequestering the procaspases 8 and 9

[98–104]. BAG3 synergizes with Bcl-2 and with Bcl-XL to

protect both normal cells and neoplastic cells from apop-

tosis [44, 53, 56]. Its overexpression can synergize the anti-

apoptotic effect of Bcl-2 [24], whereas BAG3 knockdown

increases both basal and drug-induced apoptosis.

BAG3 overexpression can also inhibit apoptosis by

modulating the NF-kB pathway [105]. BAG3 mediates the

dissociation of the Hsp70- kappa B kinase (IKK-c: subunit
of IKK) complex, which leads to a decrease in Hsp70-

mediated delivery of IKK-c to the proteasome thereby

sustaining NF-kB activation and inhibition of cell apopto-

sis [55]. However, investigators have also reported that NF-

kB can modulate the expression of BAG3 as well as the

formation of the BAG3-HsB8 complex [106]. Recent

studies have suggested a broader role for BAG3. For ex-

ample, BAG3 regulates epithelial-mesenchymal transition

and angiogenesis through ERK phosphorylation [57, 107];

induces epithelial-mesenchymal transition through activa-

tion of the transcription factor ZEB1 [108]; and modulates

the activity of the transcription factors FoxM1 and Hif1a,
the translation regulator HuR and the cell cycle regulators

p21 and survivin [109]. BAG3 also downregulates the

microRNA-29b which leads to upregulation of the anti-

apoptosis protein Mcl-l leading to resistance to anticancer

drugs [110].

The molecular mechanisms by which BAG3

modulates the cardiac phenotype

The finding—that mutations in BAG3 were associated

with the development of disrupted Z-disk structure, my-

ofibrillar degeneration and disorganization—led Hishiya

and colleagues to assess the effects of BAG3 in neonatal

rat myocytes [8, 10, 111]. They found that BAG3 insured

the structural stability of filamentous actin (F-actin) by

promoting association between Hsc70 and the actin cap-

ping protein beta 1(CapZb1). BAG3 also facilitated the

cellular localization of CapZb1. CapZb1 is a sarcomere

protein that: (1) binds with high affinity to the barbed end

of actin to prevent its disassociation into actin monomers;

(2) interacts with the protein nebulin to position the actin

filaments at the Z-disk; (3) links adjacent sarcomeres; and

(4) stabilizes the Z-disk [112–114]. BAG3 knockdown led

to proteasomal degradation of CapZb1, whereas inhibition
of CapZb1 led to myofibril disruption in response to

mechanical stress. By contrast, overexpression of CapZb1
prevented myofibril disruption when BAG3 was knocked

down [10]. These results were consistent with the finding

that mutations in many of the genes encoding Z-disk

proteins lead to increased vulnerability to mechanical

stress [115, 116], For example, mutations in sarcomere

genes such as desmin, aB-crystallin, myotilin, Z-band

alternatively spliced PDZ motif containing protein

(ZASP) and filamin C result in phenotypes that are very

similar to that seen in cells in which BAG3 has been

knocked down. Thus, the co-chaperone BAG3 and the

chaperone Hsc70 play a critical role in maintaining the
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structural integrity of the sarcomere especially during

mechanical stress.

Recent studies have shown that BAG3 can also mod-

ulate the level of functional filamin, a dimeric actin cross-

linker that acts as a signaling hub for various proteins and

that also plays an important role in stabilization of the

myofibrillar Z-disk [117]. BAG3 removes filamin that has

been damaged by mechanical stress through autophagic

mechanisms. At the same time, BAG3 stimulates filamin

transcription by using its WW domain to engage inhibitors

of the transcriptional activators YAP and TAZ [64].

Filamin regulation and clearance and sarcomere stabi-

lization appear to occur in large part through what is now

referred to as chaperone-assisted selective autophagy or

CASA [6]. CASA differs from macroautophagy described

above in that it requires a multi-chaperone complex com-

prised of a client protein, HspA8-/Hsp70-, HspB8-/Hsp27-

and the HspA8-associated ubiquitin ligase STUB/CHIP as

well as ubiquitin conjugation enzymes of the UBE2D

family. The degradation signal generated by ubiquinitation

of the client protein leads to recognition by the autophagic

ubiquitin adaptor SQSTMI/p62, autophagasome formation,

and protein degradation in lysosomes. This pathway is

relevant to muscle as the CASA machinery is localized at

the Z-disk, and CASA knockdown leads to disintegration

of the Z-disk and resultant pathologic changes in skeletal

and cardiac muscle. A predominant feature of CASA is that

it is stress related with a predominant substrate of CASA in

mechanically stressed cells being the cytoskeletal protein

filamin. Thus, in the heart, BAG3 helps rid the myocyte of

misfolded and degraded proteins but also maintains the

homeostatic balance between filamin breakdown and fil-

amin production.

In adult mouse left ventricular myocytes in which en-

dogenous BAG3 is knocked down by adenovirus-siRNA,

we recently observed that systolic calcium concentrations,

calcium transient amplitude and single myocyte contrac-

tion amplitude are all significantly decreased compared

to myocytes infected with adenovirus-GFP (unpublished

results). These observations suggest that in addition to

regulating CapZB1 and filamin, BAG3 may modulate

cardiac contractility by affecting myocyte excitation–con-

traction coupling.

Conclusion

In summary, BAG3 ‘chaperones’ an array of cellular pro-

teins including the Hsps and the sHsps that play a critical

role in maintaining the homeostasis of eukaryotic cells and

the balance between autophagy and apoptosis. BAG3 is of

particular importance during cell stress as increased

apoptotic signals and aggregates of protein debris threaten

cell survival. Appropriate levels of BAG3 production and

function are of particular importance in the heart because

the complex components of the sarcomere are continuously

exposed to contractile stretch and strain leading to changes

in protein folding and in apoptotic signaling. In addition,

BAG3 through binding to CapZ helps to maintain the

highly ordered filamentous structure of the Z-disk by

clearing filament debris while at the same time stimulating

filament synthesis. That BAG3 plays an important role in

the progression of heart failure is demonstrated by the

finding that loss of function mutations result in the devel-

opment of both early-onset and late-onset familial dilated

cardiomyopathy. However, additional research is required

to: (1) elaborate the molecular and cellular mechanisms

that account for the decrease in BAG3 levels seen in hearts

from patients with end-stage heart failure; (2) identify the

effects of cardiac stress and left ventricular dysfunction on

the chaperone and co-chaperone peptides that partner with

BAG3 including the Hsp’s, sHsp’s, myopodin and synap-

topodin; and (3) assess whether reconstitution of normal

levels of BAG3 alone can interrupt the progression of heart

failure. Perhaps the most interesting question derives from

the fact that while BAG3 expression maintains cell survival

by inhibiting apoptosis and by removing the debris that

accumulates in cells that are under continuous mechanical

tension such as cardiac myocytes, these mechanisms are

maladaptive in the presence of malignant cells as increased

levels of BAG3 can decrease apoptosis leading to increased

tumor growth, enhanced metastasis, decreased sensitivity

to chemotherapeutic agents and reduced survival. With

BAG3 serving as a new target for chemotherapy, additional

studies will be needed to develop approaches that will

enhance apoptosis and decrease autophagy in malignant

cells while at the same time not influencing these pathways

in the heart.
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