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ABSTRACT 

A traffic control problem can be formulated as a 
decision-making problem for a stochastic 
dynamic system. Optimal traffic signal settings 
at intersections can minimize the vehicle delay 
time or the queue length at a stop line. In this 
paper, a new adaptive control strategy for 
signalized intersections is developed and tested 
by simulation. The simulation results show 
significant improvement over the traditional 
fully actuated control algorithm, especially for 
the case of high volume traffic demand. 

1. INTRODUCTION 

Setting signals at intersections to minimize the 
queue length and/or vehicle delay time is an 
important goal in traffic management. 
Typically, traffic signals operate in one of three 
different control modes at a signalized 
intersection, namely, pre-timed control, semi- 
actuated control and fully-actuated control [3] 
[4]. In pre-time control, all the control 
parameters are fixed and preset. In fully 
actuated control, both the cycle length and the 
green time for every phase of the intersection 
can be varied. At every time step, the 
controller checks whether an arrival has 
occurred on any lane of the intersection. If an 
arrival has occurred, then the phase is given an 
extension if it has a green indication. If the 
phase does not have a green, a call is registered 
for that phase. To determine the signal 
indication of next phase, all the calls need to be 
taken into account. The phase sequence is 

fixed. However, certain phases in the cycle 
may be skipped if there is no demand detected 
by detectors. In general, actuated control 
signals perform better than the pre-timed 
signals; however, in some complicated cases, 
e.g., when the traffic demand fluctuates 
randomly, or when traffic volume approaches 
the intersection capacity, even fully-actuated 
control cannot provide a satisfactory solution. 

This paper proposes a new and more efficient 
control strategy based on Markov decision 
theory. The fundamental work on Markov 
processes was performed by A. Markov in 
1907. By 1950, research on decision problems 
involving Markov processes had started. Since 
then, the Markov decision process, or the 
controlled Markov process, has been studied 
and applied in many areas, such as physics, 
chemistry, biology and operations research. A 
discrete time, stationary, Markov control model 
is defined on (X, A, P, R) where X, the state 
space, is a Bore1 space and every element in the 
space x E X is called a state; A is defined as the 
set of all possible controls (or alternatives); P is 
a probability measure space, in which an 
element pi  denotes the transition probability 
from state i to state j under alternative k; and R 
is a measurable function, also called a one-step 
reward. 

Choosing a particular alternative results in an 
immediate reward and a transition probability to 
the next step. The total expected discounted 
reward over an infinite period of time is defined 
as: 

1 

L t=O _I 
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ABSTRACT

. A traffic control problem can be formulated as a
decision-making problem for a stochastic
dynamic system. Optimal traffic signal settings
at intersections can minimize the vehicle delay
time or the queue length at a stop line. In this
paper, a new adaptive control strategy for
signalized intersections is developed and tested
by simulation. The simulation results show
significant improvement over the traditional
fully actuated control algorithm, especially for
the case of high volume traffic demand.

I. INTRODUCTION

Setting signals at intersections to minimize the
queue length and/or vehicle delay time is an
important goal in traffic management.
Typically, traffic signals operate in one of three
different control modes at a signalized
intersection, namely, pre-timed control, semi­
actuated control and fully-actuated control [3]
[4]. In pre-time control, all the control
parameters are fixed and preset. In fully
actuated control, both the cycle length and the
green time for every phase of the intersection
can be varied. At every time step, the
controller checks whether an arrival has
occurred on any lane of the intersection. If an
arrival has occurred, then the phase is given an
extension if it has a green indication. If the
phase does not have a green, a call is registered
for that phase. To determine the signal
indication of next phase, all the calls need to be
taken into account. The phase sequence is

fixed. However, certain phases in the cycle
may be skipped if there is no demand detected
by detectors. In general, actuated control
signals perform better than the pre-timed
signals; however, in some complicated cases,
e.g., when the traffic demand fluctuates
randomly, or when traffic volume approaches
the intersection capacity, even fully-actuated
control cannot provide a satisfactory solution.

This paper proposes a new and more efficient
control strategy based on Markov decision
theory. The fundamental work on Markov
processes was performed by A. Markov in
1907. By 1950, research on decision problems
involving Markov processes had started. Since
then, the Markov decision process, or the
controlled Markov process, has been studied
and applied in many areas, such as physics,
chemistry, biology and operations research. A
discrete time, stationary, Markov control model
is defined on (X, A, P, R) where X, the state
space, is a Borel space and every element in the
space x E X is called a state; A is defined as the
set of all possible controls (or alternatives); P is
a probability measure space, in which an

element pt denotes the transition probability
from state i to state j under alternative k; and R
is a measurable function, also called a one-step
reward.

Choosing a particular alternative results in an
immediate reward and a transition probability to
the next step. The total expected discounted
reward over an infinite period of time is defined
as:
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r is the one-step transition reward, p (0 
I p e 1) is the discount factor, and a is the 
policy. The optimal reward v*, or the 
supremum (least upper bound) of J, is defined 
as: 

It can be obtained by solving a DPE (dynamic 
programming equation): 

where T is a contraction mapping and: 

v*(x,a*) = SUP[J(x,a)] 
a6A 

V* = Tv*, 

r N 1 

1 TV(X) = max r(x,a> + pC v(x)ptj 1 j=l asA 

The unique optimal solution of the above DPE 
can be calculated iteratively by the successive 
approximation method [ 11: 

r N 1 

Therefore, for a specific control problem, once 
the transition matrix and the reward matrix are 
defined, then by maximizing the total expected 
reward, a policy for choosing an alternative for 
each state can be obtained. This represents the 
optimal strategy which should be taken. 

In the following sections, an approach based 
on the above Markov decision theory is 
proposed and applied to traffic signal control 
problem. 

II. ADAPTIVE TRAFFIC SIGNAL 
CONTROL ALGORITHM 

A typical four-legged intersection is shown in 
Fig. 1. There are eight movements in this 
intersection, including four through movements 
and the four corresponding left turn 
movements. The number on each movement is 
labeled according to NEMA (National Electrical 
Manufacturers Association) convention. 

A state space X and a probability measure P 
must be defined in order to apply the above 
Markovian decision theory to traffic systems. 
Since the queue length is the state variable in 
the traffic dynamics equation, one may want to 
choose the number of vehicles to be the state of 
the Markov control model. However, the 

resulting total number of states is very large. 
For example, if the number of vehicles under 
consideration is 20 (per movement), then for an 
isolated intersection with 8 movements, the 
number of states is 208 = 2 . 5 6 ~  lo1’, resulting 
an excessively large matrix dimension. In 
order to reduce both the computational time and 
memory space, a way must be found to reduce 
the number of states. A threshold (number of 
vehicles) is chosen for the queue of each 
movement at an intersection. If the queue 
length of a specific movement is greater than 
the threshold value, then this movement is 
defined in the congested mode; otherwise it is 
in the non-congested mode. These two modes 
(congestiodnon-congestion) are defined as the 
two states in the binary state space X. 

Figure 1. A typical traffic intersection 

The state space is discrete, thus the probability 
measure P defines a discrete transition law. In 
the traffic control problem, the probability 
matrix E is time-varying due to the time- 
varying traffic flow, therefore: 

- P(k) = - fp[g(k),4in(k - + 1>,u(k),q,l 
where q(k) is the current queue, AQ(k+l) is 
the estimated number of arrivals in-the next 
time interval, and u(k) is the control signal. 
The probability matrix can be further specified 
based on different arrival patterns. Under most 
circumstances, the arrival of vehicles at an 
isolated intersection follows the Poisson 
distribution, i.e.: 

(it At)” e-a 
n! p(n> = 
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where r is the one-step transition reward, ~ (0

~ ~ < 1) is the discount factor, and a is the
policy. The optimal reward v*, or the
supremum (least upper bound) of J, is defined
as:

v· (x,a·) = SUP[J(x,a)]
aEA

It can be obtained by solving a DPE (dynamic
programming equation):

v* =Tv*,

where T is a contraction mapping and:

Tv(x) =max[r(x,a) + ~f V(X)P~.J
aEA ~ I~

j=!

The unique optimal solution of the above DPE
can be calculated iteratively by the successive
approximation method [1]:

vn(x) = max[r(x,a) + ~f v -!(X)P~.JaEA ~ n I,j
j=!

Therefore, for a specific control problem, once
the transition matrix and the reward matrix are
defined, then by maximizing the total expected
reward, a policy for choosing an alternative for
each state can be obtained. This represents the
optimal strategy which should be taken.

In the following sections, an approach based
on the above Markov decision theory is
proposed and applied to traffic signal control
problem.

II. ADAPTIVE TRAFFIC SIGNAL
CONTROL ALGORITHM

A typical four-legged intersection is shown in
Fig. 1. There are eight movements in this
intersection, including four through movements
and the four corresponding left turn
movements. The number on each movement is
labeled according to NEMA (National Electrical
Manufacturers Association) convention.

A state space X and a probability measure P
must be defined in order to apply the above
~arkovian decision theory to traffic systems.
Smce the queue length is the state variable in
the traffic dynamics equation, one may want to
choose the number of vehicles to be the state of
the Markov control model. However, the

resulting total number of states is very large.
For example, if the number of vehicles under
consideration is 20 (per movement), then for an
isolated intersection with 8 movements, the
number of.states is 208

::::; 2.56x 1010
, resulting

an excessIvely large matrix dimension. In
order to reduce both the computational time and
memory space, a way must be found to reduce
the number of states. A threshold (number of
vehicles) is chosen for the queue of each
movement at an intersection. If the queue
length of a specific movement is greater than
the threshold value, then this movement is
defined in the congested mode; otherwise it is
in the non-congested mode. These two modes
(congestion/non-congestion) are defined as the
two states in the binary state space X.

Figure 1. A typical traffic intersection

The state space is discrete, thus the probability
measure P defines a discrete transition law. In
the traffic control problem, the probability
matrix P is time-varying due to the time­
varying traffic flow, therefore:

E(k) = fp[~(k),(L(k + l),y(k),qg]

where g.(k) is the current queue, ~q(k+1) is
the estimated number of arrivals in-the next
time interval, and !!.(k) is the control signal.
The probability matrix can be further specified
based on different arrival patterns. Under most
circumstances, the arrival of vehicles at an
isolated intersection follows the Poisson
distribution, i.e.:

(A.- ~tt e-Ht

p(n) =...:.....----::...--
n!
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n = 1, 2, ...; h is the arrival rate and 
At is the time interval. Assuming that at a 
specific time instant, the current queue length 
of a specific movement i is denoted by qo, and 
there are qg vehicles passing through the 
intersection if the signal of this direction is 
green, then: 

and 

where 

P i : - + N ,  = P(6in -k q' - 6(ui )qf, qkreshold) 

P:: +C, = - Pt: +N,  

1, when U, = GI 
'('1) = { 0, otherwise 

and SI = N,,C, is the current state ( N ,  for 
non-congestion and C, for congestion); 
U, = G,, RI is the control signal (GI for green 
signal and RI for red signal). Two special 
cases are noted that: 

p::+c, = I ,  and PE:,,, = o .  
The reward matrix R has the same dimension 
and a definition similar to that of the probability 
matrix. The control objective herein is to 
minimize the queue length, so the functions of 
queue length corresponding to different states 
are chosen to generate the reward matrix: 

U, i i 
Rstatel, state2 = U (40 9 qthreshold 9 'i ) 

The signal phasing can be considered as 
different alternatives for each state. If there are 
8 independent movements under 8-phase signal 
control, the traffic control problem can be 
formatted as a 256-state Markov process with 8 
alternatives for each state. A standard dual-ring 
control chart with NEMA phases is shown in 
Fig. 2, where the 8 phases are divided into two 
groups (rings) by a barrier. In each ring, 4 
movements (2 through movements and their 
corresponding left turn movements) must be 
served if there is demand. Theoretically, there 
are 2*4! = 48 different phase sequences 
available, but in fact, in order to avoid conflict 
traffic, only certain sequences (10 out of 48) 
are allowed. 

Fig. 2. 8-phase dual ring control 

To enforce the phase constraints, a step-by-step 
decision-making procedure (also termed a 
"decision tree") is considered. For example, a 
decision is made first to determine which ring 
will be served by the Markovian decision 
algorithm. After this is determined, the second 
decision is to choose one of the four 
alternatives from the first decision, again using 
Markovian decision algorithm. The next phase 
is either fixed or chosen from the two phases 
left, depending upon the second decision. At 
the last decision step for this ring, there is 
either no phase or just one fixed phase left. 
This procedure not only guarantees the phase 
constraints but also dramatically reduces the 
computation time. 

A computational flow chart for traffic 
intersection control is shown in Fig. 3. To 
achieve real-time adaptive control for a traffic 
system, future arrival information is needed. 
Also, being related to the current state of each 
traffic movement, the probability matrix and 
reward matrix are both time-varying variables. 
However, it is very difficult to make a long 
term estimation due to the randomness of 
traffic. Thus the sampling frequency of the 
traffic system should be set as high as possible. 
On the other hand, a large sampling rate will 
increase the cost and computation time. Here 
the minimum time interval is chosen as 
At = T-.,~ (i.e., minimum green extension 
time). Every At seconds, the time-varying 
probability matrix P and the reward matrix are 
calculated; then a decision is made to choose 
the control signal for the next time interval 
based on the current measurement from the 
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where n = 1, 2, ... ; A is the arrival rate and
L1t is the time interval. Assuming that at a
specific time instant, the current queue length
of a specific movement i is denoted by qo' and
there are qg vehicles passing through the
intersection if the signal of this direction is
green, then:

u· (Ai i D( ) i < i )
PS:~Ni =P qjn + q - Ui qg - qthreshold

and

D( ) - {I, when u i =Gi
u i - 0, otherwise

and Sj = Nj,C j is the current state (Nj for
non-congestion and Ci for congestion);
u i =Gi' Ri is the control signal (G j for green
signal and R j for red signal). Two special
cases are noted that:

RId R °PC;~Ci = ,an PC;~N; = .

The reward matrix R has the same dimension
and a definition similar to that of the probability
matrix. The control objective herein is to
minimize the queue length, so the functions of
queue length corresponding to different states
are chosen to generate the reward matrix:

R~I~tel.slale2 = fu(q~,q~reshold,UJ

The signal phasing can be considered as
different alternatives for each state. If there are
8 independent movements under 8-phase signal
control, the traffic control problem can be
formatted as a 256-state Markov process with 8
alternatives for each state. A standard dual-ring
control chart with NEMA phases is shown in
Fig. 2, where the 8 phases are divided into two
groups (rings) by a barrier. In each ring, 4
movements (2 through movements and their
corresponding left tum movements) must be
served if there is demand. Theoretically, there
are 2·4! = 48 different phase sequences
available, but in fact, in order to avoid conflict
traffic, only certain sequences (10 out of 48)
are allowed.

Fig. 2. 8-phase dual ring control

To enforce the phase constraints, a step-by-step
decision-making procedure (also termed a
"decision tree") is considered. For example, a
decision is made first to determine which ring
will be served by the Markovian decision
algorithm. After this is determined, the second
decision is to choose one of the four
alternatives from the first decision, again using
Markovian decision algorithm. The next phase
is either fixed or chosen from the two phases
left, depending upon the second decision. At
the last decision step for this ring, there is
either no phase or just one fixed phase left.
This procedure not only guarantees the phase
constraints but also dramatically reduces the
computation time.

A computational flow chart for traffic
intersection control is shown in Fig. 3. To
achieve real-time adaptive control for a traffic
system, future arrival information is needed.
Also, being related to the current state of each
traffic movement, the probability matrix and
reward matrix are both time-varying variables.
However, it is very difficult to make a long
term estimation due to the randomness of
traffic. Thus the sampling frequency of the
traffic system should be set as high as possible.
On the other hand, a large sampling rate will
increase the cost and computation time. Here
the minimum time interval is chosen as
L1t ='"'mini (i.e., minimum green extension
time). Every L1t seconds, the time-varying
probability matrix P and the reward matrix are
calculated; then a decision is made to choose
the control signal for the next time interval
based on the current measurement from the



and our estimation. Once the optimal 
policy is found, it is only implemented for one 
time step (i.e., At seconds). At the next time 
interval, the probability matrix and reward 
matrix are updated and the whole decision- 
making process is repeated. Therefore, the 
problem of choosing appropriate signal phasing 
at a traffic intersection becomes a decision- 
making problem for a Markov process. 

Estimation 1 
I Controller I 

Intersection Traffic Dynamics 

v e x ,  Time Step 1 

4 
~ $- 

\c 

(-1 

Arrival 
rate 

Improve- 
ment (%) 

FAC MAC 

Fig. 3. Flow chart for intersection control 

200 
300 

111. SIMULATION RESULTS 

11.25 11.51 -2.31% 
16.61 12.26 26.19% 

A simulation of the proposed Markovian 
adaptive control algorithm applied to an isolated 
intersection (with a Poisson arrival pattern 
generated as the external input) was performed 
to evaluate its performance compared to a fully- 
actuated control method. Two different cases 
were considered. 

Case I: Uniform (balanced) demand among all 
conflicting: movements. 

In this case, the traffic demands on all 
movements of the intersection are equal. The 
two algorithms were tested on four different 
arrival rates, i.e., 200 vehicles per hour per 
movement, 300 vehicles per hour per 
movement, 400 vehicles per hour per 
movement, 500 vehicles per hour per 
movement, and 600 vehicles per hour per 
movement. For each arrival rate, the 
algorithms were tested on forty different sets of 

random data. The means of the average steady 
state delay (of the 40 sets of data) were 
calculated and are listed in table 1, where 
"MAC" stands for the Markov adaptive control 
algorithm, and "FAC" stands for the fully- 
actuated control. The percentage of 
improvement can also be found in the table 1. 
Fig. 4 shows the means (of the 40 sets of data) 
of the steady state delay of the two different 
algorithms, where the solid line represents the 
Markov algorithm and the dotted line represents 
the fully actuated control. 

I I I I 

400 I 29.60 I 13.34 I 54.93% I 
500 I 41.64 I 18.27 I 56.12% I 
600 I 68.09 I 53.73 I 21.09% I 

Table 1. Comparison of two algorithms 
(Case 1) 

From distribution-free order statistics analysis, 
the upper and lower limits within which at least 
90% of the probability of the steady state delay 
lies with 92% confidence are plotted in Figure 
5: 

Figure 4. Comparison of two algorithms 
(Case 1) 
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policy is found, it is only implemented for one
time step (i.e., .1t seconds). At the next time
interval, the probability matrix and reward
matrix are updated and the whole decision­
making process is repeated. Therefore, the
problem of choosing appropriate signal phasing
at a traffic intersection becomes a decision­
making problem for a Markov process.

Fig. 3. Flow chart for intersection control

III. SIMULATION RESULTS

A simulation of the proposed Markovian
adaptive control algorithm applied to an isolated
intersection (with a Poisson arrival pattern
generated as the external input) was performed
to evaluate its performance compared to a fully­
actuated control method. Two different cases
were considered.

Case I: Uniform (balanced) demand among all
conflicting movements.

In this case, the traffic demands on all
movements of the intersection are equal. The
two algorithms were tested on four different
arrival rates, I.e., 200 vehicles per hour per
movement, 300 vehicles per hour per
movement, 400 vehicles per hour per
movement, 500 vehicles per hour per
movement, and 600 vehicles per hour per
movement. For each arrival rate, the
algorithms were tested on forty different sets of

random data. The means of the average steady
state delay (of the 40 sets of data) were
calculated and are listed in table 1, where
"MAC" stands for the Markov adaptive control
algorithm, and "FAC" stands for the fully­
actuated control. The percentage of
improvement can also be found in the table 1.
Fig. 4 shows the means (of the 40 sets of data)
of the steady state delay of the two different
algorithms, where the solid line represents the
Markov algorithm and the dotted line represents
the fully actuated control.

Arrival FAC MAC Improve-

rate ment(%)

200 11.25 11.51 -2.31%

300 16.61 12.26 26.19%

400 29.60 13.34 54.93%

500 41.64 18.27 56.12%

600 68.09 53.73 21.09%

Table 1. Comparison of two algorithms
(Case 1)

From distribution-free order statistics analysis,
the upper and lower limits within which at least
90% of the probability of the steady state delay
lies with 92% confidence are plotted in Figure
5:
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Figure 4. Comparison of two algorithms
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Figure 5 .  Bounds for simulation results 
(Case 1) 
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When the traffic volume is slight (e.g., arrival 
rate is 200 vehicles/hour/movement), the 
performance of Markov algorithm is 
comparable with the fully actuated controller. 
However, when the traffic volume increases, 
the Markov algorithm outperforms the 
traditional one. For example, when h =300, 
the Markov algorithm shows a 26.19% 
improvement on the average steady state delay. 
When h =400 and h =500, the average steady 
state delay of the Markov controller is about 
one half of that of the fully-actuated controller. 
When h is further increased, the intersection 
becomes saturated, resulting in large delays for 
both algorithms. 

Case 11: Through traffic demand dominates the 
left-turn demand. 

In this case, the ratio of the demands of the 
through traffic and the left-turn traffic is 2: 1. 
This is the more common case compared to the 
previous one. Similar to case 1, the two 
algorithms were also tested on four different 
conditions, as listed in table 2. For each 
situation, the algorithms were tested on fifteen 
different sets of random data. The means (of 
the 15 sets of data) of the average steady state 
delay of the two different algorithms, with 
percentage of improvement, were calculated 
and are listed in table 3. The mean and upper- 
lower bounds of data are also plotted in Fig. 6 
and Fig. 7, where again the solid line 
represents the Markov algorithm and the dotted 
line represents the fully actuated control. 

1 Phase I Test 1 1 Test 2 I Test 3 I Test 4 I Test 5 

Table 2. Arrival rates (VPH) for testing 

1 1 FAC 1 MAC ~ Improve- 
ment (%) 

I Test 1 I 25.01 I 17.52 I 29.95% 

I Test2 I 32.31 I 20.58 I 36.30% 

I Test 3 I 49.45 I 26.16 I 51.24% 

I Test4 I 116.24 I 62.81 I 45.97% 
I Test5 I 166.50 I 129.26 I 22.37% 

Table 3. Comparison of two algorithms 
(Case 2) 

Figure 6. Comparison of two algorithms 
(Case 2) 

2 
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,
/
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arrival rate (veMrr)

Figure 5. Bounds for simulation results
(Case 1)

When the traffic volume is slight (e.g., arrival
rate is 200 vehicles/hour/movement), the
performance of Markov algorithm is
comparable with the fully actuated controller.
However, when the traffic volume increases,
the Markov algorithm outperforms the
traditional one. For example, when A=300,
the Markov algorithm shows a 26.19%
improvement on the average steady state delay.
When A=400 and A=500, the average steady
state delay of the Markov controller is about
one half of that of the fully-actuated controller.
When A is further increased, the intersection
becomes saturated, resulting in large delays for
both algorithms.

Case II: Through traffic demand dominates the
left-tum demand.

I Phase I Test 1 I Test 21 Test 31 Test 41 Test 51
I 1 I 250 I 300 I 350 I 400 I 450 I

I 2 I 500 I 600 . 700 I 800 I 900 I

I 3 I 250 I 300 350 I 400 I 450 I
I 4 I 500 I 600 700 I 800 I 900 I

I 5 I 250 I 300 350 I 400 I 450 I
I 6 I 500 I 600 700 I 800 I 900 I

I 7 I 250 I 300 350 I 400 I 450 I

I 8 I 500 I 600 700 I 800 I 900 I

Table 2. Arrival rates (VPH) for testing

FAC MAC Improve-

ment (%)

Test 1 25.01 17.52 29.95%

Test 2 32.31 20.58 36.30%

Test 3 49.45 26.16 51.24%

Test 4 116.24 62.81 45.97%

Test 5 166.50 129.26 22.37%

Table 3. Comparison of two algorithms
(Case 2)

arrival rate of left-turn movement (veMU')

2oo.--_~_--_-- __----,

gs~o---;:3OOO-::-------=-3S::;c-0----,4OOc::::---------:'.4S0

Figure 6. Comparison of two algorithms
(Case 2)

_ ....
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i
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&
~ 50

In this case, the ratio of the demands of the
through traffic and the left-tum traffic is 2: 1.
This is the more common case compared to the
previous one. Similar to case 1, the two
algorithms were also tested on four different
conditions, as listed in table 2. For each
situation, the algorithms were tested on fifteen
different sets of random data. The means (of
the 15 sets of data) of the average steady state
delay of the two different algorithms, with
percentage of improvement, were calculated
and are listed in table 3. The mean and upper­
lower bounds of data are also plotted in Fig. 6
and Fig. 7, where again the solid line
represents the Markov algorithm and the dotted
line represents the fully actuated control.
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Figure 7. Bounds for simulation results 
(Case 2) 

The simulation results indicate that by applying 
the Markov adaptive control algorithm, the 
average delay of intersection can be reduced 
dramatically (22% to 51%). 

IV. CONCLUSIONS 

In this paper, an optimal strategy for traffic 
signal control based on Markov decision theory 
is presented. Computer simulation results 
indicate that this new approach is more efficient 
than the traditional fully-actuated control, 
especially under the conditions of high, but not 
saturated, traffic demand. Further evaluation 
and testing will be performed. 
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The simulation results indicate that by applying
the Markov adaptive control algorithm, the
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dramatically (22% to 51 %).
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