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Abstract Reliability-based design is concerned with ensur-
ing that constraints are enforced with acceptable probability
under inherent variability in properties. In aircraft design,
such a constraint may be that aeroelastic instability does
not occur at velocities encountered by the aircraft. This
approach can be complicated, as the aeroelastic instabil-
ity speed is a discontinuous function of material properties,
on account of particular modes only becoming unstable for
some parameter values. In reliability analysis, it is common
to use surrogate models due to the computational expense
associated with Monte Carlo Simulation, however, such
methods can be inaccurate when emulating discontinuous
functions such as the aeroelastic instability speed. In this
paper, an alternative approach is proposed in which Gaus-
sian process surrogate models are fitted directly to each
of the modal eigenvalues at the design air-speed, and used
to emulate a stability margin based upon the most critical
eigenvalue. Using this approach, it is shown that the reli-
ability may be estimated for the aeroelastic stability using
smooth emulators, thereby overcoming the problems asso-
ciated with discontinuities. The method is demonstrated for
layup optimisation of composite plate wings with uncertain
ply angles, in which the probability of aeroelastic instability
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occurring is minimised for a prescribed air-speed. In uncer-
tainty quantification, a good agreement is found with Monte
Carlo Simulation with an order of two magnitudes reduction
in model runs. Through reliability-based design, reductions
in the probability of failure of up to 99.8% are achieved by
increasing the stability margin at the design speed.
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1 Introduction

Composite materials are being used to an increasing
degree in aerospace structures due to a number of use-
ful attributes including high specific strength and stiffness,
and anisotropic behaviour which may be exploited to tai-
lor the properties of the structure. A large amount of work
has been undertaken since the 1970s in the field of aeroe-
lastic tailoring, which has sought to exploit the anisotropic
properties of composite materials for the efficient design of
aircraft structures subject to aeroelastic load cases. Aeroe-
lastic tailoring has been used to eliminate divergence in
forward-swept wings (Weisshaar 1981), improve aileron
effectiveness (Pettit and Grandhi 2003), alleviate gust loads
(Pettit and Grandhi 2003; Kim and Hwang 2005), and pre-
vent flutter occurring at design air speeds (Weisshaar and
Ryan 1986; Eastep et al. 1999; Kameyama and Fukunaga
2007).

Mathematical models can represent behaviour to a high
degree of accuracy, however, in reality all materials and pro-
cesses are subject to variability, and it is impossible to guar-
antee exact values for the parameters used in design. Com-
posite materials require complex manufacturing processes
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which can introduce uncertainty from a number of sources
(Sriramula and Chryssanthopoulos 2009), such as fibre mis-
alignment and waviness (Potter et al. 2008), or variability
in the fibre and matrix volume fractions and elastic mod-
uli (Chamis 2004). Uncertainty is typically accounted for
using safety factors or worst-case scenarios which can be
overly conservative and result in inefficient designs, as well
as inhibiting the adoption of new technologies and tech-
niques (Pettit 2004). There is therefore a need for methods
which may be used to incorporate uncertainty into design.

Numerous techniques have been used to model uncer-
tainty in aeroelasticity of composite structures. Monte Carlo
Simulation (MCS) is a commonly used technique, and was
used by Murugan et al. (2008) to model the aeroelastic
response of a composite rotor blade with uncertain elas-
tic moduli and Poisson’s ratio. Monte Carlo Simulation
can be computationally expensive due to the large num-
ber of model runs required, and as such, it is common to
use surrogate models in order to reduce the computation
time. A perturbation method, based upon a linear Taylor
series approximation, was used by Liaw and Yang (1991)
to estimate the mean and variance of the flutter speed of
a composite plate with uncertainty in the ply orientations,
thickness, elastic moduli, and material and air densities.
Polynomial Chaos Expansion (PCE), in which orthogonal
polynomials are used as a surrogate model, was used by
Pettit and Beran (2004) to model limit cycle oscillations
of a two degree of freedom aerofoil with uncertain pitch-
ing stiffness and angle of attack. Manan and Cooper (2009)
used a non-intrusive Polynomial Chaos Expansion to model
flutter of composite plate wings with uncertain ply orien-
tations, thickness, and longitudinal and shear moduli. A
similar analysis was undertaken by Scarth et al. (2014), in
which lamination parameters were used to represent the ply
orientation uncertainty in order to reduce the number of ran-
dom variables. High Dimensional Model Representations
was used by Murugan et al. (2012) to model the aeroelastic
response of a composite rotor blade with spatially varying
uncertainty in the stiffness.

The above work details the calculation of metrics in order
to quantify the effects of uncertainty on model outputs.
Such metrics may be used as an optimisation objective or
constraint in line with various design strategies. Reliability-
Based Design Optimisation (RBDO) is one such approach,
the aim of which is to ensure that constraints are enforced
such that the probability of failure does not exceed an
acceptable threshold (Choi et al. 2007). Calculating failure
probabilities can be highly computationally expensive, and
as such, it is common to use approximate methods such
as the First Order Reliability Method (FORM) (Hasofer
and Lind 1974), in which the failure surface defined by
constraints is approximated using Taylor series expansions
about the most probable point. Numerous authors have used

FORM in the aeroelastic design of simple models. Pettit and
Grandhi (2003) used FORM in the minimum-weight design
of a wing with uncertain thickness, subject to constraints
upon the root bending moment and shear force under gust
loading, as well as the aileron effectiveness. Stanford and
Beran (2012) used FORM in the minimum-thickness design
of a plate model subject to constraints based upon the ampli-
tude of limit cycle oscillations, with uncertainty in the Mach
number and elastic modulus. Other surrogate modelling
techniques have been used in the reliability-based design of
composite wings, for example, Manan and Cooper (2009)
minimised the probability of aeroelastic instability occur-
ring in composite plate wings at a specified air-speed using
a Polynomial Chaos Expansion surrogate model. Addition-
ally, polynomial response surfaces were used by Borello
et al. (2010) for estimating the reliability with respect to
the flutter speed of both metallic and composite wings with
uncertain material properties.

Optimisation using objectives or constraints based upon
aeroelastic stability can be complicated by the fact that the
aeroelastic instability speed can be a discontinuous function
of model parameters. Such discontinuities arise as individ-
ual modes stabilise or destabilise with variations in model
parameters, resulting in mode-switching behaviour. This
behaviour was noted by Haftka (1973) in an early investi-
gation, in which the flutter speed of a metallic delta wing
was found to be a discontinuous function of the thickness
of different wing segments. Housner and Stein (1974) noted
that the flutter speed of composite wings is a discontinuous
function of the ply orientations in a number of paramet-
ric studies. Georghiades and Banerjee (1998) used a modal
elimination technique to show the discontinuities to be char-
acterised by a marked change in the contribution of each
mode to the flutter mode shape. Kameyama and Fukunaga
(2007) used contour plots to visualise the instability speed
as a discontinuous function of lamination parameters, which
are themselves functions of the ply orientations, and noted
distinct regimes of behaviour attributable to each type of
instability.

The discontinuous behaviour described above cannot be
accurately emulated using many surrogate modelling tech-
niques, which are built upon an assumption of smoothness.
As such, there has been some interest in developing sur-
rogate modelling approaches for emulating discontinuous
functions in aeroelastic stability and dynamics. Beran et al.
(2006) used multi-resolution Polynomial Chaos Expan-
sions, which utilised Haar wavelets to model local effects
due to bifurcating aerofoils undergoing limit cycle oscilla-
tions. A multi-element PCE was used by Chassaing et al.
(2012) to model discontinuous behaviour in bifurcating two
degree of freedom aerofoils with uncertain structural damp-
ing, however, discretising the input space into multiple
elements was found to significantly increase the required
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computational effort. Convex hulls were used by Scarth
et al. (2014) to partition the space of random variables in
accordance with the feasible types of aeroelastic instabil-
ity, in order to fit multiple Polynomial Chaos Expansion
surrogate models. Support Vector Machines, a type of surro-
gate model used to emulate discrete-valued functions, were
used by Missoum et al. (2010) to estimate the reliability
of two degree of freedom aerofoils undergoing limit cycle
oscillations, in the minimisation of an uncertain, nonlinear
stiffness term. Additionally, Becker et al. (2013) developed
an approach in which classification and regression trees
were used in conjunction with Gaussian Process Emulators
to emulate bifurcating systems.

Computationally efficient methods are required in order
to account for material uncertainty in the design of com-
posite aircraft wings, subject to objectives or constraints
based upon aeroelastic stability. It has been highlighted that
application of such approaches may be impeded by the fact
that the aeroelastic instability speed is a discontinuous func-
tion of model parameters, on account of mode-switching
behaviour. The use of surrogate models to emulate the insta-
bility speed can therefore be inaccurate, as such models are
typically built upon an assumption of smoothness. Whereas
some specialist algorithms have been developed to emulate
this behaviour, these methods can often result in increased
computational expense due to the need to partition the input
parameter space.

In this paper, an alternative approach is presented in
which the need to emulate the discontinuous behaviour is
circumvented by fitting a surrogate model to each of the
modal eigenvalues, rather than directly emulating the insta-
bility speed. The expression for the reliability is rewritten
as a function of a stability margin based upon the real part
of each of these eigenvalues. This approach enables the
problem to be reformulated from that of approximating a
discontinuous function, to that of approximating multiple
continuous functions, and exploits the fact that each model
evaluation presents an opportunity for surrogate models to
‘learn’ about multiple eigenvalues. Using this approach, the
reliability may therefore be estimated without the need to
partition the input parameter space. The proposed approach
is demonstrated in the reliability-based design of a simple
composite plate wing model, with uncertainty in the ply ori-
entations. It should, however, be noted that the surrogate
modelling techniques used are entirely non-intrusive, and
can be applied to any black-box model. Despite the simple
analytical model used in this demonstration, the advantages
of the proposed approach should be preserved when applied
to more detailed wing models. It will always be the case
that each of the eigenvalues is defined for the entire input
parameter space regardless of the wing stability, whereas the
instability speed may be discontinuous due to elimination of
particular types of instability for some parameter values. As

such, it will in general be simpler to emulate the eigenvalues
instead of the instability speed.

2 Model definition

In this paper, a simplified wing model is used to demon-
strate the application of the developed approaches. In this
model, a composite wing with semi-span s and chord length
c, is idealised as a flat, rectangular, cantilever plate. Relevant
dimensions of the plate as well as the direction of applied
airflow relative to the global coordinate system are shown
in Fig. 1. The plate is composed of n plies, each of which
is stacked with fibres at angle θi from the global coordinate
system. The aim of the design process is to optimise the
orientation of each of these plies. In Fig. 1 the material coor-
dinate directions 1 and 2 refer to the direction of the fibres,
and that perpendicular to the fibres respectively.

The dimensions and material properties used throughout
this paper are shown in Table 1, wherein subscripts indicate
the material direction to which the property refers. For sim-
plicity, in each of the case studies, laminates are fixed to a
thickness of 2mm and a total of 16 plies.

3 Deterministic modelling

3.1 Composite material properties

In classical lamination theory (Tsai and Hahn 1980), the
constitutive equation relating applied bending moments to
the curvature of a symmetrically laminated plate may be
written as

M = Dκ (1)

where the respective components of the moments and curva-
tures are: M = {Mx, My, Mxy}T and κ = {κx, κy, κxy}, and

Fig. 1 Composite wing geometry
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Table 1 Dimensions and material properties used in case studies

s (m) c (m) E11 E22 G12 ν12 ρ (kg/m3)

(GPa) (GPa) (GPa)

0.3048 0.0762 140 10 5 0.3 1600

the components of laminate out-of-plane stiffness matrix D
are Dij (i, j = 1, 2, 6).

The stiffness components from (1), may be expressed as
a linear combination of material invariants U1−5, laminate
thickness t , and lamination parameters ξ9−12 in accordance
with (Tsai and Hahn 1980; Miki and Sugiyama 1993)
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where Qij are the reduced stiffness components of an indi-
vidual ply with respect to material coordinate axes, which
are in turn defined as

Q11 = E2
11

/
(E11 − E22ν

2
12) (4)

Q22 = E11E22
/
(E11 − E22ν

2
12) (5)

Q12 = ν12Q22 (6)

Q66 = G12 (7)

where E11, E22, G12 and ν12 are the lamina longitudinal,
transverse and shear moduli, and Poisson’s ratio respec-
tively.

By defining a non-dimensional through-thickness coor-
dinate, u = 2z/t , the out-of-plane lamination parameters
are defined as

ξ9 = 3

2

∫ 1

−1
cos(2θ(u))u2, ξ10 = 3

2

∫ 1

−1
cos(4θ(u))u2,

ξ11 = 3

2

∫ 1

−1
sin(2θ(u))u2, ξ12 = 3

2

∫ 1

−1
sin(4θ(u))u2, (8)

where θ(u) denotes the distribution of the ply orientations
throughout the laminate thickness. In practice, the laminate

has a discrete set of plies with orientations [θ1, . . . , θn],
as shown in Fig. 1, and (8) reduces to a through-thickness
summation. The lamination parameters are defined solely
as functions of the ply orientations and, as such, give the
directional component of the laminate stiffness. Use of lam-
ination parameters is beneficial as they may be uniquely
defined for a sequence of ply orientations using (8), and
used to represent this stacking sequence using a maximum
of four parameters regardless of the total number of plies.
It should, however, be noted that the restriction to out-of-
plane stiffnesses relies upon an assumption that the stacking
sequence is symmetric about the laminate mid-plane.

3.2 Aeroelastic model

The aeroelastic stability of the simple composite plate
shown in Fig. 1 is modelled using the Rayleigh Ritz method
combined with a modified strip theory (Wright and Cooper
2008). In this approach, the out-of-plane displacement at
any point on the plate is approximated using simple polyno-
mial shape functions which satisfy the boundary conditions,
given as

w(x, y, t) ≈
n∑

i=1

γi(x, y)qi(t) (9)

where w is the out-of-plane displacement, and qi(t) is the
generalised displacement of the ith mode represented by
shape function γi(x, y). Neglecting structural damping, and
utilising the approach undertaken by Stodieck et al. (2013)
and Scarth et al. (2014), the equation of motion of the plate
can be expressed in the classical aeroelastic form as

Aq̈ + (ρV B)q̇ + (ρV 2C + E)q = 0 (10)

where A is the mass matrix, B and C are the aerody-
namic damping and stiffness matrices respectively, E is the
structural stiffness matrix, q is a vector of the generalised
displacements {q1 . . . , qn} and ρ and V are the air density
and velocity. In first-order form, (10) may be re-expressed
as

{
q̇

q̈

}

−
[

0 I

−A−1(ρV 2C + E) −A−1(ρV B)

] {
q

q̇

}

= ṙ − Qr = 0 (11)

Noting that system matrix Q in (11) is a function of air-
speed, the eigenvalues of this matrix may be found to assess
the stability of the wing at a given air-speed, as well as
give the frequency and damping ratio of each mode. Insta-
bility occurs when the real part of one of the eigenvalues is
positive; this instability is flutter if the imaginary part is non-
zero and is divergence otherwise. The aeroelastic instability
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speed may be found by solving (11) at multiple air-speed
increments until one of the eigenvalues becomes positive.
Previous work by Stodieck et al. (2013) has validated the
application of this approach to the geometry shown in Fig. 1
through comparison with a finite element model coupled
with Doublet Lattice aerodynamics.

In order to illustrate the described process, example plots
of the eigenvalues against air-speed are shown in Fig. 2, in
which λj denotes an eigenvalue corresponding to the j th

mode. Plots are shown for three example sets of lamination
parameters, which are used to calculate laminate stiffness
in line with (2). In each plot, the instability speed is given
by the lowest velocity at which an eigenvalue crosses zero
on the real axis. For example, in Fig. 2a mode 2 becomes
unstable at around 120m/s. This instability is flutter as
the eigenvalues are complex conjugate. In Fig. 2b, mode
2 remains stable and instability instead occurs in mode 3.
Figure 2c shows divergence occurring in mode 1, as the
corresponding eigenvalues are wholly real.

3.3 Deterministic stability trends

The optimisation and uncertainty quantification work in this
paper is concerned with how variations in the composite ply
orientations affect the aeroelastic stability. Such trends may
be visualised in the space of lamination parameters, which
are themselves functions of the ply orientations, as given by
(8). Example surface plots of the instability speed are shown
in Fig. 3, with respect to two lamination parameter planes;
Fig. 3a shows variations in instability speed with ξ9 and ξ10

with ξ11 = ξ12 = 0, and Fig. 3b shows variations with
respect to ξ11 and ξ12, with ξ9 = ξ10 = 0. Such plots are
obtained by determining the instability speed using the pro-
cess illustrated Fig. 2, for a large range of values of ξ9−12.
It should be noted that the lamination parameters are con-
strained to feasible regions (Bloomfield et al. 2009), and as
such, trends are only plotted for feasible parameter values.
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Fig. 3 Instability speed surface plots with respect to out-of-plane
lamination parameters

From Fig. 3, it can be seen that the surface defined by the
instability speed is a discontinuous function of the lamina-
tion parameters, and therefore of the ply orientations. Such
discontinuities have been reported upon in the literature
(e.g. Haftka 1973, Housner and Stein 1974, Georghiades
and Banerjee 1998, Kameyama and Fukunaga 2007), and

a b c

ξ9−12 = {0, 0, -0.1, -0.05} ξ9−12 = {0, 0, 0.1, 0.05} ξ9−12 = {0, 0, 0.3, 0.15}

Fig. 2 Plots of eigenvalues against air-speed for three example sets of lamination parameters
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found to be caused by a modal interchange phenomenon,
in which changes in model parameters give rise to different
types of aeroelastic instability, characterised by a marked
change in mode-shape. In order to more clearly investigate
this behaviour, an example plot of instability speed against
ξ11 is shown in Fig. 4, assuming constant values for ξ9, ξ10

and ξ12. Such a plot is essentially a means of visualising
trends with varying bend-twist coupling behaviour. Instabil-
ity speeds are shown in this plot for three different types of
aeroelastic instability; divergence and two types of flutter
which are referred to as ‘flutter 1’ and ‘flutter 2’. The critical
instability speed, given by the minimum air-speed at which
instability occurs, is highlighted in this plot as a solid line.

From Fig. 4 it can be seen that multiple types of instabil-
ity may be possible for a given value of ξ11; there is a region
of Fig. 4 in which both flutter 1 and flutter 2 occur at dif-
ferent speeds, and similarly, a region in which both flutter
2 and divergence are possible. It should be emphasised that
in practice the wing would be destroyed by the instability
which occurs at a lower speed, however, model output may
be obtained for both speeds. It may also be noted that each
instability speed is only defined for distinct ranges of ξ11,
as the corresponding type of instability only occurs in these
regions. This phenomenon is notable in Fig. 2, in which
mode 2 becomes unstable in Fig. 2a, but not in Fig. 2b.

The discontinuities highlighted in Figs. 3 and 4 can com-
plicate reliability analysis, as commonly used techniques
such as FORM, as well as surrogate modelling techniques
such as Polynomial Chaos Expansion and Kriging, are
based upon an assumption of smoothness. It can be difficult
to apply such techniques separately to the individual insta-
bility speeds highlighted in Fig. 4, as each type of instability
is limited to a region of the parameter space which is not
known a priori.

Fig. 4 Trends in instability speed with varying ξ11, with ξ9 = 0.0938,
ξ10 = −0.75, and ξ12 = 0

Fig. 5 Plots of eigenvalue real parts against ξ11 at an air-speed of
120m/s, with ξ9 = 0.0938, ξ10 = −0.75, ξ12 = 0

In this paper, an alternative approach is presented in which
surrogate models are instead fitted to the real part of each of
the eigenvalues. The benefits of such an approach are demon-
strated in Fig. 5, in which the real part of the eigenvalues
of the first three modes are plotted against ξ11 for the same
lamination parameter range used in Fig. 4, assuming an
air-speed of 120m/s. The distance from instability of the
eigenvalue with maximum real part, highlighted as a solid
line in Fig. 5, can be thought of as a stability margin for a
given air-speed. Such a margin is essentially a measure of
the damping of the most critical mode. Although this margin
is itself a non-smooth function of ξ11, it may be approxi-
mated by fitting multiple surrogate models to the real parts
of each of the eigenvalues which, unlike the instability
speeds, are defined across the full range of ξ11. A reliability-
based optimisation, and surrogate modelling strategy based
upon this principal is outlined in subsequent sections.

4 Reliability-based design overview

Reliability-based design is concerned with ensuring that
failure, defined using a limit state function g(x), does
not occur above some acceptable probability. The limit
state is comparable to the constraints used in determinis-
tic optimisation problems, with the distinction that imposed
constraints may be violated with some acceptable proba-
bility (Choi et al. 2007). A general reliability-based design
optimisation problem may be expressed as

min
x̄

f (x̄, p̄)

s.t. P(g(x, p) ≤ 0) ≤ Pf (12)

x̄L ≤ x̄ ≤ x̄U

where f (x, p) is the objective, g(x, p) the limit state func-
tion, x is the design variable whose lower and upper bounds
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are denoted xL and xU respectively, p are parameters which
the designer does not control, Pf is the acceptable probabil-
ity of failure, and an overbar denotes a deterministic value.
For the sake of simplicity, an unconstrained approach is
undertaken in this paper, in which the probability of failure
is minimised as an objective, rather than used as a constraint.
For aeroelastic stability, such an objective is concerned with
minimising the probability that the aeroelastic instability
speed does not exceed a prescribed air-speed, which may be
expressed as

min
θ∈	

P(Vcrit(θ) ≤ Vdes) (13)

where Vcrit denotes the instability speed, determined using
the approach illustrated in Fig. 2, and Vdes is the design
air-speed, which is prescribed by the designer. The design
variables, θ = {θ1, . . . , θn}, are the orientations of each ply
as shown in Fig. 1, which take values from set 	.

Determining the failure probabilities used in reliability-
based design can be computationally expensive, and as such,
it is common to use surrogate models. It would, however, be
difficult to use such surrogate models to estimate the objec-
tive of (13), as the critical instability speed is discontinuous
as discussed previously. Such an approach is also wasteful,
as calculating the instability speed requires that the eigen-
value problem in (11) is solved across a range of velocity
increments, when it is only the stability at design velocity
Vdes which is of concern. Noting the latter observation, (13)
may be re-written as

min
θ∈	

P(
(θ , Vdes) < 0) (14)

where,


(θ , Vdes) = − max
i∈{1,...,M}

Re(λi(θ , Vdes)) (15)

where λi(θ , Vdes) denotes the ith eigenvalue of (11), evalu-
ated at air-speed Vdes, for a laminate with ply orientations
specified by θ , and M is the number of modes considered
in the analysis. 
 is used to denote the concept of a sta-
bility margin, whose sign convention is chosen such that
a positive margin indicates a stable wing, and a negative
margin indicates instability. The use of this stability mar-
gin in the objective only requires that the stability of the
wing is assessed at the design air-speed, thereby reducing
the required computation time. This margin can be approx-
imated by fitting surrogate models to the real part of each
eigenvalue, which unlike the instability speeds, are defined
across the entire input parameter space, as illustrated in
Fig. 5. This surrogate modelling approach is described in
detail in the next section.

5 Surrogate modelling

5.1 Overview

Due to the high computation time associated with
reliability-based design, it can be desirable to estimate the
probability of failure using surrogate models which may
be evaluated in a fraction of the time required by the
model itself. Fitting surrogate models to the aeroelastic
instability speed can be complicated by the fact that the crit-
ical instability speed is a discontinuous function of model
parameters, as discussed previously and shown in Fig. 4. In
the previous section, an optimisation strategy was presented
in which failure probabilities are instead calculated using a
stability margin evaluated at the design air-speed. The moti-
vation behind this method is that the stability margin may
be estimated using surrogate models fitted to the individual
eigenvalues, which are defined for the entire input parame-
ter space and therefore doe not require that model inputs are
partitioned. This surrogate modelling approach is discussed
in detail in this section, and demonstrated in an uncertainty
quantification case study.

A regression-based surrogate modelling approach for
approximating scalar-valued quantities may be described as
follows. The surrogate model is first trained using a small
set of n samples {x(1), . . . , x(n)}. The bracketed superscripts
are a sample index, with each x(i) being a d-dimensional
vector of model parameters. A surrogate model, f̂ (x), is
fitted to in some way minimise the approximation error
based upon model outputs at these data points. Model
outputs may subsequently be approximated at ‘test’ point
x as f̂ (x). This approach is common to many surrogate
modelling techniques, with differences arising in the mathe-
matical description of the surrogate model and the means by
which it is fitted. In this paper, Gaussian process emulators
(Rasmussen and Williams 2006; Oakley and O’Hagan
2002) are used. This section is concerned with how this
approach may be modified in order to emulate multiple
eigenvalues, and subsequently predict the stability margin
based upon the maximum emulated value. An overview
of the approach is provided in Algorithm 1, with detailed
description of the various components provided in the fol-
lowing subsections.

5.2 Use of lamination parameters in surrogate models

In Algorithm 1, the out-of-plane lamination parameters are
used as inputs to the surrogate model. Each of the x(i) terms
described above is therefore a four-dimensional lamination
parameter sample. This use of lamination parameters has
been shown to be advantageous (Scarth et al. 2014), as a
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small number random variables may be used to represent ply
orientation uncertainty, regardless of the number of plies.
Lamination parameter samples are obtained in steps 2 and 7
of the algorithm through simulation of (8).

5.3 Eigenvalue sorting using modal assurance criterion

In step 5 of Algorithm 1, multiple Gaussian process emula-
tors are fitted to the real part of each of the eigenvalues of
(11). The aeroelastic model output gives rise to n samples
of eigenvalues corresponding to m modes, however, there
is no guarantee that modal eigenvalues will be outputted in
the same order from one sample to another. Before fitting
the emulators, it is therefore necessary to sort the eigenval-
ues such that results corresponding to the same mode are
grouped together across all samples. This sorting is achieved
by comparing the mode-shapes of each sample with those
of a reference sample using the Modal Assurance Criterion
(MAC), and grouping together results with the most simi-
lar mode-shape. In this investigation, the reference sample
is arbitrarily chosen as the first sample in the data set. It
should, however, be noted that in order to ensure that this
sample captures all of the potential modes across the spread
of behaviour, it may be necessary retain a larger number
of modes than is necessary for a deterministic analysis. For

two mode-shape vectors, φi and φj , the MAC is defined as
(Wright and Cooper 2008)

MAC = |φT
i φj |2

(φT
i φi )(φ

T
j φj )

(16)

5.4 Gaussian process emulators

Gaussian process emulators are a form of surrogate model
which may be used to approximate continuous-valued func-
tions. In the proposed approach, multiple Gaussian pro-
cesses are used to emulate the real part of each of the
eigenvalues for a given air-speed. A Gaussian process is a
distribution over functions, which represents model output
at fixed input parameter values as a Gaussian distribution
rather than a deterministic value (Rasmussen and Williams
2006). Suppose the model output is scalar-valued and may
be represented as a function, y = f (x). Suppose also that
the value of this function is known for a set of n training
samples {x(1), . . . , x(n)}, with each x(i) ∈ R

d being a sam-
ple of a d-dimensional parameter vector x. The Gaussian
process is described by its mean and covariance functions,
which may be parameterised as

E[f (x)] = h(x)Tβ (17)

cov[f (x), f (x′)] = σ 2c(x, x′) (18)

c(x, x′) = exp(−(x − x′)T B(x − x′)) (19)

where β is a vector of regression weights, h(x) is taken as
{1, xT}, σ 2 is a scaling factor, and B is a diagonal matrix
of length-scales which govern how much output f (x) varies
with changes to input x. The emulator is fitted by determin-
ing the conditional distribution with respect to the training
data, and finding values for the unknown hyperparameters,
β, σ , and B. Maximum likelihood estimation is used to find
optimal values for parameter B. The remaining hyperpa-
rameter dependencies are inferred following the Bayesian
approach of Oakley and O’Hagan (2002). The resulting
emulator may be simulated as a Student-t process with mean
m∗(x), and covariance σ̂ 2c∗(x, x′), given by

m∗(x) = β̂
T
h(x) + (y − Hβ̂)TA−1t(x) (20)

c∗(x, x′) = c(x, x′) − t(x)TA−1t(x′) (21)

+[h(x) − HTA−1t(x)]T(H T A−1H )−1[h(x′)
−HTA−1t(x′)]
σ̂ 2 = yT{A−1 − A−1H (HTA−1H )HTA−1}y (22)

β̂ = (HTA−1H )−1HTA−1y (23)

where t is a covariance vector such that ti = c(x, x(i)), A is
defined as Aij = c(x(i), x(j)), and H is defined as H T =
{hT(x(i)), . . . , hT(x(n))}. A distinction is also made between
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x, which denotes a test point for which the value of f (x) is to
be predicted, and x(i) which is a training data point for which
f (x(i))=yi is known. In this paper, a simplified approach is
taken in which the model output is approximated using the
emulator mean function, given by (20).

5.5 Uncertainty quantification case study

In this section, the surrogate modelling approach described
above is demonstrated in an uncertainty quantification case
study. Uncertainty is modelled as an independent and identi-
cally distributed, additive Gaussian error applied to the ori-
entation of each ply, with zero mean and standard deviation
of five degrees. Sixteen example layups have been chosen,
in which all combinations of a stacking sequence parame-
terised as [θ1, θ2, θ3, θ4, 02, 902]S are modelled, with θ1−4

restricted to −45◦ or 45◦. In these examples, the stability
margin is calculated at an air-speed of 120m/s.

The approach is validated by comparing results obtained
using the surrogate model, against direct Monte Carlo Sim-
ulation using 10,000 model runs. Convergence studies have
been undertaken in which the number of samples used
to train the surrogate model is increased until a suffi-
ciently good agreement is found with Monte Carlo estimates
of the Probability Density Function (PDFs). Accuracy of
the model is assessed using the Root Mean Square Error
(RMSE) of predictions of the Monte Carlo data set, defined
as

RMSE =
√
√
√
√ 1

N

N∑

i=1

(ŷi − y)2 (24)

where N is the total number of Monte Carlo samples, ŷi is
the ith sample predicted by the surrogate model, and y is the
ith sample of outputted by the actual model.

In practice it may not be possible to validate surrogate
models using such a large data set. A more efficient alterna-
tive is to use cross-validation, whereby the training samples
are partitioned into two sets, one of which is used to train
the surrogate model, and a second which is used to assess
the accuracy of the model (Efron and Gong 1983; Stone
1974). For example, in leave-one-out cross-validation, a sin-
gle sample is omitted when fitting the surrogate model, and
the difference between the model output and surrogate pre-
diction is measured for this sample. The process is repeated
for each of the training samples, and error determined using
measures such as the Mean Square Error (Rasmussen and
Williams 2006).

An example convergence plot of the RMSE of the surro-
gate model for a [452, −452, 02, 902]S laminate is shown in
Fig. 6. From this plot it has been identified that 30 training

Fig. 6 Convergence of surrogate Root Mean Square Error for a
[452, −452, 02, 902]S laminate

samples is sufficient to achieve convergence. This procedure
has been repeated for each example layup, and the result-
ing number of required training samples is listed in Table 2.
Estimates of the mean and standard deviation obtained using
both the Gaussian process emulator and direct Monte Carlo
Simulation are also shown, in order to demonstrate that
a good agreement is achieved. Example PDFs determined
using both the surrogate model and direct Monte Carlo Sim-
ulation are shown in Figs. 7, 8 and 9. Results are shown
for Gaussian processes trained with an increasing number of
samples, in order to further demonstrate the convergence.

The PDF for the [45,−453, 02, 902]S laminate, shown in
Fig. 7a, is unimodal. The equivalent PDF for the aeroelastic

Table 2 Estimates of the mean and standard deviation of the stability
margin at 120m/s, and required training samples

Stacking sequence Samples Mean Std. Dev.

MCS GPE MCS GPE

[−454, 02, 902]S 30 20.53 20.56 1.28 1.22

[−453, 45, 02, 902]S 30 18.52 18.52 1.33 1.32

[−452, ±45, 02, 902]S 30 17.12 17.10 1.39 1.38

[∓45,−452, 02, 902]S 30 15.01 15.02 1.35 1.35

[−452, 452, 02, 902]S 30 13.43 13.41 1.36 1.34

[45,−453, 02, 902]S 20 12.24 12.22 1.11 1.09

[∓452, 02, 902]S 40 11.05 11.07 1.08 1.09

[∓45,±45, 02, 902]S 40 9.57 9.57 0.87 0.87

[±45,∓45, 02, 902]S 25 9.16 9.16 0.90 0.88

[±452, 02, 902]S 25 8.65 8.67 2.48 2.68

[−45, 453, 02, 902]S 20 3.54 3.52 10.34 10.96

[452, −452, 02, 902]S 30 −9.10 −9.11 14.01 14.23

[±45, 452, 02, 902]S 30 −37.23 −37.19 14.00 13.93

[452, ∓45, 02, 902]S 25 −71.16 −71.00 10.21 10.29

[453, −45, 02, 902]S 20 −95.15 −95.17 8.42 8.47

[454, 02, 902]S 35 −137.0 −137.0 6.92 6.98
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a

b

Fig. 7 Stability margin and instability speed PDFs of a [45,−453,

02, 902]S laminate

instability speed of this laminate is shown in Fig. 7b. It can
be seen that this PDF is bimodal, which may be attributed
to a mode-switch, in which the uncertainty causes the inputs
to cross a discontinuity. In this case, each peak corresponds
to a different type of flutter. In this case, using the stability
margin therefore considerably simplifies the PDF.

It is not always possible to simplify behaviour such that
the PDF is unimodal. For example, the PDF shown in Fig. 8
is bimodal due to a switch in the eigenvalue which is closest
to instability, from the first to the second mode. As such,
the two peaks of the stability margin PDF in Fig. 8c may be
attributed the first and second modes respectively. The PDFs
of the individual eigenvalue real parts, shown in Fig. 8a and
b, are unimodal as the underlying function is smooth. As
such, by fitting separate Gaussian Process Emulators to each
of the eigenvalue real parts as described above, the stability
margin may be emulated as two separate, smooth functions.
From each of the plots in Fig. 8, it can be seen that using this
approach a good agreement is achieved with Monte Carlo
results using 30 training data points.

Figure 9 is an example of the most complicated possi-
ble behaviour, as the first mode becomes non-oscillatory,
and as such, the real part of the eigenvalue for this mode
is a non-smooth function of model inputs. Such behaviour
may be noted in the eigenvalue plot of Mode 1 shown in
Fig. 5. The PDF for this mode, shown in Fig. 9a, is therefore
bimodal, with the lower peak attributable to the real part of

Fig. 8 Convergence of PDFs
for (a) Re(λ1), (b) Re(λ2) and
(c) stability margin of a
[452, −452, 02, 902]S laminate

a

c

b
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Fig. 9 Convergence of PDFs
for (a) Re(λ1), (b) Re(λ2) and
(c) stability margin of a
[−45, 453, 02, 902]S laminate

a

c

b

the complex conjugate oscillatory root, and the upper peak
the most-critical branch of the real-valued non-oscillatory
root. The Gaussian Process Emulator does not accurately
predict behaviour in the vicinity of this non-smooth point. It
is, however, the upper peak of this PDF which is critical, at

which point the eigenvalues are locally smooth and the emu-
lator gives accurate predictions. The PDF of the stability
margin, shown in Fig. 9c, may therefore be emulated using
30 training data points despite the inaccurate prediction of
the non-smooth behaviour.

Table 3 Reliability-based design results with i) 0◦, ±45◦ and 90◦ plies, ii) 0◦, ±30◦ , ±45◦, ±60◦ and 90◦ plies, and iii) permissible orientations
at 5◦ increments

Objective Layup Stability margin Probability of failure Improvement (%)

Nom. Mean Std.

(i) Det. 145m/s [−452, 452, 02, ∓45]S 1.79 2.88 5.96 0.33 –

RBDO 145m/s [−453, ±45, 452, 0]S 7.57 7.13 2.51 0.01 97.0

Det. 150m/s [−452, 452, 02, ∓45]S 0.47 2.16 7.20 0.38 –

RBDO 150m/s [∓45,−45, 0, −452, 0, −45]S 9.43 8.50 5.65 0.07 81.6

(ii) Det. 145m/s [−452, 30,−45, 302, 45, 30]S 2.88 4.30 5.42 0.21 –

RBDO 145m/s [−45,−30, 452, −45, −302, 45]S 9.44 10.45 3.99 < 0.01 95.2

Det. 150m/s [−452, 30,−45, 302, 45, 30]S 0.92 2.99 6.83 0.36 –

RBDO 150m/s [±45,−302, −45, −30, −45, 90]S 8.66 9.39 4.87 0.03 91.7

(iii) Det. 145m/s [−402, 40, 35, 40,−30, −45, 35]S 3.22 4.68 5.24 0.17 –

RBDO 145m/s [−402, ±45, 45,−35, 40,−10]S 8.83 9.21 3.10 < 0.01 94.1

Det. 150m/s [−402, 40, 35, 40,−30, −45, 35]S 1.10 3.28 6.87 0.35 –

RBDO 150m/s [40,−402, −30, −35, −40, −35, 45]S 9.53 10.84 5.18 0.01 97.1
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Fig. 10 Example stability margin PDFs for optimised designs using a
design instability speed of 145m/s and layup strategies i) and iii)

In the above examples, a good agreement with Monte
Carlo Simulation is typically achieved using between 20 and
40 training data points. This observation corresponds to an
order of two magnitudes reduction in the required number
of model runs, compared to direct simulation.

6 Reliability-based design optimisation case study

In this section, the surrogate modelling approach described
in Section 5, is used to estimate the objective of the
reliability-based design optimisation outlined in (14–15). In
this case study, the ply orientations are optimised in order
to minimise the probability of aeroelastic instability occur-
ring at air-speeds of 145m/s and 150m/s, as indicated by a
negative stability margin at these flight conditions.

The design space of composite ply orientations typi-
cally gives rise to objective functions which are highly

Fig. 11 Example stability margin PDFs for optimised designs using a
design instability speed of 150m/s and layup strategies i) and iii)

Fig. 12 Plots of eigenvalue real parts against air-speed for determin-
istic and reliability-based designs

multi-modal, with numerous local optima, as the laminate
stiffnesses are nonlinear expressions of periodic functions
in the design variables (Ghiasi et al. 2009; Callahan and
Weeks 1992). As such, the design space is non-convex,
and gradient based optimisers are likely to converge to
local optima, depending upon the choice of initial design.
An extensive body of research (e.g. Nagendra et al. 1992,
Callahan and Weeks 1992, Le Riche and Haftka 1993)
has instead used genetic algorithms for stacking sequence
optimisation of composite laminates. These global search
methods are capable of searching the complex design space
without becoming trapped by local optima (Ghiasi et al.
2009). Additionally, the use of genetic algorithms enables
the ply orientations may be restricted to a discrete set of
angles, as is common practice in industry, and facilitates the
implementation of other commonly used composite design
rules.

Genetic algorithms have therefore been used in the
present work. In each case, the algorithm is run for a pop-
ulation size of 20, over 75 generations. A ply contiguity
constraint is enforced to prevent more than four plies of
the same orientation being stacked consecutively, in order
to avoid matrix cracking. A mid-plane symmetry constraint
is enforced by parameterising only half of the plies, and as
such, the total number of design parameters is eight. Three
strategies are undertaken in which permissible orientations
are taken from one of three sets of discrete values: i) 0◦,
±45◦, and 90◦, ii) 0◦, ±30◦, ±45◦, ±60◦ and 90◦, and iii)
all angles between −85◦ and 90◦ at 5◦ increments.

The obtained reliability-based designs are compared with
‘deterministic’ designs, in which the aeroelastic instability
speed is maximised. The nominal value, mean, and standard
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Fig. 13 Instability speed PDFs
for optimised designs using 0◦,
±45◦ and 90◦ plies

deviation of the stability margin, as well as the probabil-
ity of failure are shown for each design in Table 3. In each
case these designs constitute the ‘best’ layup achieved after
75 generations. The failure probabilities are determined in
Monte Carlo Simulation of the aeroelastic model, using
10,000 samples. Probabilities smaller than 0.01 are not shown,
as it is not possible to calculate such probabilities with less
than 10 percent coefficient of variation with this sample
size. Stability margin PDFs for optimised designs are illus-
trated in Figs. 10 and 11 for 145m/s and 150m/s design
speeds. Plots of eigenvalue real parts against air-speed are
shown in Fig. 12 for deterministic and reliability-based
designs achieved using layup strategy i) and a design speed
of 145m/s, in order to give physical insight into results.
Additionally, the instability speed PDFs which correspond
to each of the optimised designs are shown in Figs. 13 and 14
for the sake of comparison.

The failure probabilities for the deterministic designs are
notably high. The deterministic trends in Figs. 3 and 4 show
that the highest instability speed is on the boundary between
two flutter modes, and is therefore at the edge of a discontinuity.
It can be seen in Figs. 13 and 14, that the proximity of the
deterministic designs to a discontinuity gives rise to a high
probability of a switch from flutter 1 to flutter 2, and as such
the PDF is bimodal, with a peak attributable to each type
of flutter. The high area of the lower peak below the design
instability speed results in a high probability of failure.

This high probability of failure may also be observed in
Figs. 10 and 11 as a high probability of a negative stability

margin at the design air-speed, indicated by the area of the
PDFs below zero. In Table 3, each of the deterministic designs
has a relatively low nominal stability margin. From Fig. 12 it
can be seen that this low margin is due to the fact that mode
3 approaches instability at sub-critical air speeds, despite the
fact that mode 2 ultimately becomes unstable as mode 3 re-
stabilises. For the deterministic design, the nominal stability
margin is less than one standard deviation, and as such it is
very probable that uncertainty will cause mode 3 to become
unstable, as there is insufficient margin at the design speed.

Reliability-based design can be seen to result in sub-
stantial reductions in the probability of failure. Across the
various optimisation strategies employed, reductions in the
probability of failure of between 82% and 97% are achieved.
Smaller reductions are typically made for the 150m/s design
speed, with the largest reductions achieved using layup
strategy iii), due to the larger design space. These improve-
ments are achieved by increasing the stability margin at
the design air-speed, in order to provide greater capacity to
accommodate uncertainty in material properties. For exam-
ple, in Table 3, the reliability-based designs for a 145m/s
design air-speed have a nominal stability margin of approx-
imately three standard deviations, which can be seen in
Fig. 12 to be result of the eigenvalue corresponding to mode
3 moving further from instability at 145m/s. Such a result
is achieved by choosing a design with lamination parame-
ters further from the discontinuity, which can be seen from
Figs. 13 and 14 to significantly reduce the probability of a
mode-switch.

Fig. 14 Instability speed PDFs
for optimised designs in which
orientations are permitted at 5◦
increments
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7 Conclusions

In this paper, a surrogate modelling approach has been pre-
sented for use in the reliability-based aeroelastic design
of composite wings. The major focus of the work was to
overcome the problem of estimating the reliability using sur-
rogate models such as Gaussian process emulators, which
cannot accurately emulate discontinuities in the aeroelastic
instability speed. This problem was overcome by rewriting
the expression for the reliability as a function of a stability
margin, which is based upon the modal eigenvalues as deter-
mined at the design air-speed. The main contribution of the
work is the development of a surrogate modelling approach,
in which multiple Gaussian process emulators are fitted to
the real part of each of these eigenvalues. It has been shown
that through such an approach, the stability margin can
be emulated using entirely smooth functions, without the
need to partition the input parameter space. The proposed
approach has the added benefit of reducing the computation
time as equations need only be solved at a single air-speed,
rather than across a range of velocity increments.

The approach has been demonstrated in application to
both the uncertainty quantification, and reliability-based
design of composite plate wings with uncertain ply ori-
entations. In the uncertainty quantification case study, the
surrogate model achieved a good agreement with Monte
Carlo Simulation using between 20 and 50 training samples,
corresponding to an order of two magnitudes reduction in
the model runs. In the optimisation case study, reductions
in the probability of failure of between 82% and 97% were
achieved relative to equivalent deterministic designs. These
improvements were attained by providing additional stabil-
ity margin at the design air-speed in order to accommodate
the uncertainty, thereby considerably reducing the proba-
bility of a mode-switch substantially lowering the flutter
speed.
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