
J Supercomput (2017) 73:4324–4346
DOI 10.1007/s11227-017-2012-z

An enhanced active caching strategy for data-intensive
computations in distributed GIS

Shaoming Pan1,3 · Yanwen Chong1 ·
Zhengquan Xu1,3 · Xicheng Tan2

Published online: 20 March 2017
© The Author(s) 2017. This article is an open access publication

Abstract Caching can prepare data for computational tasks in advance by tracking
the requirements and behaviors of distributed geographical information systems to
reduce network latency and improve computational performance. This paper presents
an enhanced method to actively cache data for data-intensive computations that con-
siders both data relationships and the timeliness of those relationships. First, the access
correlations, the correlation steps and the times of the correlations are computed based
on the behaviors of the computational tasks. Because the influence of historically
accessed records will decrease gradually over time, only recently accessed records
are used. To track changes in the relationships and prevent cache waste problems,
each record is given a different age-based weight. A conditional caching probabil-
ity can then be computed based on the timeliness relationships, which can be used
to find the appropriate data to compute simultaneously. Finally, we present several
experiments that compare the proposed method with techniques that use other data
placement strategies, active caching strategies and passive caching algorithms. The
results show that the proposed model has better performance than other algorithms
in all respects. In addition, the proposed model results in a lower cache replacement
ratio. The experiments with different data sets on different data scales indicate that the
proposed algorithm can also be used in large-scale distributed environments.

B Shaoming Pan
pansm@whu.edu.cn

1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan, Hubei, China

2 Department of Spatial Information and Digital Technology, International School of Software,
Wuhan University, Wuhan, China

3 Collaborative Innovation Center for Geospatial Technology, Wuhan, Hubei, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-017-2012-z&domain=pdf

An enhanced active caching strategy for data-intensive… 4325

Keywords Active caching · Distributed computing · Data correlation · Spatial data ·
Distributed GIS

1 Introduction

With developments in information and communication technology (ICT), geographi-
cal information systems (GIS) have been widely used in many fields, including land
and resource investigations, weather forecasts and disaster prediction, and urban and
road traffic planning [1]. In those cases, GIS must process large amounts of both spa-
tial data and single mapping data; a large amount of those data may be in real time
[2]. Thus, several algorithms have been proposed to meet the requirements of data
computation in distributed GIS [3–6].

The efficiencies of locating data (determining where the data are stored), transfer-
ring data (obtaining data from a local storage node or remote storage nodes) [7] and
processing data (computing or analyzing the data) are three important aspects that
will affect the data computation and analysis performance.

The distributed parallel spatial index structure R-tree (DPR-tree) [8] and the Hilbert
space-filling curve-based multi-tier parallel R-tree (HCMPR-tree) [9] are two typical
methods used to improve the performance of locating data that have been proposed
to improve querying efficiency in the distributed parallel environments. The DPR-
tree algorithm uses HCSDP (spatial data partitioning based on the Hilbert curve) [10]
technology to divide spatial data, and theHCMPR-tree algorithmprovides a newmulti-
tier parallel spatial indexing structure to obtain better load balancing performance.

Because of its greater computational costs, algorithm parallelization is one of the
most important solutions to improve data processing performance [11]. Algorithm
parallelization partitions the data and performs computations using different nodes,
and each node schedules and computes its data simultaneously based on the same
procedures. Some computations can be scheduled at the same time to reduce total
computational costs. Yao et al. [12] presented a parallel algorithm for buffer analysis
based on grid computing that decomposed the computational tasks according to both
the map layer and the geographic spatial area. Pang et al. [13] and Fernandez et al. [14]
realized parallel computing by dividing and storing related data in the same computing
node.

Improving network transmission efficiency and reducing the amount of network
transmission data are two aspects of optimizing data transfer performance. The data
transfer rate strategy is a method to reduce network transmission costs [7] that stores
all related data in the same node to reduce the data transfer rate between distributed
nodes, thus saving data transfer time costs between nodes [4,15]. Dynamic computa-
tion correlation cata placement (DCCP) [4] distributes and stores data that have high
dynamic computation correlations in the same data center by considering not only the
I/O load but also the capacity of the data centers. Access pattern-based distributed
storage algorithm (APSA) [15] also distributes and stores data that have high access
correlations in different data centers to allow concurrent access.

Although the algorithms described above have been used to obtain good results,
they have several disadvantages that must be considered further. First, the data storage

123

4326 S. Pan et al.

capacity requirements have increased by a factor of thousands over the past decadewith
the developments of ICT; therefore, all data must be distributed into many different
storage nodes before they can be used for computations or analyses. Although data
placement strategies can store some related data in a local storage node, different data
calculation and analysis tasks will have different data distribution requirements. For
example, urban and road traffic planning will focus on road traffic data; thus, related
road traffic network data from an urban area must be stored in the same node. The
fixedmode of data placementmay not satisfy the requirements of different applications
in a real-time system. In addition, with changing data relationships and application
requirements, data placement strategies must be adjusted synchronously, potentially
to a large number of data migrations between storage nodes and substantially affecting
GIS performance.

However, with the rapid increase in network bandwidth, the data transfer time cost
is usually less than the data processing time cost. Therefore, preparing the next piece
of data while a particular piece of data is being used can reduce total computation
time costs; that is, if data transfer and data processing can be performed in parallel,
the data transfer time cost can be ignored. Thus, the key issue is to predict and cache
in advance the data that will be computed or analyzed during the next step.

In contrast to traditional passive computing algorithms that prepare the current
data based on the application’s current requirements or some typical active caching
strategy that prepare the current data based on the whole historical access information,
this article proposes an enhanced active caching strategy for data computations that
prepares data in advance by considering both data relationships and the timeliness of
those relationships.

This article is organized as follows. Section 2 introduces related studies about
caching algorithms based on the application’s behaviors and the relationships between
the data.A newactive computingmodel based on a data-caching algorithm is presented
in Sect. 3. The results of experiments are presented and discussed in Sect. 4. Finally,
Sect. 5 provides the conclusions of this study and discusses our future work.

2 Related work

Although actively predicting and caching data have not attracted the attention of
researchers in the supercomputing field, caching technology is widely used in infor-
mation systems because it can be used to improve the quality of service and speed up
the response time for users.

GIS is a typical data-intensive application [16] that serves a large number of users
in which the pyramid model is used to divide the data into smaller pieces called tiles
[17]. The main purpose of caching in GIS is to prefetch the appropriate tiles from
storage nodes to prepare the data for the application in advance. Because the server
stores large amounts of tiles that can be prefetched, it is difficult to determine which
tiles should be prefetched. Many studies have focused on this key problem.

First in first out and least recently used (LRU) are passive caching algorithms that
only save data that are currently being accessed; they never proactively prefetch tiles
from storage nodes. These algorithms are widely used by Google [18], networked

123

An enhanced active caching strategy for data-intensive… 4327

geographic information systems (NGISs) [19] and NASA [20], improving system
performance.

In active caching fields, applications (i.e., Google Earth’s Web browser) use his-
torical information to estimate possible tiles that are likely to be used immediately
[21–23]. Markov Chain model is a well-known active caching algorithm which use a
Markov Chain to predict client’s next movements [24,25]. Although these methods
have several advantages for GIS, they are primarily used by clients that separately read
data from the server in advance for caching based on their own behavior, potentially
leading to cache waste (duplication of data units in a cache buffer or data that are
cached but will not be used soon) in distributed GIS [26].

Moreover, several global user-driven models have been proposed to address the
cache waste problem. These models are primarily used by servers and are based on all
of the clients’ behaviors. In these models, access to spatial data satisfies intrinsic laws
[27] that can be used to determine the relationships between them; those relationships
can be used to predict the next data required when a certain piece of data is used [28].
The proposed global user-driven models can generally be categorized as popularity-
and correlation-based.

Popularity-based models, such as distributed high-speed caching based on spatial
and temporal locality (DCST) [29] and bandwidth hierarchy-based replication (BHR)
[30], calculate the popularities of all of the tiles and cache the tiles with higher popular-
ities [31]. DCST uses the election scheme of the United States Congress to select the
tiles to cache and uses a steady-state cache hit ratio parameter to limit the tile selection
range, thus saving cache space. The main idea of BHR is to keep the required data in
the same region as much as possible, thus reducing external–schedule time.

Correlation-based models such as data replicas based on the fuzzy logic sys-
tem (FLSDR) [32], global user-driven model for tile prefetching (GUDC) [26]
and prefetching scheme based on spatial–temporal attribute prediction (STAP) [33]
dynamically cache the related data into a high-speed cache buffer to prepare the data
for service in advance. FLSDR selects some data as an optimal replica with a mini-
mum response time considering both the data queue and the data transfer. FLSDR then
places the replica into the node from which the replica has the maximum probability
of being repeatedly requested. GUDC computes all of the data relationships based on
their historical access records and compares the conditional prefetching probability to
cache or replace the data. STAP mines the relationships of spatiotemporal data based
on their historical access records and then uses the autoregressive integrated moving
average model to construct a predictive function to predict users’ future behaviors.

Nevertheless, different computational tasks will use different data sets, and high-
popularity data may not be needed next. Considering information from a typical
historical access log [26] that is used by the application, the data with the highest
popularity may not be accessed again. Moreover, the relationships or popularities of
all of the data in distributed GIS change continuously during system operation [25].
For that reason, it might not always be appropriate to mine the patterns based on the
whole historical access records to guide the replication strategy. Furthermore, we can-
not obtain a sufficient number of historical access records if the system has just begun
to operate.

123

4328 S. Pan et al.

Based on these analyses, we propose an enhanced method to actively cache data for
data-intensive computations that considers the timeliness of both tile popularities and
their relationships (CPR) in distributed GIS. Because we cannot obtain a sufficient
number of historical access records and because the influence of historical access
records will gradually decrease over time [34], we use only recent records, which
can easily and quickly be obtained after the system is started. Each record is given a
different weight based on its freshness; thus, we can closely track the changes in the
relationships and avoid the cache waste problem. The passive caching strategy LRU
is initially used to temporarily save data in the cache buffer, and the cache data will
be replaced dynamically based on the most recent relationships.

3 Active caching model for data computations

3.1 Concepts

Figure 1 shows a typical architecture of a distributed GIS in which the spatial data are
distributed and stored in M clusters and each cluster is composed of one storage node
and several servers. Each server contains one high-speed cache buffer. The servers
and storage node in the same cluster are connected by a LAN, and the clusters are
connected through the Internet. In a distributed GIS, computational tasks such as
remote sensing image correction are performed by clients and dispatched to a server
by a load distributor based on the data’s location. The server reads the data from a
local storage node or remote storage node to perform the computational task.

Denote D = {d1, d2, . . . , dN } as the set of all data that will be used for data
computations by clients in a distributed GIS, where N is the total number of data and
each element in D is labeled with a natural number [1, N]. Based on the analysis
presented above, the data computation time costs are composed of the locating data

Servers and
high-speed caches

LAN

Storage node

Server and
high-speed cache

LAN

Storage node
Server and

high-speed cache

LAN

Storage node……

Cluster 1 Cluster 2 Cluster M

Internet
Load distributor

Client workstations

tf

tln

trn

tc

Access records

Fig. 1 Key architecture of the distributed GIS

123

An enhanced active caching strategy for data-intensive… 4329

time cost t f (to find the data and dispatch the task), the data processing time cost ts
(to perform the computational task) and the data transfer time cost to (to obtain the
data from the local storage node or remote storage node). The total computation time
cost is t = (t f + ts + to). Because of the pyramid model used in GIS, all of the data
are the same size and can be located using the index number (for a certain data set);
therefore, t f and ts are constants. If a certain piece of data is cached in advance based
on when it will be scheduled and computed, then to = tc; otherwise, to = tn , where tc
is the time cost to obtain the data from the cache and tn is the time cost to obtain the
data from the network. Thus, the computation time costs for a certain piece of data di
are as follows:

ti = t f + ts + λi tc + (1 − λi)tn (1)

where λi is a matching indicative factor and λi = 1 indicates that di is cached before
it is scheduled and computed; otherwise, λi = 0.

Assume both that all of the computational tasks are scheduled synchronously and
that the data sequence is chronologically recorded by the load distributor when each
piece of data is used by the computational tasks. Let Q = (q1, q2, . . . , qL) denote
the entire sequence, where qk ∈ [1, N] denotes the label of the k-th computed piece
of data that is scheduled by a certain computational task (i.e., qk = i indicates that
the k-th computed piece of data is di (i = 1, . . . , N)), and L is the total number
of computations of all of the data. The total computation time costs for all of the
computational tasks are as follows:

T =
L∑

i=1

tqi = L(t f + ts) +
L∑

i=1

(λqi tc + (1 − λqi)tn)

= L(t f + ts + tn) − h(tn − tc) (2)

where h = ∑L
i λqi is the total number of cache hits. Based on Eq. (2), the aim of

reducing the total computation time costs can be transferred to obtaining a high cache
hit rate r = h/L , and the key is to find the most appropriate data and actively cache
them in advance when a certain piece of data is being computed. If the piece of data
is stored in a local storage node, tn = tln; otherwise, tn = trn. Because trn ≥ tln in
distributed GIS, adjusting the data placement can also improve the total computation
time costs.

3.2 Active caching model

Active caching is a method of finding data that have close relationships with the
data being computed and then prefetching and caching them in advance for the next
computation. We can compute the relationships between all of the data based on their
historical scheduling records considering both global access correlations [26,29] and
the timeliness of their access correlations [34]. Because a large amount of spatial
data is stored in distributed GIS and it is impossible to dynamically adjust the data
placement among all of the clusters for reasons related to various computational tasks,
the spatial data will be stored in the storage nodes randomly and evenly.

123

4330 S. Pan et al.

For a certain period, if di is scheduled and computed and d j is also scheduled and
computed after x steps, we denote that there is one x-step correlation from di to d j ,
and their corresponding correlation weights and correlation steps can be denoted as
wx and sx , respectively, where di , d j ∈ D, sx = x and wx−1 > wx (i, j ∈ [1, N],
i �= j).

Assuming that all of the servers will provide computational services continuously
for all clients, all of the servers can process M users’ requests simultaneously during
a short period of time. Then, M is the largest step between two pieces of data in
a schedule, and x ≤ M . In general, denote Qk = (qk1, qk2, . . . , qkM) as the sub-
access vector of all of the data labels that were scheduled chronologically by the load
distributor at a givenmoment. For∀di , d j ∈ D (i, j ∈ [1, N]), the access correlations,
the correlation steps and the correlation times between di and d j can be separately
computed as follows based on typical data correlation mining algorithm [26] within
the vector Qk :

Mk(i, j) =
M−1∑

x=1

M∑

y=x+1

vkx,ky(i, j)wy−x i, j ∈ [1, N] (3)

Ek(i, j) =
M−1∑

x=1

M∑

y=x+1

vkx,ky(i, j)sy−x i, j ∈ [1, N] (4)

Fk(i, j) =
M−1∑

x=1

M∑

y=x+1

vkx,ky(i, j) i, j ∈ [1, N] (5)

where vkx,ky (i, j) = 1 when qkx = i and qky = j or qkx = j and qky = i , otherwise
vkx,ky (i, j) = 0.

Because newer access information has a greater influence on the total access cor-
relations [34], our enhanced model will consider both the different weight of access
correlationswithin sub-access vector Qk and the differentweight of access correlations
among all sub-access vectors {Q1, Q2, . . . , QG}, where Q = (Q1, Q2, . . . , QG) and
G is the total number of sub-access vectors. Thus, the total access correlationsM(i, j),
their total correlation steps E(i, j) and the correlation times F(i, j) between di and
d j can be stated as follows:

M(i, j) =
G∑

k=1

Mk(i, j)wG−k+1 i, j ∈ [1, N] (6)

E(i, j) =
G∑

k=1

Ek(i, j)wG−k+1 i, j ∈ [1, N] (7)

F(i, j) =
G∑

k=1

Fk(i, j)wG−k+1 i, j ∈ [1, N] (8)

123

An enhanced active caching strategy for data-intensive… 4331

Fig. 2 Decay curves based on different decay coefficients

respectively. Because the influence of historically accessed records will decrease
gradually over time, only recently accessed records are used to track changes in the
relationships and prevent cache waste problems, and so, the access correlations, the
correlation steps and the and correlation times within each sub-access vector need to
be given a different age-based weight. Thus, the weight is a decay function of access
steps x or sub-access vectors steps (i.e., denote the access steps between sub-access
vector Qk and QG as G − k + 1) and which can be defined as follows:

wx = e−(
x2/2σ 2

)
(9)

where σ is the decay coefficient, and x ∈ [1,G]. Obviously, selecting a different
decay coefficient will lead to a different amount of historical access information and
different weights being used. Figure 2 shows several typical decay coefficient values
and the corresponding decay curves.

As shown in Fig. 2, only 20–100 recent sub-access vectors will be used to compute
the total access correlations, their total correlation steps and the correlation times based
on Eqs. (6), (7) and (8). After that, the average correlation steps between di and d j

can easily be computed:

Ē(i, j) = E(i, j)

F(i, j)
i, j ∈ [1, N] (10)

A close access relationship is determined by two aspects: (1) if the data are com-
puted simultaneously and (2) if their access distance is short when they are computed
simultaneously. Thus:

�P(i, j) = M(i, j)

Ē(i, j)
= M(i, j)

E(i, j)
× F(i, j) i, j ∈ [1, N] (11)

123

4332 S. Pan et al.

either can indicate the age-based total caching probability for d j when di is being
computed or simply represents the probability that d j will be computed in the next
movement and which consider the difference of access correlations not only within
a sub-access vector but also among sub-access vectors. Thus, for ∀di ∈ D, the age-
based total caching probability of all other data can be obtained based on Eq. (11), and
from that, we can find the largest element to predict its corresponding data when di is
being computed. Thus, we can obtain a high cache hit rate when data are scheduled
and computed to reduce the total computation time costs.

Furthermore, some computational tasks will always use some data portfolios to
compute and find the destination; for example, navigation path planning will use the
neighboring blocks one by one. Thus, an active caching strategy can use those data
portfolios to obtain data more accurately. For example, if (di d j dk) is a portfolio,
the active caching strategy can produce a very precise estimation and actively cache
the data dk when the data di have just been computed and the data d j are being
computed. Thus, for ∀di ∈ D, let

{
A1 (i) , A2 (i) , . . . , ACi (i)

}
denote the set of all

data portfolios for data di , where Ci is the total number of portfolios, each portfolio
An (i) = (

dn1dn2 . . . dnandi
)
is a sub-vector of Qk (k ∈ [1,G], n ∈ [1,Ci]) and ends

with the data di , and an + 1 is the length of An (i). Then,

�P (An (i) , j) = M (An (i) , j)

E (An (i) , j)
× F (An (i) , j) i, j ∈ [1, N] , n ∈ [1,Ci]

(12)

can indicate the age-based total caching probability for d j based on data portfolio
An (i) [26]. �P(i, j) is clearly a special case of �P (An (i) , j) in which

(
dn1dn2 . . . dnan

)

is null (an = 0) and P (A (i) , D) = (�P(An (i) , j))Ci×N is the age-based total
conditional caching matrix for all data portfolios of di .

Similarly, the data portfolios also have characteristics of timeliness and using some
very old portfolios will also lead to obtain a wrong prediction. Thus, finding a valid
data portfolio set for a certain data di is the key for P (A (i) , D). Thus, let ξk(i) be the
popularity of di based on Qk (k ∈ [1,G]). The total popularities of di can be stated
as follows:

ξ(i) =
G∑

x=1

ξk(i)wG−x+1 i, j ∈ [1, N] (13)

where ξk(i) = ∑M
x=1 vkx,kx (i, i). The average popularity of all of the data can be

computed as follows: ξ̄ = ∑N
i=1 ξ(i)/N based on Q and wx . Several studies have

shown that only 20% of data will be requested repeatedly [25,26]; thus, the data with
popularities higher than ξ̄ are selected as the elements of the popular data set Dp.
Based on Q and Dp, the age-based total conditional caching vector Pv(i, Dp) and
the age-based average conditional caching probabilities can be stated and computed
easily as follows:

P̄v(i, Dp) =
∑Np

k=1
�P(i, k)

Np
(14)

123

An enhanced active caching strategy for data-intensive… 4333

where Np is the total number of elements in the popular data set Dp. Thus, the data
for which the age-based total conditional caching probabilities are higher than the
age-based average conditional caching probability can be grouped together with di as
a data portfolio. Moreover, we can select additional data into the portfolio to obtain
a sufficiently large portfolio set (fewer than M elements) so as to get A(i) which
consider only the newest access information.

3.3 Active caching strategy

In distributed GIS, computations are proposed by clients, distributed to the server by
the load distributor based on the data location and executed by the server. The load
distributor records the historical access records and schedules servers to actively cache
data in advance. The procedures of our active caching strategy are as follows:

Step 1Each server independently saves data to the high-speed cache buffer and replaces
data in the buffer based on the LRU strategy when the system is beginning to operate.
Set s = 1 and compute wx based on the parameter value of decay coefficient and
Eq. (9). Set X = 2σ as the max number of sub-access vector which will be used to
compute age-based total popularities and total conditional caching probabilities (the
area of decay curves is less than 5% of total area when x > 2σ).

Step 2 The load distributor chronologically records an index of all of the data that
are computed by all of the clients, and we can then obtain their historical scheduling
sub-access vector Qs = (qs1, qs2, . . . , qsM) and add Qs to the end of Q and update
Q. It is clear that dqsM is the data being computed.

Step 3 Compute the popularities for all data D based on Qs. It is clear that only the
accessed data set based on Qs needs to be computed and the popularities for all other
data are zero.

Step 4 Compute the total popularities of all data and average popularity of all of the
data based on Eq. (13), Find the data portfolio set based on Eqs. (13) and (14) and
then the age-based total conditional caching probability matrix can then be computed
based on Eq. (12), where G can be set as X .

Step 5 Let U (qsM) = (μ1(qsM), μ2(qsM), . . . , μCqsM
(qsM)) denote the matching

indicator of all data portfolios. If Ai (qsM) is a subsequence of Qs , set μi (qsM) = 1;
otherwise, set μi (qsM) = 0.

Step 6 Compute the age-based total conditional caching probabilities for all of the
data as follows:

Ps(qsM , D) =

⎡

⎢⎢⎢⎢⎢⎣

∑CqsM
l=1

�P(Al(qsM), 1)μl(qsM)
∑CqsM

l=1
�P(Al(qsM), 2)μl(qsM)

...
∑CqsM

l=1
�P(Al(qsM), N)μl(qsM)

⎤

⎥⎥⎥⎥⎥⎦

T

= U (qsM) · P(A(qsM), D) qsM ∈ [1, N] (15)

123

4334 S. Pan et al.

Thus, we can find the data with the highest degrees of correlation with the data
dqsM and then prefetch and cache the corresponding data (i.e., if the second one is the
largest element in Ps(qsM , D), then d2 will be prefetched and cached).
Step 7 Set s = s + 1 and repeat Steps 2–7 until the computational tasks have been
completed.

Similar to GUDC [26], more than one piece of data can be selected and actively
cached based on the total conditional caching probabilities to increase the data-caching
speed at the beginning of system operation.

3.4 Algorithm analysis

The computational complexity of calculating the total caching probabilities of all
of the data based on Eq. (11) is approximately O(N 3G). Because a distributed GIS
contains a large amount of data and many sub-access vectors, it is both impossible and
unnecessary to compute the total caching probabilities of all of the data each time by
recalculating the access correlations, the correlation steps and the correlation times
based on Eqs. (3), (4) and (5) when a piece of data is requested. Indeed, the historical
results can be reused, and only the newest value based on the newest sub-access vector
needs to be calculated. Thus, the computational complexity is approximately O(M3),
and it is possible to calculate the total caching probabilities because of the limited
number of clusters scheduled by a single load distributor in a real distributed GIS.
Moreover, the layered physical network topology can be used by configuring many
clusters to decentralize the computational services.

Furthermore, a small wx makes little contribution to the total conditional caching
probabilities; therefore, we can setwx = 0when x > 2σ . Thus, only limited historical
access information will be used to compute the age-based total conditional caching
probabilities because most values of wx are zero. Only a tiny fraction of Mk (i, j),
Ek(i, j), and Fk (i, j) needs to be stored for the next computation, and the required
memory is approximately O

(
M2X

)
, where X is the number of wx with nonzero

values.

4 Simulations and experiments

4.1 Simulation design

To illustrate the performance of the proposed algorithm, we designed a typical earth
observation system, which is called GlobeSIGht [27]. The application uses SRTM90
(90-meter-resolution global terrain data files from the Shuttle Radar Topography Mis-
sion) data for terrain analysis computations [35]. The simulation parameters are listed
in Table 1.

As shown in Fig. 1, each computation center has one local storage node and can
obtain data from remote storage nodes through the network with a bandwidth of 10–
100Mbps. The historical data access record is produced byGlobeSIGht [27] based on a
Zipf-like law [26]. All of the experiments are measured using the average computation
time cost, which represents the average computation time for one piece of data. In

123

An enhanced active caching strategy for data-intensive… 4335

Table 1 Simulation parameters Parameter Value

Number of clusters (M) 2–20

Number of nodes in each cluster 1

High-speed space in each node 300–3000

Size of each datum ≈44KB

Size of the data set (N) 50,000–500,000

Connectivity bandwidth 10–100Mbps

Number of clients (users) 100

Number of data accessed (L) by all clients 3,000,000–30,000,000

this simulation, the terrain analysis computation time is approximately 0.05 s, and the
latency of transmitting data over the network, disk and cache is based on the bandwidth,
the disk I/O speed, the cache I/O speed and the size of the data. No additional latency
is considered in the simulation. Based on the size of a single piece of data, the number
of cached data for each server is limited to 300–3000 (i.e., 13–130MB) based on the
cache buffer size. For simplicity, the experiments assume that all of the computation
centers and storage nodes have the same abilities.

Experiments are performed using different passive caching strategy (PC) algorithms
(such as LRU), data placement strategy (DP) algorithms (such as the DCCP algorithm
[4]) and active caching strategy (AC) algorithms (such as theGUDCalgorithm [26] and
CPR). The PC algorithms store the data in the storage nodes randomly and then obtain
and cache the data from the storage nodes based on the behaviors of the applications.
The DP algorithms store related data in the same storage node in advance and then
obtain data from a local storage node or remote storage nodes based on their locations.
The AC algorithms store all of the data in the storage nodes randomly and then predict
and cache the related data from the storage node in advance while certain data are
being computed. Because of the limited cache buffer size, the AC methods save cache
space by using the LRU strategy to delete cached data from the cache buffer.

In addition, several caching strategies that are described in Sect. 2 are used to com-
pare the performancewith that of the proposedCPRalgorithm, and several experiments
are performed using the CPR algorithm based on different active caching parameters.

To illustrate the performance of the proposed algorithm, which actively caches data
by considering both the data’s popularity and their relationships (labeled AC_CPR in
the figures), we compare that algorithm with the following methods:

1. An optimal method (Best) that uses the DP algorithm to place the data in some
storage nodes (labeled DP_Best) and uses the same strategy to schedule the com-
putations. In this case, all of the data computation centers can obtain the needed
data from their local storage node. This method clearly cannot be implemented in
practice and can only be used either for a comparative analysis or as a reference.

2. A PC method that uses DCST [29] to cache the data in advance and uses LRU to
replace the cached data (labeled PC_DCST).

3. A PC method that uses LRU to replace the cached data (labeled PC_LRU).

123

4336 S. Pan et al.

4. A method that uses the DCCP [4] data placement strategy to place the data and
does not use active caching (labeled DP_DCCP).

5. An AC method that uses GUDC [26] to cache the data in advance and does not
use a data placement strategy (labeled AC_GUDC).

Because selecting different decay coefficients will lead to different amounts of histor-
ical access information and different weights, Serdar [21] gives a detailed proposal
for the navigation depth; thus, we set σ = 15 in the simulations. Furthermore, an
experiment that uses different values of σ is performed.

4.2 Experiments and results

4.2.1 Experiments using different computation algorithms

Figures 3, 4 and 5 show the average computation time costs, average cache hit ratios
and average cache replacement ratios for all of the algorithms using 10 computation
centers and 600 pieces of cached data in each server. In this experiment, AC_CPR
randomly places all of the data in storage nodes and then uses the CPR strategy to
actively cache the data. DP_DCCP and DP_Best place all of the data in storage nodes
based on their own strategies. Neither approach uses a caching strategy.

As shown in Fig. 3, the performance of all of the algorithms remains stable through-
out the experiment, and AC_CPR performs better than the others. Although the
performance of AC_CPR is worse than the optimal method, AC_CPR is the clos-
est to the optimal strategy. Although the performance improvement of AC_CPR for
the average computation time costs appears unremarkable, the average cache hit ratio
is improved by approximately 9.5–93.8%, and the average cache replacement ratio is

Fig. 3 Comparison of the average computation time costs obtained by different algorithms using 10 com-
putation centers

123

An enhanced active caching strategy for data-intensive… 4337

Fig. 4 Comparison of the average cache hit ratios obtained by the algorithms using 10 computation centers

Fig. 5 Comparison of the average cache replacement ratios obtained by the different algorithms using 10
computation centers

reduced by approximately 59.69–71.15%, except for the DP methods, which have a
cache buffer size of zero. The average computation time costs include the locating data
time cost, the data processing time cost and the data transfer time cost. However, the
proposed method cannot improve the performance of the data processing. The average
locating data time cost and data transfer time cost can be estimated from the difference

123

4338 S. Pan et al.

Fig. 6 Comparison of the average computation time costs obtained by different algorithms for 10 compu-
tation centers with 300–3000 pieces of cached data

between the average computation time costs ofDP_Best and the other algorithms; thus,
the performance improvement of AC_CPR is approximately 12–72%.

Moreover, AC_CPR uses LRU to passively cache data at the very beginning of
system operation; thus, the average computation time costs and average cache hit
ratios are lower and the average cache replacement ratio is higher. However, AC_CPR
can quickly cache the appropriate data once a sufficient amount of historical access
information is obtained, and the performance then remains stable.

The computation performance can be improved further by increasing the cache
buffer size (Fig. 6).

As shown inFig. 6, the performance of theDPalgorithms (DP_DCCPandDP_Best)
did not change, whereas the performances of the AC and PC algorithms improved with
increasing cache buffer size. DP_DCCP and DP_Best have no cache strategies, and
they always obtain data from a local storage node or network shares. However, the AC
and PC algorithms use the cache buffer to store data that are prefetched from other
storage nodes in advance. A larger cache buffer size indicates the greater possibility
of a cache hit; thus, we can obtain higher computation performance because the cache
I/O is faster than both the disk I/O and the network I/O.

Figure 6 also shows that active data-caching strategies can achieve better perfor-
mance than passive data-caching strategies because theywill predict the computational
tasks’ behavior and prepare data for the tasks in advance. The CPR strategy provides
clear performance advantages over the other algorithms even when the cache buffer is
very small. When the cache buffer is large enough, active data-caching strategies can
approach the performance of the optimal strategy.

To check the performance of all of the algorithms with different numbers of com-
putation server centers, an experiment is conducted with 600 pieces of cached data
and between 2 and 20 computation centers. The results are shown in Fig. 7.

123

An enhanced active caching strategy for data-intensive… 4339

Fig. 7 Comparison of the average computation time costs obtained by different algorithms for 2–20 servers
and 600 pieces of cached data

Similar to the previous analysis, DP_Best has the best performance. However, the
performances of all of the other algorithms decrease with an increasing number of
computation server centers. More computation server centers indicate that fewer data
will be stored in the local storage node. Thus, more of the computation data must be
obtained from remote storage nodes, and the performance will inevitably decrease.
The results shown in Fig. 7 indicate that active caching algorithms provide good
computation performance and have lower degradation rates than the other methods
with more than 10 computation server centers; thus, the proposed algorithm can be
used in large-scale distributed GIS and will have more advantages.

Another important aspect of verifying the adaptability of the algorithm for data-
intensive computations is testing the stability of the algorithm’s performance on
different data scales. Thus, an experiment was conducted in which the number of
data varies from 50,000 to 500,000. The results are shown in Fig. 8.

Figure 8 shows the change in performance with the increasing size of the data sets
for the algorithms. With the exception of DP_Best, AC_CPR always provides the best
performance with an increasing amount of data. In addition, the performances of all of
the algorithmsdecreasewith increasing amount of data,with the exception ofDP_Best.
Larger data sets indicate either that more data will be obtained from remote storage
nodes (for the DP algorithms) or that more choices (hard to active caching) are needed
to predict the next computation step (for the AC algorithms). The results indicate both
that AC_CPR can achieve nearly the same stability as the DP_DCCP method and that
the two algorithms have the best adaptability for large-scale environments.

In addition, an experiment was conducted using different data sets. The results from
using the NLT Landsat-7 data [27] are shown in Fig. 9a, and the results from using
the SRTM90 data are shown in Fig. 9b. The NLT Landsat-7 data set is larger than the
SRTM90 data set.

123

4340 S. Pan et al.

Fig. 8 Comparison of the average computation time costs obtained by different algorithms using 10 com-
putation centers when the data size varies from 50,000 to 500,000

Fig. 9 Comparison of the average computation time costs obtained by different algorithms using 10 com-
putation centers and the NLT Landsat-7 data set (a) and the SRTM90 data set (b)

The experiments show that the same algorithm provides different results for differ-
ent data sets. This occurs because different data sets and different computational tasks
require different data processing time costs to process the data, and the same algo-
rithm will have a different average computation time cost based on Eq. (2). However,
the performance of DP_Best provides a uniform reference standard. AC_CPR always
performs better than DP_DCCP for the different data sets (Fig. 9).

123

An enhanced active caching strategy for data-intensive… 4341

4.2.2 Experiments using different parameters

As discussed in Sect. 3.3, the proposed active caching algorithm can cache mul-
tiple data during each computation scheduling period; therefore, the speed of data
replacement can increase when the computing tasks change. Thus, an experiment was
conducted to demonstrate the performance improvement using the proposed active
caching algorithm with 10 computation centers. The experimental results for all of the
algorithms are shown in Fig. 10.

Figure 10 shows both that performance improves by increasing the number of
caching steps when the cache buffer size is relatively small and that this performance
improvement can almost be neglected when the cache buffer size is sufficiently large.
This occurs because a large cache buffer can store large amounts of data, and there is
no need to delete cached data to save cache space. Thus, AC_CPR can cache multiple
data to increase the data replacement speed at the beginning of system operation when
the cache buffer size is small, and it only caches small amounts of data to reduce
the computational complexity and scheduling times when the cache buffer size is
large.

Moreover, the access to spatial data satisfies several intrinsic laws [26,27], which
may change based on different users’ behaviors or application tasks. To demonstrate
the change in performance of AC_CPR and to validate the adaptability of the proposed
method with different application behaviors, an experiment was performed using dif-
ferent distribution laws in which the distribution parameters vary significantly from
approximately 0.600–0.950 [36]. The results are shown in Fig. 11.

As shown in Fig. 11 and considering the results in Fig. 6, for which the distribution
parameter is 0.600, the performance of AC_CPR improves with an increase in the
distribution parameter. This occurs because a larger distribution parameter represents

Fig. 10 Comparison of the average computation time costs obtained by different algorithms using 10
computation centers and 600–1500 pieces of cached data

123

4342 S. Pan et al.

Fig. 11 Comparison of the average computation time costs obtained by different algorithms with 10
computation centers when the distribution parameter α varies from 0.750 to 0.950 and the cache buffer size
varies from 300 to 1500

a more concentrated access distribution and therefore fewer data that will be used
repeatedly must be cached. The results also show that the proposed algorithm can
adapt to all kinds of application behavior and unlike data placement strategies, there
is no need to adjust the algorithm’s strategy when the computational task behavior
changes. Thus, we can obtain the data’s access distribution parameter by statisti-
cally computing the application’s historical computation behavior dynamically. We
can then obtain both a low computation time cost and a low computational and com-
munication overhead by dynamically adjusting and using an appropriate cache buffer
size based on the access distribution parameter. This strategy will be considered in
future work.

Because different decay coefficients σ will lead to different amounts of historical
access information and the use of different weights, an experiment was performed
using decay coefficients from approximately 10–6000. The results are shown in
Fig. 12.

As shown in Fig. 12, the performance of AC_CPR improves with an increase in
the decay coefficient when the decay coefficient is less than 3000 because a larger
decay coefficient indicates that more historical access records will be used; thus, the
access correlation can be mined accurately. However, the use of too many records
will reduce the effect of the timeliness, and some invalid features will be obtained.
A greater number of records indicate a larger computational overhead; thus, decay
coefficients of 15–30 are good choices to obtain higher average computation time
costs and lower computational overhead when the number of computation centers is
10. The performances of all of the other algorithms remain stable, which indicates that
the timeliness of the historical records has no effect.

123

An enhanced active caching strategy for data-intensive… 4343

Fig. 12 Comparison of the average computation time costs obtained by different algorithms using 10
computation centers when the decay coefficient σ varies from 10 to 6000 (a) and from 10 to 150 (b)

4.3 Discussion

It is difficult for data placement strategies to synchronously adjust data distributions
between storage nodes to meet the requirements of computational tasks caused by
changes in applications, and active caching strategies can adapt to these dynamic
characteristics by preparing data for computational tasks in advance. The experiments
showed that the proposed algorithm can achieve better performance than other algo-
rithms in all respects, can meet the requirements of large-scale distributed GIS and can
adapt to dynamic environments. Computational performance can be further improved
by using an appropriate cache buffer size and caching an appropriate amount of data
during each computation scheduling period.

The proposed algorithm assumes that all of the storage nodes have the same storage
capacity, all of the computation centers have the same computational capacity and
transmission bandwidth, all of the data can be distributed to all of the storage nodes
evenly, and each computation center can obtain data from any storage node in the
same amount of time. However, some systems have different storage capacities and
computational capacities; thus, the data placement strategy and active caching strategy
should be combined to place the data in the appropriate storage node to reduce the total
computation time cost and adapt to the computation centers’ abilities. These issues
will be considered in future studies.

5 Conclusions and future work

Instead of reading data from storage for computational tasks in real time, active
prefetching and caching data from remote storage nodes through a network may be

123

4344 S. Pan et al.

used to significantly improve the quality of service and reduce the average computation
time cost in distributedGIS. However, it is difficult to find the appropriate data to cache
in advance because of massive data sets and the behaviors of different computational
tasks.

This paper proposed an integrated algorithm for a data-caching strategy that is based
on the computational tasks’ historical behaviors, which imply timeliness relationships.
The aim of CPR is to prepare and hold in the cache the data that are most likely to
be computed immediately based on the cache buffer size. Due to the different cache
buffer sizes, a flexible strategy can be used either to obtain high performance of the
average computation time cost by caching more data when the cache buffer space is
small or to reduce the computational complexity and scheduling times by caching only
small amounts of data when the cache buffer size is sufficiently large.

The performance of the proposed method was demonstrated through a series of
experiments. The results demonstrate that the proposed algorithm can provide better
performance than other algorithms in all respects. The CPR can also be used in large-
scale distributed GIS. Regardless of how the computing tasks are changed, the CPR
can automatically adapt and obtain good performance.

In the future, the following areas of improvement can be considered: (1) differences
between the servers’ abilities and between the storage nodes are important factors that
will significantly affect the average computation time cost and the algorithm’s com-
putational overhead and communication overhead; thus, a combined algorithm that
considers different application behaviors and differences in the computation centers’
abilities will be a focus of future work; (2) cache replacement is another important
issue that must be researched further; and (3) metaheuristic algorithms such as the
earthworm optimization algorithm (EWA) [37], the Monarch butterfly optimization
(MBO), elephant herding optimization (EHO) and the moth search (MS) [38] algo-
rithm can be used to reduce the complexity of finding all fixed data combinations to
solve the problems and should be studied further.

Acknowledgements This work was partially supported by the National Natural Science Foundation of
China (Grant Nos. 41671382, 41271398, 61572372 and 51277167), LIESMARS Special Research Funding
and the Fund of SAST (Project No. SAST201425) and “CAST Innovation Fund”: the Study of Agent and
Cloud-Based Spatial BigData Service Chain. The funders had no role in the study design, the data collection
and analysis, the decision to publish or the preparation of the manuscript.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Goodchild MF (1992) Geographical information science. Int J Geogr Inf Syst 6(1):31–45
2. Zhao LJ, Chen LJ, Rajiv R, Kim-Kwang RC, He JJ (2016) Geographical information system paral-

lelization for spatial big data processing: a review. Cluster Comput 19:139–152
3. Wang L, Chen D, Hu Y, Ma Y, Wang J (2013) Towards enabling cyber infrastructure as a service in

clouds. Comput Electr Eng 39(1):3–14

123

http://creativecommons.org/licenses/by/4.0/

An enhanced active caching strategy for data-intensive… 4345

4. Wang T, Yao SH, Xu ZQ, Jia S (2015) DCCP: an effective data placement strategy for data-
intensive computations in distributed cloud computing systems. J Supercomput. doi:10.1007/
s11227-015-1511-z

5. Eidsvik J, Shaby BA, Reich BJ,WheelerM,Niemi J (2014) Estimation and prediction in spatial models
with block composite likelihoods using parallel computing. J Comput Graph Stat 23(2):295–315

6. Matthias K, Dorit H (2016) Parallel inference for massive distributed spatial data using low-rank
models. Stat Comput. doi:10.1007/s11222-016-9627-4

7. Fuller SH,Millett LI (2011) The future of computing performance: game over or next level? Committee
on sustaining growth in computing performance. National Research Council, Washington, DC

8. Yu B, Hao ZX (2010) Research of distributed and parallel spatial index mechanism based on dpr-tree.
Comput Technol Dev 20(6):39–42

9. Zhao YC, Li CM, Zhao CY (2007) Research on the distributed parallel spatial indexing schema based
on r-tree. Geogr GeoInf Sci 23(6):38–41

10. Zhao YC, Meng LK, Lin ZY (2006) Spatial data partitioning towards parallel spatial database system.
Geomat Inf Sci Wuhan Univ 31(11):962–965

11. Foster I (1995) Designing and building parallel programs. Addison Wesley Publishing Company,
Boston (reading)

12. Yao Y, Gao J, Meng L, Deng S (2007) Parallel computing of buffer analysis based on grid computing.
Geospatial Inf 5(1):98–101

13. PangL,LiG,YanY,MaY(2009)Research onparallel buffer analysiswith gridedbasedhpc technology.
In: IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2009, vol 4. p IV–200

14. Fernandez J, Marroquinguzman M, Wilson RA (2014) Optimization approaches to mpi and area
merging-based parallel buffer algorithm. Boletim de Ciências Geodésicas 20(2):237–256

15. Pan S, Li Y, Xu Z, Chong Y (2015) Distributed storage algorithm for geospatial image data based on
data access patterns. PLoS One 10(7):e0133029. doi:10.1371/journal.pone.0133029

16. Yang C, Wu H, Huang Q, Li Z, Li J (2011) Using spatial principles to optimize distributed computing
for enabling physical science discoveries. Proc Natl Acad Sci 106(14):5498–5503

17. Jarukasemratana Sorn, Murata Tsuyoshi (2013) Web caching replacement algorithm based on web
usage data. New Gener Comput 31(4):311–329. doi:10.1007/s00354-013-0404-z

18. Boulos MN (2005) Web GIS in practice III: creating a simple interactive map of England’s strategic
health authorities using Google Maps API, Google Earth KML, and MSN virtual earth map control.
Int J Health Geogr 4(12):2269–2272

19. Shi Xuan, Kindratenko Volodymyr, Yang Chaowei (2013) Modern accelerator technologies for geo-
graphic information science. Springer, New York

20. Bell DG, Kuehnel F, Maxwell C, Kim R, Kasraie K, Gaskins T, Coughlan J (2007) NASAworld wind:
opensource GIS for mission operations. In: Aerospace Conference, pp 1–9

21. Yeşilmurat Serdar, İşler Veysi (2012) Retrospective adaptive prefetching for interactive web GIS appli-
cations. Geoinformatica 16:435–466. doi:10.1007/s10707-011-0141-8

22. Park D-J, Kim H-J (2001) Prefetch policies for large objects in a web-enabled GIS application. Data
Knowl Eng 37:65–84 (ISSN: 0169-023X)

23. LeeDH,Kim JS, Kim SD,KimKC,KimY-S, Park J (2002) Adaptation of a neighbor selectionMarkov
chain for prefetching tiled web GIS data. In: Proceedings of the Second International Conference on
Advances in Information Systems, vol 2457. pp 213–222, ISBN: 3-540-00009-7

24. Yunjin Li, Zhong E, Wang E, Huang Y (2010) Markov model in prefetching spatial data. Bull Surv
Mapp 7:1–4

25. Rui Li, Guo Rui Xu, Zhenquan Feng Wei (2012) A prefetching model based on access popularity for
geospatial data in a cluster-based caching system. Int J Geogr Inf Sci. doi:10.1080/13658816.2012.
659184

26. Pan S, Chong Y, Zhang H, Tan X (2017) A global user-driven model for tile prefetching in web
geographical information systems. PLos One 12(1):e0170195. doi:10.1371/journal.pone.0170195

27. Hao Wang, Shaoming Pan, Ming Peng (2010) Zipf-like distribution and its application analysis for
image data tile request in digital earth. Geomat Inf Sci Wuhan Univ 35(3):356–359

28. Xia Jizhe, YangChaowei, LiuKai, Gui Zhipeng, Li Zhenlong, HuangQunying, Li Rui (2015)Adopting
cloud computing to optimize spatial web portals for better performance to support digital earth and
other global geospatial initiatives. Int J Digit Earth 8(6):451–475. doi:10.1080/17538947.2014.929750

123

http://dx.doi.org/10.1007/s11227-015-1511-z
http://dx.doi.org/10.1007/s11227-015-1511-z
http://dx.doi.org/10.1007/s11222-016-9627-4
http://dx.doi.org/10.1371/journal.pone.0133029
http://dx.doi.org/10.1007/s00354-013-0404-z
http://dx.doi.org/10.1007/s10707-011-0141-8
http://dx.doi.org/10.1080/13658816.2012.659184
http://dx.doi.org/10.1080/13658816.2012.659184
http://dx.doi.org/10.1371/journal.pone.0170195
http://dx.doi.org/10.1080/17538947.2014.929750

4346 S. Pan et al.

29. Rui Li, Wang X, Shi X (2014) A replacement strategy for a distributed caching system based on the
spatiotemporal access pattern of geospatial data. ISPRS Int Arch Photogramm Remote Sens Spat Inf
Sci 40(4):133–137

30. Sashi K, Thanamani A (2011) Dynamic replication in a data grid using a modified bhr region based
algorithm. Futur Gen Comput Syst 27(2):202–210

31. Shi L, Gu Z,Wei L, Shi Y (2005) Quantitative analysis of Zipf ’s law onweb cache. Lect Notes Comput
Sci 3758:845–852

32. Tao Wang, Yao Shihong Xu, Zhengquan Pan Shaoming (2016) Dynamic replication to reduce access
latency based on fuzzy logic system. Comput Electr Eng. doi:10.1016/j.compeleceng.2016.11.022

33. Xiong L, Xu Z, Wang H et al (2016) Prefetching scheme for massive spatiotemporal data in a smart
city. Int J Distrib Sens Netw 2016(2):1. doi:10.1155/2016/4127358

34. Jianliang Liu, Lin Yang, Mingyang Guo, Lu Xu (2014) The relevance principle of I/O references. J
Comput Res Dev 51(Suppl):48–56

35. D’Urso MG, Trotta S (2015) Comparative assessment of linear and bilinear prism-based strategies for
terrain correction computations. J Geod 89(3):199–216

36. Krashakov SA, Teslyuk AB, Shchur LN (2006) On the universality of rank distributions of website
popularity. Comput Netw Int J Comput Telecommun Netw 50(11):1769–1780

37. WangGG,DebS,CoelhoLDS (2015)Earthwormoptimization algorithm: abio-inspiredmetaheuristic
algorithm for global optimization problems. Int J BioInspired Comput

38. Wang Gai Ge (2016) Moth search algorithm: a bio-inspired metaheuristic algorithm for global opti-
mization problems. Memetic Comput. doi:10.1007/s12293-016-0212-3

123

http://dx.doi.org/10.1016/j.compeleceng.2016.11.022
http://dx.doi.org/10.1155/2016/4127358
http://dx.doi.org/10.1007/s12293-016-0212-3

	An enhanced active caching strategy for data-intensive computations in distributed GIS
	Abstract
	1 Introduction
	2 Related work
	3 Active caching model for data computations
	3.1 Concepts
	3.2 Active caching model
	3.3 Active caching strategy
	3.4 Algorithm analysis

	4 Simulations and experiments
	4.1 Simulation design
	4.2 Experiments and results
	4.2.1 Experiments using different computation algorithms
	4.2.2 Experiments using different parameters

	4.3 Discussion

	5 Conclusions and future work
	Acknowledgements
	References

