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Abstract This paper presents a numerical method for solving the set of transport equations

in semiconductor heterostructures by using the non-equilibrium distribution function for

electrons and holes. This method enables the calculation of carrier concentration, carrier

mobility and entropy by integrations in the space of wave vectors. In the same way the

electrical current density and density of entropy currents are determined. The influence of

quasi-Fermi energy gradients for electrons and holes and the gradient of temperature on the

physical parameters of the heterostructure is taken into account.

Keywords Non-equilibrium distribution functions · Transport equations · HgCdTe

heterostructures

1 Introduction

Usually semiconductor devices work in non-equilibrium conditions caused by electrical

biasing and optical excitations. The flows of electric carriers and energy are driven by

gradients of intense state parameters; quasi-Fermi energies for electrons and holes rUn r~ð Þ
and rUp r~ð Þ respectively, and the gradient of temperature rT. These gradients can have a

significant impact on the non-equilibrium distribution functions determining the statistical
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probability that the electrical carrier has position r~ and wave vector k~. However, in

commercially available simulators the non-equilibrium distribution functions do not con-

tain these gradients, while one can find other non-equilibrium approaches including

standard hydrodynamic transport and hydrodynamic transport with six moments of the

Boltzmann transport equation (for example Grasser et al. 2001). Typically, the non-

equilibrium distribution functions for electrons and holes with these gradients are derived

by solving the kinetic Boltzmann equation, as it was done for example in the classical work

(Marshak and van Vliet 1984). We have shown (Jóźwikowski et al. 2015), that functions

derived in such way are only an approximation of more general terms. To derive them we

had postulated a modified variational principle for the semiconductor heterostructure in

steady state conditions being the composition of the Massieu function with the Gyarmati’s

principle. This proposed principle for conduction band electrons in steady state conditions

reads as:

Z
V

kedV ¼
Z
V

se � ue

T
þ Un

T
nþ �se rse �We½ �

� �
dV ¼ max ð1Þ

here se is the density of electron entropy, n is electron concentration, ue is the density of

electron energy, T the temperature,Un is the quasi Fermi energy for electrons,�se is the mean

electron relaxation time, rse is the efficiency of the source of electron entropy, V is the

volume of the device and We is the dissipation function in force representation (see

Gyarmati 1967, 1969; Verhas 2014; Onsager 1931a, b; Onsager and Machlup 1953).

Functional Eq. (1) achieves maximum value if the function λe satisfies the Euler–Lagrange
equation, which means:

oke
ofe

¼ 0 ð2Þ

The solution of Eq. (2) is the following non-equilibrium distribution function for

electrons:
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A similar formula holds for non-equilibrium distribution function for holes, derived by

this same method as for electrons:
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In this paper distribution functions for ionized donors ND
+ and acceptors N�

A are

expressed in a standardized form [see for example (Blakemore 1962)]. In relations (3) v r~ð Þ
denotes electron affinity, me

* it’s effective mass, e elementary charge,W electrical potential,
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T temperature, se density of electron entropy, ℏ Planck’s constant, kB Boltzmann’s con-

stant, n electron concentration, Un quasi- Fermi energy for electrons, Eg is energy gap, �se
denotes mean relaxation time, r~ is the position vector and k~ is the wave vector. Subscripts p

and h in Eq. (4) relate to the holes. Electron kinetic energy eke k~
� �

and heavy hole kinetic

energy ekh k~
� �

are expressed by Kane’s relations (Kane 1957). Due to the scalar products

k~ � rUn, k~ � rUp and k~ � rT the functions expressed by Eqs. (3) and (4) are not even in k~.

However in the analyzed structures ∇T is very small, so also expressions containing it can

be omitted. Therefore integrating their product with the k~ in the first Brillouine’s zone (BZ)

allows to determine the density of carrier current and the density of entropy current. In the

case of HgCdTe two different scattering mechanisms, for electrons and holes, i.e. scat-

tering on ionized impurities as well as scattering on polarized optical phonons (Nag 1980;

Lundstrom 1990) mainly limit the relaxation time. We have presented the detailed

description of relaxation time for electrons and holes in HgCdTe in our previous paper

(Józwikowski et al. 2004). If we consider the small values of gradients of rUn, rUp and

rT and expand relations (3) and (4) into Taylor series one obtains these same expressions

as those obtained by (Marshak and van Vliet 1984). The physical parameters of HgCdTe

can be found at (Capper and Garland 2011).

2 Method of numerical analysis

Our goal is to determine the physical parameters of devices, through the appointment of

non-equilibrium distribution function. To reach it one has to solve the following non-linear

system of transport equations, namely Poisson equation, continuity equation for electrons

and holes, and the equation of energy balance, with suitable boundary conditions on the

detector’s surface and its electric contacts (see for example Parrot 1996; Jóźwikowski et al.

2010). In this paper we have considered Ohmic contacts and Neumann’s boundary con-

ditions on the surface beyond contacts. We have assumed constant temperature on the

detector’s surface and electric contacts, the same as in the environment.

r2W ¼ � e

ee0
Nþ
D � N�

A þ p� n
� 	� 1

e
rWre ð5Þ

on
ot

¼ 1

e
rj~e þ G� R ð6Þ
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¼ � 1

e
rj~h þ G� R ð7Þ

cV
oT
ot

¼ �r Tjse
� 	�r Tjshð Þ þ rvrT�r Unjeð Þ þ r Upjh

� 	þ GoptEg þ Gopt~eke;opt

þ Gopt~ekh;opt ð8Þ

The numerical solution of the set (5, 6, 7, 8) is obtained by using the Newton iterative

methods. For this purpose we use our own computer programmes where the cell-centred

finite volume method (FVM) as a discretization method is applied. Gopt denotes the optical

generation rate, ~eke;opt and ~ekh;opt is the average kinetic energy generated optically of elec-

trons and holes, respectively, cV is the specific heat,v is the thermal conductivity
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coefficient, G is the carrier generation rate, R is the carrier recombination rate, ɛ0 is the

permittivity of free space and ɛ is the dielectric constant. The G and R terms include inter-

band Auger1 and Auger 7 mechanisms (Landsberg 1991). In addition, we have included

the Shockley–Read–Hall processes caused by vacancies of metals and dislocations. A

detailed description of the expressions for G and R being the function of quasi-Fermi

energies and temperature can be found in our works (Jóźwikowski et al. 2010, 2012). Gopt

is omitted in this paper.

Other quantities appearing in set (5, 6, 7, 8) are calculated by numerical integration in

spherical space of wave vector k (Lundstrom 1990). For electrons, these values are

expressed as follows:

n r~ð Þ ¼ 1
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Here j~e r~ð Þ denotes the density of electron current and j~se r~ð Þ is the density of electron

entropy current. Similar expressions for quantities related with holes take forms:

p r~ð Þ ¼ 1

2p2

Zkmax

0

dk

Zp
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k2 sinHfh r~; k~
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dH ð14Þ
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sh r~ð Þ ¼ kB
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We count the individual components of the current density in the standard way, for

example x-th component of j~e; reads as

jex ¼ �h

4p3m�
e

Zkmax

0

dk

Z2p

0

dU
Zp

0

k3 sin2 Hfe r~; k~
� �

cosUdH ð19Þ

The upper limit for the module of k~vectors in our calculations for integrating in k space

[in relations (9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19)] is the value of kmax = 1010 m−1 and it

is due to our practical experience.

While performing numerical simulations of semiconductor devices, we assume the

knowledge of the spatial distributions of molar composition, electron affinity and doping.

For those distributions we use the local electrical neutrality condition, which enables us to

determine the initial value of the electric potential W0 r~ð Þ. We then solve Poisson equation

using iterative methods in order to determine the iterative corrections dW r~ð Þ for the electric
potential in thermal equilibrium (Jóźwikowska 2008). This, in turn, allows the calculation

of n, p, se and sh by using relations (9), (14), (10) and (17), respectively. In conditions of

thermal equilibrium distribution functions for electrons and holes are expressed by rela-

tions (3) and (4), respectively, but in this case Un r~ð Þ ¼ Up r~ð Þ ¼ F, where F is the Fermi

energy and there is no gradients of intense state parameters. In biased heterostructures

these gradients occur. Now, to determine the change of W r~ð Þ;Un r~ð Þ;Up r~ð Þ;T r~ð Þ, with the

change of the bias voltage, we have to solve the set of Eqs. (5, 6, 7, 8). These equations are

solved now by fully coupled Newton iterations. It allows us to determine the iterative

corrections dW r~ð Þ; dUn r~ð Þ; dUp r~ð Þ and dT r~ð Þ: Next, the corrected parameters W r~ð Þ ¼
W r~ð Þ þ dW r~ð Þ;Un r~ð Þ ¼ Un r~ð Þ þ dUn r~ð Þ;Up r~ð Þ ¼ Up r~ð Þ þ dUp r~ð Þ;T r~ð Þ ¼ T r~ð Þ þ dT r~ð Þ
are inserted into Eqs. (9, 10, 11, 12, 13, 14, 15, 16, 17, 18) to calculate the corrected values

of fe, n, μe, j~e, se, j~se , fh, p, μh, j
~
h, sh and j~sh .

3 Some numerical results

Below we present results of calculations of physical parameters of the cylindrical Hg1-

xCdxTe barrier MESA detectors with a radius of 30 μm (length of A’B line on Fig. 1),

working at 300 and 230 K. Spatial distributions of mole fraction and donor and acceptor

concentrations are shown along the axis of symmetry of the structure (line AA’ in Fig. 1) in

Fig. 2. All the spatial distributions of physical parameters of the structure are applied to

distributions along AA’ line. In the calculations we assumed that the dislocation density in
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the whole structure is equal 106 cm−2 except for areas where there is a gradient of molar

composition. In these regions the density of dislocations is increased according to the

relationship proposed by (Yoshikawa 1988). The density of metal vacancies, being trap

centres in Hg1−xCdxTe, is assumed to be constant in all the heterostructures. We have

considered their concentrations equal to 1014 cm−3 and 1015 cm−3. Figure 3 shows cal-

culated spatial distribution of carrier concentration and their mobility at 300 K in structure
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biased with 1 V in reverse direction. Spatial distribution of calculated energy band diagram

and quasi Fermi energy for electron Φn and holes Φp, are shown in Fig. 4. Experimental

and theoretical calculations of normalized current–voltage characteristics are compared in

Fig. 5a, b. The calculations were performed taking into account the existence of serial

resistance. Measured, normalized value of it at 300 K is equal 0.05 Ω cm2. Figure 5a shows

the results at 230 K. Good agreement between theoretical and experimental results is

obtained for trap concentrations 1014cm−3 ≤ NT ≤ 1015cm−3. Figure 5a shows results at

300 K. However, detailed considerations need to take into account different trap con-

centration in different regions of the heterostructure. This is probably the reason of

discrepancies between experimental and theoretical results for bias voltage in range 100–

400 mV.
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4 Conclusion

We have applied, derived earlier by ourselves, the non-equilibrium distribution functions

for electrons and holes in the numerical modelling of barrier MESA infrared detectors.

These functions are more general than those commonly obtained by solving the BKE and

are valid also for strong gradients of quasi Fermi energies and the gradient of temperature.

The proposed numerical method enables the calculation of physical parameters by the

numerical integration of distribution function in the space of wave vector k. It is especially

important to obtain proper values of the current densities. The method will be developed in

future to distinguish the effective temperature of electrons, holes and lattice as well as the

quasi-Fermi energies for electrons occupy donor, acceptor and trap centres.
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