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Abstract Renewable energy, such as wind and photo-

voltaic (PV), produces intermittent and variable power out-

put. When superimposed on the load curve, it transforms the

load curve into a ‘load belt’, i.e. a range. Furthermore, the

large scale development of electric vehicle (EV) will also

have a significant impact on power grid in general and load

characteristics in particular. This paper aims to develop a

controlled EV charging strategy to optimize the peak-valley

difference of the grid when considering the regional wind

and PV power outputs. The probabilistic model of wind and

PV power outputs is developed. Based on the probabilistic

model, the method of assessing the peak-valley difference of

the stochastic load curve is put forward, and a two-stage

peak-valley price model is built for controlled EV charging.

On this basis, an optimization model is built, in which genetic

algorithms are used to determine the start and end time of the

valley price, as well as the peak-valley price. Finally, the

effectiveness and rationality of the method are proved by the

calculation result of the example.

Keywords Renewable energy, Electric vehicle,

Controlled electric vehicle (EV) charging, Demand side

response, Peak-valley price

1 Introduction

With the environmental degradation around the world,

people are increasingly advocating and pursuing the green

living concept, and electric vehicles (EVs) are being in-

creasingly seen as eco-friendly vehicles. On the other hand,

the oil and other traditional fossil fuel resources are being

depleted, wind power and solar power are being widely

studied and used as sustainable and clean energy. Wind,

solar and other renewable energy naturally have the char-

acteristics of intermittence and volatility, thus renewable

energy generation will inevitably produce power fluc-

tuations to the grid. When large-scale renewable energy

connects to the grid, how to stabilize the fluctuation and

improve the renewable energy integration ability of the

grid becomes a serious problem. With the improvement in

the EV technology and rapid rollout of EVs, EV charging is

likely to have significant impact on the grid [1, 2].

Therefore, it is important to manage and influence EV

charging behaviors in a controlled manner so as to reduce

their impact. The controlled EV charging strategy can also

improve the load characteristics of the grid, smooth the

fluctuation of wind and solar power outputs, and optimize

peak-valley of the grid load.

For the study of EV controlled charging and related

fields, some results have been published. From the per-

spective of operation benefits of the charging station and by

responding to the time-of-use (TOU) price of the grid, [3]

uses the control methods of controlled charging to improve

the economic benefits of charging stations, but it does not

consider smoothing load fluctuations of the grid, it may

result in an additional peak at night. Reference [4] proposes

an optimized model for TOU price time-period. It uses the

controlled charging of EVs to cut the peak and fill the

valley of the power grid load curve, but it does not consider

the value of peak-valley price and demand side response.
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Reference [5] considers reducing the peak-valley differ-

ence as the primary goal, taking into account the division

of TOU periods and load fluctuations of the local distri-

bution network. It does not consider the influence of the

wind, solar and other new energy power on the grid load

characteristics. Reference [6] establishes a mathematical

model of dispatching EVs and wind power cooperatively,

analyses the feasibility of dispatching the EV charging to

smooth the load fluctuations and to consume the superflu-

ous wind power at night. However, the paper does not

propose specific solutions for controlled charging from the

point of demand side response.

This paper develops a probabilistic model of wind and

photovoltaic (PV) power outputs, and a method of assess-

ing the peak-valley difference of the stochastic load curve

is put forward. A two-stage peak-valley price model is

constructed and is used to guide EV charging, an opti-

mization model is built, in which genetic algorithms are

used to determine the start and end time of the valley price,

as well as the value of the peak-valley price.

2 Controlled EV charging based on demand side

response

2.1 Two-stage model of peak-valley price

Firstly, the two-stage peak-valley price model is built

for controlled EV charging as follows:

fp tð Þ ¼ Pv t1\ t\ t2
Pp else

�
ð1Þ

where Pv is the price of valley period; Pp is the price of

peak period; t1 is the start time of valley period; t2 is the

end time of valley period.

In this paper, the peak-valley rate b is defined as:

b ¼ Pp � Pv

P0

ð2Þ

where P0 is the grid original tariff when TOU pricing

policies are not implemented.

2.2 Analysis of user response

With the increasing of b, the user response has three

stages, as shown in Fig. 1. In the first stage, b is in the

interval (0, a), users choosing to charge in valley period for

tariff factor are very few. In the second stage, when b
reaches a certain value, with the increasing of b, more and

more users choose to charge in valley period for the price

factor. In the third stage, the number of users choosing to

charge in valley period stops increasing. In the figure,

k = n/N is the ratio of the responding EV users, in which

n is the number of EVs charged in valley period and N is

the total number of EVs.

The EV users’ responsiveness to the peak-valley rate b
is also affected by the time.

Tp þ Ty þ Td ¼ 24 ð3Þ

where Tp is the period that users’ driving demand for EVs

is urgent; Ty is the period that users’ driving demand for

EVs is common; and Td is the period that users’ driving

demand for EVs is low.

In different periods, users’ response to peak-valley rate

b is different, as shown in Fig. 2.

So, EV users’ price response function should be a three-

dimensional surface which contains peak-valley rate b and

time, as shown in Fig. 3.

The responding users’ start time of charging is described

by the formula:

ts ¼
t1 þ aðt2 � tcÞ 0� tc\ t2 � t1
t1 else

�
ð4Þ

where ts is the start time of charging; tc is the duration of

charging; and a is a random number in interval (0,1).

When the charging time is shorter than the valley period,

users will choose any time in the valley period that EV can

be fully charged, and when the charging time is longer than

the valley period, users will choose the start time of valley

period to charge.

λ

c

b β0 a

Fig. 1 Schematic diagram of user response
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Fig. 2 Responding curve considering driving demand factors
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3 Probabilistic model of regional wind and PV power

3.1 Load curve transformation when renewable energy

is superimposed on

If a area has n wind farms, the number of wind turbines

in farm i is Ni (i = 1,2,_,n) and the farm has m PV power

stations, the number of PV modules in PV station j is Mj

(j = 1, 2,_, m), the following assumptions are made.

1) In the same wind farm, the relationship between the

outputs of different wind turbines is strongly correlat-

ed, the correlation coefficient is 1; and the relationship

between the outputs of different wind farms is

mutually independent, the correlation coefficient is

thus 0.

2) Similarly, in the same PV station, the relationship

between the outputs of different PV modules has a

correlation coefficient of 1; and the relationship

between the outputs of different PV stations is

mutually independent with correlation coefficient

equal to 0.

3) The relationship between the outputs of PV stations

and wind farms is mutually unrelated, the correlation

coefficient is 0.

Then for wind farm i, its total output is Pi ¼ NiPw, in

which Pi is the total output of the wind farm i, Pw is the

output of a single wind turbine. Similar results could be

obtained for PV stations.

According to the methods in [7], when wind speed

meets the Weibull distribution, assuming the active power

outputs of wind farms are random variables, based on the

historical data, we can get their semi-invariants di, i = 1,

2,_,n. Similarly, when light intensity meets the Beta dis-

tribution, based on the historical data, the semi-invariant of

the active power output of PV station j is ej, j = 1, 2,_,

m.

Since the active power outputs of n wind farms and

m PV stations are mutually independent, based on the

additivity of the semi-invariant, the semi-invariant of the

regional total active power output is:

c ¼
Xn
i¼1

di þ
Xm
j¼1

ej ð5Þ

where c is the semi-invariant of the regional total active

power output.

In this paper, we consider that the distribution of wind

speed and light intensity are different at different times of

the day. Based on the historical hourly data, we can divide

one day into 24 parts, therefore, 24 pairs of expectation l
and standard deviation r for wind speed and light intensity

can be obtained, respectively, and we can get 24 Weibull

distributions and 24 Beta distributions.

Therefore we can get 24 semi-invariants of the regional

total power output:

ck ¼
Xn
i¼1

dki þ
Xm
j¼1

ekj ð6Þ

where ck is the semi-invariant of the regional total active

power output of the time k, k = 1,2,_,24.

In turn, by the Gram–Charlier expanding [8, 9], for the

random variables of the regional total active power outputs,

their probability density function fk(x) and cumulative

distribution function Fk(x) can be obtained, as shown in

Fig. 4 (the semi-invariant of the curve is got from the
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historical data of wind speed and light intensity in the

certain area).

Generally, the random variable falls inside the interval

(lk - 3rk, lk ? 3rk), which can be considered, for the

total active power outputs of wind farms and PV stations,

the minimum is lk - 3rk, and the maximum is lk ? 3rk,
k = 1,2,_,24.

Figure 5 is a typical daily load curve of a certain area,

when regional wind and PV power outputs are superim-

posed on it, the composite load curve is shown in Fig. 6. So

the load curve is no longer deterministic, it is a random

curve inside the ‘load belt’ and meets certain probabilistic

rules, as shown in Fig. 7.

3.2 Impact of unordered charging

So when large-scale EVs get charged in an uncontrolled

manner, using the Monte Carlo simulation method of [10],

the load curve of uncontrolled charging can be obtained.

When there are one million uncontrolled charging EVs in a

certain city, its ‘load belt’ is shown in Fig. 8.

It can be obtained from Fig. 8 that, the charging peak

would appear near the peak of the original load, resulting in

the lifting of the original ‘load belt’ peak, and the peak-

valley difference gets bigger.

3.3 Probabilistic model of wind and PV power outputs

In every hour, the load is a random value between the

minimum and the maximum, and its derivation process of

the probability density function is as follows.

In Fig. 9, at time t, t = 1, 2,_,24, if the random vari-

able of load is Lt. Lt is a random value between point b and

c. Point a corresponds to the original load of the grid, its

value Lta is determined; point b corresponds to the load

when total outputs of wind farms and PV stations are

maximum, its value is Ltb; point c corresponds to the load

when total output is minimum, it is Ltc. The relations

among them are:

Ltc ¼ Lta � ðlt � 3rtÞ
Ltb ¼ Lta � ðlt þ 3rtÞ
Lt ¼ Lta � Ct

8<
: ð7Þ
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Fig. 5 A typical daily load curve of a certain area
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where Ct is the random variable of the total output of wind

farms and PV stations at time t, probability density func-

tion of Ct is ft(c) (the method of calculating ft(c) has been

explained before), the probability density function of ran-

dom variable Lt is gtðlÞ ¼ ft Lta � lð Þ, in which l is the value

of Lt.

In the above process, the probabilistic model of wind

and PV power outputs is built, thus, for each of the 24 time

points of the ‘load belt’, the probability density function of

the random variable has been obtained [11–13].

4 Method of assessing peak-valley of uncertain load

curve

When regional wind and PV power outputs are super-

imposed on, the load curve is no longer deterministic, it is a

random curve inside the ‘load belt’ [14]. This paper pro-

poses a probabilistic method to assess the peak-valley

difference.

If the random variable of load at t1 is Lt1, its probability

density function is gt1(l), and at t2, the probability density

function of Lt2 is gt2(l), assume that lt2 [ lt1, then:

P
Lt2 � Lt1

Lt2
� h

� �
¼ P 1 � hð ÞLt2 � Lt1 � 0ð Þ ð8Þ

In this paper, we refer to h as the peak-valley difference

index. Therefore, assume that random variables Lt1 and Lt2
are mutually independent, and if L0 ¼ 1 � hð ÞLt2 � Lt1,

then by using the additivity of the semi-invariant, the

cumulative distribution function of L0 can be obtained from

gt1(l) and gt2(l), we write it FF(l), therefore:

P 1 � hð ÞLt2 � Lt1 � 0ð Þ ¼ P L0 � 0ð Þ ¼ FF 0ð Þ ð9Þ

Firstly, calculate the expectations of the 24 random

variables at 24 time points, select the first three maximum

points as the possible ‘peak’ time points and the last three

minimum points as the possible ‘valley’ time points, then

use P ðLt2 � Lt1Þ=Lt2 � hð Þ to calculate the three pairs of

time points above. Choose the minimum of the calculation

results as the final value of Ph, Ph is the probability that

peak-valley difference is less than or equal to the certain

peak-valley difference index h:

Ph ¼ P
Ltp � Ltv

Ltp
� h

� �
ð10Þ

where Ltp is the random variable of load at ‘peak’ time; Ltv
is the random variable of load at ‘valley’ time. As the

interval between random variables Ltp and Ltv is long, they

can be considered mutually independent [15, 16].

To illustrate Ph can effectively reflect the value of the

peak-valley difference, for the first graph in Fig. 10,

P
ð1Þ
h ¼ P ðLtp � LtvÞ=Ltp � h

� �
, and the second graph

P
ð2Þ
h ¼ P ðLtp � LtvÞ=Ltp � h

� �
, we can get the Table 1.

It can be seen from Table 1 that, for every peak-valley

difference indices, P
ð1Þ
h \P

ð2Þ
h is right. Therefore it can be

concluded that, there is a positive correlation between Ph

and the peak-valley difference of the uncertain load curve,

the bigger the value of Ph is, the smaller the peak-valley

difference (peak-valley difference rate) is, and the flatter

the load curve is.

5 Optimization model

Based on the ordered charging model, the power supply

side guides the charging of EVs by formulating Pp and Pv,

and delimiting the start and end time of valley period t1
and t2.
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Fig. 10 Two different ‘load belts’

Table 1 Ph corresponding to different peak-valley difference indices

of two load curves

h/% P
ð1Þ
h P

ð2Þ
h

25 0 0.120

30 0 0.542

35 0.365 0.750

40 0.721 0.905

50 0.917 1.000
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If the total number of EVs is N, corresponding to every

(Pp, Pv, t1, t2), there are kN EVs choose ordered charging,

its load curve is fo; (1 - k)N EVs choose unordered

charging, its load curve is ff; the ‘load belt’ superimposed

on the regional wind and PV power outputs is fb, then

corresponding to the (Pp, Pv, t1, t2), the ‘load belt’ is

f = fb ? fo ? ff, it is meaningful and important to find

the (Pp, Pv, t1, t2) that can make the peak-valley difference

of the f minimum, that is to make the Ph of f maximum.

Through the above analysis, we know k is a function and

t1, Dt, b are its independent variables, Dt is the duration of

valley period, Dt = t2 - t1.

k ¼ f ðt1;Dt; bÞ ð11Þ

Therefore, in order to optimize the peak-valley

difference, the following optimization model is built:

maxPh t1;Dt; bð Þ

s.t.

0� t1 � 24

0\Dt\12

0\b\blim

8><
>:

ð12Þ

To take the maximum Ph as the target, and use genetic

algorithms to determine the start time t1 and the duration of

valley period Dt, as well as the peak-valley rate b.

The flow chart of genetic algorithm optimization and

objective function is shown in Fig. 11.

6 Case study

In this example, the typical daily load curve of a city is

selected as the basis. By assuming the specific parameters

of its wind farms and PV stations, and based on the his-

torical data, we assume the city has one million EVs. EV

constant charging power is Pc = 2.5 kW.

In this example, when driving demand is different,

users’ response to peak-valley rate b is shown in Fig. 12.

When driving demand is common, the response curve is the

average of the two curves. The maximum value is

blim = 1.5.

At different time, users’ driving demand for EVs is

different in a day, so we divide one day into three periods

according to EV users’ schedule of the city: �Tp: the pe-

riod that users’ driving demand for EVs is urgent

(7:00–10:00 and 16:00–20:00); `Ty: the period that users’

driving demand for EVs is common (22:00–7:00); ´Td: the

period that users’ driving demand for EVs is low

(10:00–16:00 and 20:00–22:00).

According to the above parameters, the genetic algo-

rithm toolbox of MATLAB is used to achieve the

simulation, the optimization results are shown in

Table 2.

From the above results, it can be seen that, for different

peak-valley difference indices, an optimization result (t1,

Dt, b) can be got corresponding to it, as shown in

Fig. 13.

Take the optimization result when h = 35% as an ex-

ample, (t1, Dt, b) is (0.926, 6.4787, 1.1822).

After using the genetic algorithm to optimize Ph, the

probability that the peak-valley difference is less than or

equal to 35% is 79.69%, in the valley period of load, after

guiding EV ordered charging, the load increases. It can be

intuitively seen from Fig. 13b that, the optimized ‘load belt’

Generate initial population 
within the range domain 

(t1, t, β)

Call the calculation program of 
probability value  to calculate each 

population  and record the maximum 

Whether meet the 
planed algebra ?

Calculation applicable value 
and sorting, selection, 
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According to the fitness 
value of heavy insert new 
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update the algebraic ounter

Output result

Y

N
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is ζb, the ‘load belt’ corresponding 

to the (t1, t, β) is ζ=ζb+ζo+ζf

Calculate the Pθ of the ‘load belt’ ζ as
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Return the result of the objective function

Accept the parameter
(t1, t, β) from the main 
function, and determine 

the EV number N

Calculate λ=(t1, t, β), and get 
the unordered charging load 

curve ζf and ordered 
charging load curve ζo

Fig. 11 Flow chart of genetic algorithm optimization and objective

function

Table 2 Optimization results

h/% t1 Dt/h b k/% Ph/%

40 01:34 7.5465 1.0914 80.1 89.8

35 00:55 6.4787 1.1822 70.1 79.6

30 01:04 7.0562 1.1093 80.0 65.6
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Fig. 12 Response curves in different driving demands
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tends to be smooth. It can be obtained from the optimization

results that, when considering the regional wind and PV

power outputs, the method of ordered charging in this paper

can effectively optimize the peak-valley difference.

7 Conclusion

Through the probabilistic model of regional wind and PV

power outputs and the model of peak-valley price in two-

stage, this paper solves the problem of large scale EV ordered

charging. Furthermore, it achieves the goal of stabilizing the

power fluctuations caused by the regional wind and PV

outputs and optimizing the peak-valley difference in the gird.

As analyzed above, the effectiveness and rationality of the

models and methods have been proved.
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