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Abstract The linearized pressure Poisson equation (LPPE) is used in two and three spatial dimensions in the
respective matrix-forming solution of the BiGlobal and TriGlobal eigenvalue problem in primitive variables on
collocated grids. It provides a disturbance pressure boundary condition which is compatible with the recovery
of perturbation velocity components that satisfy exactly the linearized continuity equation. The LPPE is
employed to analyze instability in wall-bounded flows and in the prototype open Blasius boundary layer flow.
In the closed flows, excellent agreement is shown between results of the LPPE and those of global linear
instability analyses based on the time-stepping nektar++, Semtex and nek5000 codes, as well as with those
obtained from the FreeFEM++ matrix-forming code. In the flat plate boundary layer, solutions extracted
from the two-dimensional LPPE eigenvector at constant streamwise locations are found to be in very good
agreement with profiles delivered by the NOLOT/PSE space marching code. Benchmark eigenvalue data are
provided in all flows analyzed. The performance of the LPPE is seen to be superior to that of the commonly
used pressure compatibility (PC) boundary condition: at any given resolution, the discrete part of the LPPE
eigenspectrum contains converged and not converged, but physically correct, eigenvalues. By contrast, the PC
boundary closure delivers some of the LPPE eigenvalues and, in addition, physically wrong eigenmodes. It
is concluded that the LPPE should be used in place of the PC pressure boundary closure, when BiGlobal or
TriGlobal eigenvalue problems are solved in primitive variables by the matrix-forming approach on collocated
grids.

Keywords Global linear instability · Matrix-forming · Collocated grids · Pressure boundary conditions

1 Introduction

Global linear instability theory is enjoying increasing acceptance in the fluid mechanics community, as also
witnessed by the contents of this volume. The theory has permitted revealing previously unknownmechanisms
responsible for laminar-turbulent flow transition in complex three-dimensional geometries withmaximally one
homogeneous spatial direction. Two main approaches are followed for the numerical work associated with
modal and non-modal global linear instability analysis, namely matrix-forming vs. time-stepping, both of
which have been discussed in a recent review [61]. The matrix-forming approach is interesting when dealing
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with a new configuration or parameter range, since it ensures access to a large part of the eigenspectrum,
computation of which scales linearly with the size of the Krylov subspace dimension chosen. This advantage
may outweigh the shared-memory requirements and parallelization issues arising from the discretization and
storage of large matrices. The present contribution is devoted to one specific, but important, aspect of the
matrix-forming approach, namely the boundary condition to be imposed on the pressure perturbations in the
incompressible limit, if the primitive-variable formulation is used and both perturbation velocity components
and pressure perturbation are collocated on the same grid.

The issue of boundary conditions for a pressure perturbation that ensures flow incompressibility is typically
absent in time-stepping methods, since it has been dealt with in the direct numerical simulation code used, e.g.,
by time-advancing velocity fields that satisfy the continuity equation, as done in the nektar++ [10,30], nek5000
[13,16] or Semtex [7] spectral element codes. The analogous procedure of weak formulation of the equations
of motion, followed in the finite-element package FreeFEM++ [25], ensures that no issues exist regarding
appropriate boundary conditions for the pressure perturbation, when this package is adapted to perform global
linear instability analysis [12,17,32,53].

In a matrix-forming context, the problem of determining correct pressure boundary conditions can be
circumvented when the flow to be analyzed comprises only a base flow velocity component along the homo-
geneous spatial direction. In that case cross-differentiation of the governing equations permits elimination
of the pressure perturbation, at the cost of increasing the order of derivatives to be discretized numerically.
The two-dimensional analog of the Orr–Sommerfeld equation arises, first derived and solved by Tatsumi and
Yoshimura [54]. In this relatively simple geometry spectral methods are optimally employed to discretize the
governing equations using basis recombination techniques which exactly satisfy the Dirichlet and Neumann
type of perturbation velocity boundary conditions [8,54,67] at the expense of a relatively large number of
nodes needed for the accurate representation of the resulting third- and fourth-order derivatives. When base
velocity components additional to that along the homogeneous spatial direction are present the advantage
of eliminating pressure perturbation is lost and the linearized Navier–Stokes equations in primitive variables
must be closed with a priori unknown boundary conditions for the pressure perturbation. In this situation,
another means of circumventing the need for pressure boundary conditions has been discussed in the literature
on incompressible direct numerical simulation using high-order methods [28,29], where a staggered grid for
pressure is used. Using spectral collocation on staggered grids, the momentum equations are collocated and
solved on two-dimensional tensor-product grids based on extremum (e.g., Gauss–Lobatto) gridpoints, con-
tinuity is solved on interior (e.g., Gauss) gridpoints and spectral interpolation operators are used in order to
transfer velocity from the extremum onto the interior grid and vice versa [40]. This approach has been used
successfully in the context of global instability analysis by Theofilis and Colonius [62] to obtain eigenvalue
problem results in a compressible flat plate boundary layer as limiting validation cases of the algorithm used
for the solution of the BiGlobal eigenvalue problem in compressible open cavity flow1

When a collocated scheme for the disturbance velocity and pressure eigenfunctions is used, boundary
conditions for the latter quantity must be provided at the (solid or open) domain boundary. Some guidance
regarding the appropriate choice of these boundary conditions may be sought in the persisting discussion in
the incompressible direct numerical simulation community [21,47] where solutions are being proposed for
the analogous problem of pressure boundary conditions that ensure satisfaction of continuity; a full discussion
can be found in the excellent review article of Rempfer [47]. Two of the key ideas in the latter work, namely
that:

...it is illegal to write down the momentum equation taken at the boundary and derive a pressure
boundary condition from it by simply projecting the result on the wall-normal coordinate...

and, further,

...to close a differential problem, the boundary conditions need to provide some additional information
that is not already contained in the field equations...

are relevant to the discussion that follows. It should, however, be stressed that in the present matrix-forming
context the issues arising from the splitting formulation of the incompressible equations of motion, where
inappropriate use of pressure boundary conditions in the time-integration algorithm may violate mass con-
servation, are not directly related to the boundary conditions to close the linearized Navier–Stokes system.
Pressure compatibility (PC) boundary conditions, derived from the momentum equations and collocated at

1 The reader is warned that a misprint exists in the equations presented in [62] which global instability analysis practitioners
have, unfortunately, copied alongside the equations in subsequent work.
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the wall, have been shown to perform well in classic linear stability analysis [41] and their extension in two
spatial dimensions is the natural candidate to provide the sought closure of the system of linearized equations
of motion; indeed, these conditions have been used successfully in the global instability analysis of a number
of well-studied incompressible flows [35,36,57,63,64].

On the other hand, various forms of the pressure Poisson equation have been used in order to provide
boundary conditions consistent with mass conservation in algorithms for the solution of the incompressible
Navier–Stokes equations. This equation could be considered as providing the additional information in the
sense of [47]. This paper discusses the derivation and implementation of an appropriate linearized pressure
Poisson equation (LPPE) to provide boundary conditions for the pressure perturbation in closed and open
flows with two or three inhomogeneous spatial directions. Section 2 presents the derivation of the LPPE in the
context of incompressible BiGlobal and TriGlobal analysis. In Sect. 3, instability analysis results of the LPPE
boundary closure are compared in terms of eigenspectra and amplitude functions with solutions of the two-
and three-dimensional eigenvalue problem obtained herein using the nektar++, Semtex and nek5000 time-
stepping codes, as well as the FreeFEM++matrix-forming code, as applied to wall-bounded flow examples in
which only discrete eigenspectra exist. In addition, results of the two-dimensional eigenvalue problem subject
to the LPPE and PC boundary closures are obtained in the incompressible flat plate boundary layer, which
comprises both a discrete and a continuous eigenspectrum; here results extracted from the two-dimensional
eigenfunctions are compared with profiles predicted by the NOLOT/PSE code. All results obtained establish
the LPPE boundary closure as a reliable means of closing the BiGlobal or TriGlobal EVP and demonstrate its
superior performance over the PC boundary closure. A short discussion summarizes the findings in Sect. 4.

2 Theory

2.1 Modal linear BiGlobal analysis

Linear modal global instability analysis of incompressible flows developing in domains in which one spatial
direction, z in Cartesian coordinates, can be considered homogeneous, can be performed by substituting the
decomposition

q(x, y, z, t) = q̄(x, y) + εq̂(x, y)ei(βz−ωt), ε � 1 (1)

into the incompressible Navier–Stokes and continuity equations. In the most general case, the base flow
comprises all three velocity components and pressure, q̄ = (ū, v̄, w̄, p̄)T, and the linearized systemof equations
governing modal BiGlobal instability reads [60]

ûx + v̂y + iβŵ = 0, (2)[
1

Re

(
∂xx + ∂yy − β2) − ū∂x − v̄∂y − iβw̄ − ūx

]
û − ū y v̂ − p̂x + iωû = 0, (3)

−v̄x û +
[

1

Re

(
∂xx + ∂yy − β2) − ū∂x − v̄∂y − iβw̄ − v̄y

]
v̂ − p̂y + iωv̂ = 0, (4)

−w̄x û − w̄y v̂ +
[

1

Re

(
∂xx + ∂yy − β2) − ū∂x − v̄∂y − iβw̄

]
ŵ − iβ p̂ + iωŵ = 0. (5)

Solution of the linearized Navier–Stokes equations (LNSE) defined by system (2–5) for the determination
of the two-dimensional velocity and pressure amplitude functions, q̂ = (û, v̂, ŵ, p̂)T, may be sought in either
a temporal (β ∈ R, ω ∈ C) or spatial (β ∈ C, ω ∈ R) framework. In either case, conditions for both
the perturbation velocity field and the perturbation pressure p̂ must be provided at the domain boundary.
Boundary conditions for the velocity depend on the type of domain boundary considered. At solid walls,
no-slip is straightforwardly imposed through homogeneous Dirichlet conditions on all components of the
perturbation velocity vector. The same type of conditions are also imposed at the inflow boundary of open
domains, when the analysis aims at excluding perturbations from entering the computational domain [65].
Vanishing of linear perturbations is also imposed at far-field boundaries, if the latter are taken far away from
solid surfaces, although it should be stressed that, much like the situation in classic linear stability theory,
this choice misrepresents or altogether eliminates the continuous branch of perturbations oscillatory to infinity
[49,56]. At open outflow boundaries, it is in principle unclear what form the perturbation velocity may assume,
although linear extrapolation from the interior has been found to not only work well, but also to have little
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effect on the form of linear perturbations in the interior of the domain, when the latter is analytically known
[64]. Assuming that the three velocity components provide boundary conditions for three equations in the
system (2–5), a boundary condition for the pressure perturbation, consistent with the role of this Lagrangian
multiplier in enforcing incompressibility of the disturbance velocity field, needs to be supplied in order to
close the system.

2.2 Modal linear TriGlobal analysis

When all three spatial directions are inhomogeneous, the modal linear stability theory Ansatz reads

q(x, y, z, t) = q̄(x, y, z) + εq̂(x, y, z)eωt , ε � 1. (6)

Substitution of (6) into the incompressible Navier–Stokes and continuity equations leads to the TriGlobal
eigenvalue problem

ûx + v̂y + ŵz = 0, (7)[
1

Re

(
∂xx + ∂yy + ∂zz

) − ū∂x − v̄∂y − w̄∂z − ūx

]
û − ū y v̂ − ūzŵ − p̂x + ωû = 0, (8)

−v̄x û +
[

1

Re

(
∂xx + ∂yy + ∂zz

) − ū∂x − v̄∂y − w̄∂z − v̄y

]
v̂ − v̄zŵ − p̂y + ωv̂ = 0, (9)

−w̄x û − w̄y v̂ +
[

1

Re

(
∂xx + ∂yy + ∂zz

) − ū∂x − v̄∂y − w̄∂z − w̄z

]
ŵ − p̂z + ωŵ = 0. (10)

The real TriGlobal eigenvalue problem defined by (7–10) can be solved for the determination of the eigen-
values ω ∈ C and the three-dimensional amplitude functions q̂ = (û, v̂, ŵ, p̂)T. While boundary conditions
for the perturbation velocity components can be determined in a relatively straightforwardmanner as discussed
in the previous section, a boundary condition for the pressure perturbation is again unknown.

2.3 The linearized pressure Poisson equation (LPPE)

The information to be used for the pressure perturbation at the boundary, which is independent of the field
equations [47], is provided by the pressure Poisson equation

�p + ∇ · ((u · ∇)u) = 0, (11)

which is obtained from the incompressible Navier–Stokes equations after taking the divergence of the momen-
tum equation and applying continuity to eliminate the time derivative and the viscous term. Substituting the
linear decomposition (1) into (11) and assuming that the terms at O(1) are identically satisfied by the base
flow, at O(ε) the linearized pressure Poisson equation in two inhomogeneous spatial directions is obtained,

(
∂2

∂x2
+ ∂2

∂y2
− β2

)
p̂ + 2

(
ūx

∂

∂x
+ v̄x

∂

∂y
+ iβw̄x

)
û + 2

(
ū y

∂

∂x
+ v̄y

∂

∂y
+ iβw̄y

)
v̂ = 0. (12)

The same equation is obtained if (3) and (4) are differentiated w.r.t. x and y, respectively, the result is added
to (5) multiplied by the factor iβ and use of the base flow continuity equation as well as (2) is made.

In a TriGlobal analysis context, decomposition (6) is introduced into equation (11) leading to the three-
dimensional linearized pressure Poisson equation(

∂xx + ∂yy + ∂zz
)
p̂ + 2

(
ūx ûx + ū y v̂x + ūzŵx

+ v̄x û y + v̄y v̂y + v̄zŵy

+ w̄x ûz + w̄y v̂z + w̄zŵz
) = 0, (13)

after subtraction of the base flow continuity terms and neglecting O(ε2) terms. Both of equations (12) and
(13) will be referred to in what follows as the linearized pressure Poisson equation (LPPE) since there is no
risk of confusion between the respective BiGlobal and TriGlobal contexts in which they are used.



The linearized pressure Poisson equation for global instability analysis 627

Key features of the LPPE are, firstly, the exact nature of this equation, which contrasts with approxi-
mate conditions based on expansions of a variable near a boundary, where the normal vector needs to be
approximated usually by a low-order scheme, secondly, the strong coupling between pressure perturbation,
the disturbance velocity and the underlying base flow velocity components and, thirdly, the presence of only
(better-conditioned) first-order base flow derivatives to be discretized numerically. Perhaps themost interesting
characteristic of the LPPE in both forms (12) and (13) is that it is independent of the flow Reynolds number,
since the diffusion terms of both the basic flow and the linear perturbations are eliminated by virtue of the
respective continuity equations. A noteworthy aspect of (12) in the context of BiGlobal analysis is the fact that
the perturbation velocity component along the homogeneous spatial direction does not appear explicitly and
also that all three basic flow velocity components appear, making the LPPE applicable to the limiting cases
of the wavenumber vector being parallel or normal to the plane on which the base flow develops. Another
point worth making in the case of BiGlobal analysis is the fact that in the derivation of the LPPE no use
has been made of the modal temporal Ansatz (1). This implies that this equation could in principle also be
used to perform non-modal BiGlobal instability analysis, although to date no such work has appeared in the
literature.

The LPPE-based boundary closures (12) and (13) are collocated at the (grid-conforming) boundary as
part of the spatial discretization procedure employed to solve the BiGlobal (2–5) or TriGlobal (7–10) eigen-
value problem, respectively. Unlike typical splitting schemes of direct numerical simulation, either explicit
or semi-implicit in time, in substeps of which the nonlinear coupling between pressure and velocity com-
ponents is routinely eliminated, the LPPE closure retains this coupling and ensures conservation of mass at
the level of linear flow perturbations. Depending on the type of the boundary at which it is imposed, the
LPPE may be simplified on account of tangential or normal base flow velocity components vanishing at the
boundary. This is particularly important at corners of solid walls, where no discontinuity arises. Analogously,
at a uniform free-stream, both forms of the LPPE reduce to a Helmholtz equation for the pressure perturba-
tion.

3 Results

In what follows instability analysis results in four examples of wall-bounded and open flows will be presented,
in which the temporal BiGlobal and TriGlobal eigenvalue problems will be solved using the LPPE boundary
closure. The eigenspectra in all cases analyzed are well understood from a physical point of view, which
facilitates assessment of the quality of results obtained.

Solutions to the real BiGlobal EVP which can be derived from (2–5) using a simple transformation [60]
have been obtained subject to the two-dimensional LPPE boundary closure (12) in a spanwise homogeneous
square lid-driven cavity [4,58]. On the other hand, flow driven by a constant pressure gradient in a duct of
square cross-section [54,63] is an example of wall-bounded flow, instability of which is governed by a complex
(two-dimensional) BiGlobal EVP. The open flow addressed is the classic Blasius boundary layer, in which
again a real two-dimensional EVP may be solved. In the author’s opinion, this flow is hardly appropriate as
a test bed for application of global stability analysis methods, owing to the convective nature of its instability
[27]. Nevertheless, the BiGlobal EVP has been solved by several authors with mixed degrees of success and it
is interesting to contribute here to the related discussion in the literature, by separating issues arising due to the
pressure boundary condition imposed at thewall boundary from those relatedwith the open boundary treatment.
Finally, an example of flow with three inhomogeneous spatial directions, which serves as demonstrator of
applicability of the three-dimensional LPPE (13), is the cubic lid-driven cavity [15], instability of which is
governed by the (three-dimensional) real TriGlobal EVP.

Eigenspectra obtained by the LPPE closure are compared with those delivered by two well-validated
incompressible DNS codes, nek5000 [16] and nektar++ [10], both of which feature spectral element spatial
discretization and time-stepping procedures for global instability analysis. In the case of the two-dimensional
lid-driven cavity, the matrix-forming finite-element code FreeFEM++ is also employed to solve the BiGlobal
EVP. In theBlasius flow, the nonlinear Parabolized Stability Equations (PSE) codeNOLOT [24,26], a European
industry-standard for the analysis of laminar-turbulent transition in boundary layer flows [52,55], is used to
obtain amplitude function predictions, against which those obtained by the LPPE and the pressure compatibility
boundary conditions are compared.
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Table 1 Eigenvalues of the real BiGlobal EVP in a singular square lid-driven cavity at Re = 200

β = 1 β = 5

ωr ωi ωr ωi

Ramanan and Homsy [45] 0 −0.34
Ding and Kawahara [14] 0 −0.3183
Sun and Taira (compressible) 0 −0.3297
Munday and Taira (incompressible) 0 −0.3298 ±0.4274 −0.3410
Theofilis et al. [63] 0 −0.3297 ±0.4260 −0.3404

3.1 The 2d lid-driven cavity

3.1.1 Matrix-forming solution of the real BiGlobal EVP on collocated grids

Linear instability of spanwise homogeneous flow in the square lid-driven cavity has been addressed by a
number of authors [14,45]. Theofilis [58] and Albensoeder et al. [4] were the first to independently discover
unstable eigenvalue branches subcritical to those known up to that time and present the critical conditions of the
square [4,58] and rectangular [63] cavity. As mentioned, from a numerical point of view, in this wall-bounded
flow the base flow develops on a plane perpendicular to the wavenumber vector, which permits reducing the
complex global eigenvalue problem into one with real coefficients and thus halve the memory requirements
for the storage of the discretized matrix [60]. From the point of view of the boundary closure based on the
LPPE, the lid-driven cavity flow includes gradients of the base flow velocity components ū(x, y) and v̄(x, y),
which will be absent in the example to be considered in the next section, but their inclusion was found to be
essential for the success of the present analysis.

Instability in the square two-dimensional lid-driven cavity flow has been recently addressed by Taira and
co-workers (personal communication), who obtained base flows using modified versions of the incompressible
Cliff and the compressible CharLES 2 codes [9,22,23,31], while their stability analysis was performed by an
in-house matrix-forming code [42]. Table 1 presents comparison of results already shown in reference [63],
where a fully spectral algorithmwas used for both the base flow computation and the solution of the eigenvalue
problem. In addition, this table presents recently obtained (unpublished) results from the Taira group and it
may be seen that the agreement with the reference results [63] is remarkable.

While the above results have been obtained using the singular version of the cavity so as to facilitate
comparisons with earlier work, flow resulting from a regularized version of the lid motion is discussed next.
In the regularized lid-driven cavity, the uniform lid motion of its standard (singular) counterpart is replaced by
the two-dimensional version of the analytic function proposed by Leriche et al. [33],

ū(x, y = 1) = [
1 − (2x − 1)p

]2
, (14)

using p = 16. This choice delivers a base flow which is close to that of the singular configuration, while
it facilitates exponential convergence of the spectral collocation method used to solve the two-dimensional
equations of motion, the latter discussed in [60]. The PC equations (16) need to be modified to account for the
nonzero base flow lid-velocity and gradients and become

p̂x =
[

1

Re

(
∂xx + ∂yy − β2) − ū∂x

]
û, and p̂y =

[
1

Re

(
∂xx + ∂yy − β2) − ū∂x − v̄y

]
v̂ (15)

The real system which results from the linearized Navier–Stokes equations (2–5) after the transformation
discussed in [60] is used has been collocated on a two-dimensional grid of mapped Chebyshev–Gauss–Lobatto
spectral nodes. Either of the LPPE (12) or the PC (15) was used to provide boundary closure. A reasonably
large Krylov subspace dimension of 100 was used in a hard-coded version of the Arnoldi algorithm, while at
the low Reynolds number considered, resolutions of 40 points per spatial direction were employed for both of
the LPPE and PC results that will be discussed in Sect. 3.1.3.

2 At lid Mach number Mlid = 0.025.
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Fig. 1 Comparison of eigenspectra in the two-dimensional lid-driven cavity flow at Re = 200, β = 1, obtained using the LPPE
and PC boundary closures, as well as the nektar++ time-stepping and the FreeFEM++ matrix-forming codes. The first five
converged eigenvalues indicated on the plot are shown in Table 2

3.1.2 Matrix-forming using FreeFEM++ and time-stepping using nektar++ and Semtex

In this section, instability analysis results have been obtained using two alternativemethodologies, one based on
the finite-element package FreeFEM++ [12,25] and one using time-stepping, as implemented in the (indepen-
dent) direct numerical simulation codes nektar++ [10] and Semtex. All three of these codes have the capability
to compute the base flow using their respective spatial discretization techniques, which are also employed for
the solution of the eigenvalue problem. The latter is solved in FreeFEM++ by a matrix-forming approach,
while in nektar++ and Semtex [7] the time-stepping algorithm discussed by Barkley et al. [5] is used.

TheFreeFEM++ based code used for the present instability analysis has been presented byTammisola et al.
[53] and was further validated by Lashgari et al. [32]. It uses an unstructured mesh comprising a total of 29,132
triangles and 14,787 vertices has been used to spatially discretize both the base flow of the regularized cavity
(14) and the corresponding global eigenvalue problem. This implies a total number of degrees of freedom (and
leading dimension of the matrix discretizing the EVP) of close to 2× 105. The matrix is stored in compressed
format, and linear algebra operations are performed using the UMFPACK sparse matrix library [12]. The base
flow is obtained using a Newton technique, while the eigenvalue problem is solved by calls to the ARPACK
library using a Krylov subspace dimension of 30.

In nektar++, spatial discretization employed a structured mesh comprising 182 elements, clustered toward
the cavity walls. In each direction within an element, a polynomial of degree 5 ≤ p ≤ 11 was used to ensure
spatial convergence. The steady laminar base flow was computed by time-marching the equations of motion
until convergence in time was obtained at t ≈ 150. Instability analysis was performed using the HalfMode
option, corresponding to a real BiGlobal EVP. A hard-coded version of the Arnoldi algorithm with a Krylov
subspace dimension of 80 was used for the iterative solution of the EVP, in which the unsteady linearized
equations of motion were marched in time with a time-step of �t = 10−2 within 0 ≤ t ≤ 1, until a prescribed
tolerance of τ = 10−5 was reached in the desired eigenvalues.

3.1.3 Comparisons

Figure 1 shows the leading members of the eigenspectra obtained using the LPPE, FreeFEM++, nektar++,
Semtex and PC discussed in the previous two sections; the practically identical results obtained by nektar++
and Semtex have been represented by a single symbol. The most striking feature of this figure is the very
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Table 2 The five least damped eigenmodes of the square lid-driven cavity flow at Re = 200 and β = 1. Modes I and IV are
stationary

Solution method Mode I Mode II Mode III Mode IV Mode V

ωi ωr ωi ωr ωi ωi ωr ωi

nektar++, TS −0.32802 ±0.17243 −0.49998 ±1.06250 −0.55116 −0.76389 ±0.47040 −0.90799
Semtex, TS −0.32801 ±0.17243 −0.49997 ±1.06250 −0.55116 −0.76392 ±0.46971 −0.90808
FreeFEM++, MF −0.32886 ±0.17373 −0.50073 ±1.06414 −0.55171 −0.76280 ±0.46943 −0.91272
LPPE, MF −0.32981 ±0.17307 −0.50175 ±1.06338 −0.55062 −0.76043 ±0.46871 −0.91228
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Fig. 2 Lid-driven cavity at Re = 200, β = 1. Amplitude functions of the least damped LPPE eigenmode (upper row) corre-
sponding to (ωr, ωi) = (0, −0.3299) and those of the least damped mode obtained by the PC (lower row). Left-to-right columns
isolines of û(x, y), v̂(x, y), ŵ(x, y), p̂(x, y)

good agreement between the results of the first three methodologies. The respective algorithms underlying
the solution of the real BiGlobal EVP use spectral collocation, second-order finite-elements, or spectral/hp
element spatial discretization and enforce continuity either strongly (LPPE) orweakly (FreeFEM++, nektar++
and Semtex). All approaches employ Arnoldi iteration to resolve the eigenspectrum in the neighborhood of
ω = (0, 0) but use different sizes of the Krylov subspaces that they, respectively, construct. Despite these
algorithmic differences, the three approaches produce an identical number of eigenvalues within any given
radius, both at the present conditions and others not shown here for brevity. The leading five eigenvalues
indicated as Mode I–V in Fig. 1 are presented in Table 2.

By contrast, the eigenspectrum obtained by imposition of the pressure compatibility equations (15) is seen
to deviate substantially from the result of the other three approaches. While the leading part of the LPPE
eigenspectrum is converged at the 402 resolution utilized, its PC counterpart is still sensitive to resolution.
Visual inspection of the amplitude functions of the respective leading eigenmodes, shown in Fig. 2, verifies
the non-physical nature of the least damped member of the PC eigenspectrum and provides a hint as to the
origin of the discrepancy. Oscillations near the top and downstream cavity walls are visible in the p̂ amplitude
function delivered by the PC closure, although the overall field shape of this eigenfunction is similar to the
pressure perturbation delivered by the LPPE (12). The latter amplitude function is smooth at the interior and,
more importantly, at all of the stationary and moving cavity walls.

It can also be seen in Fig. 1 that some eigenvalues obtained by the PC closure are close (Modes II and
V) or even agree very well (Mode III) with the correct results obtained by the other three methodologies. If
resolution is increased, agreement improves further, and it could be speculated that the origin of the numerical
artifacts appearing in the PC eigenspectrum is related with the strong gradients of the base flow at the corners
of the moving lid. However, analysis of the PC boundary closure is beyond the scope of the present work, the
aim of which is to establish the LPPE closure for the solution of the global eigenvalue problem on collocated
grids. The agreement of the LPPE results for the real BiGlobal EVP with those of FreeFEM++, nektar++ and
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Semtex certainly points in that direction; however, the performance of (12) in solving the complex BiGlobal
EVP or that in open flow domains also needs to be assessed; this is done next.

3.2 Instability of flow in a square duct

3.2.1 Matrix-forming solution of the complex BiGlobal EVP

Pressure-gradient driven flow in a rectangular duct is representative of the class of flows in which the basic
state comprises one steady velocity component, w̄(x, y), along the homogeneous spatial direction, aligned
with the wavenumber vector βez . The eigenvalue problem governing stability of this flow is complex and was
first solved in the classic work of Tatsumi and Yoshimura [54] as a generalization of the Orr–Sommerfeld
equation in two inhomogeneous spatial dimensions.

Here, the two-dimensional eigenvalue problem is solved by collocating the linearized Navier–Stokes and
continuity equations (2–5) on a non-staggered grid and imposing the two-dimensional LPPE (12) to provide
boundary conditions for pressure. Results are compared with those obtained by imposition of the pressure
compatibility (PC) boundary conditions which are obtained by taking both basic flow and perturbation velocity
components to vanish at the wall, such that (3–5) reduce to

p̂x −
[

1

Re

(
∂xx + ∂yy − β2)] û = 0, and p̂y −

[
1

Re

(
∂xx + ∂yy − β2)] v̂ = 0. (16)

Equations (16) are collocated at the domain boundaries x = ±1 and y = ±1, respectively, as discussed by
Theofilis et al. [63]. In both matrix-forming solutions, a spectral collocation discretization using upwards of
30 points per spatial direction is sufficient to converge the respective results.

3.2.2 DNS and time-stepping solution of the BiGlobal EVP

In order to aid identification of physically relevant EVP results from numerical artifacts introduced by the
boundary conditions, direct numerical simulations have been performed for the square duct base flow and
subsequently time-stepping solutions of the BiGlobal EVP have been obtained. Numerically obtained base
flows were compared with the analytically known [63], Reynolds number independent, spanwise component
of the steady laminar base flow,

w̄(x, y) = 1 − y2 − 4

(
2

π

)3
[ ∞∑
n=0

(−1)n

(2n + 1)3
cosh [(2n + 1)πx/2] cos [(2n + 1)πy/2]

cosh [(2n + 1)π A/2]

]
(17)

in x ∈ [−A, A] × y ∈ [−1, 1]. Choosing a periodicity length of z ∈ [0, 2π] along the spanwise direction, the
associated constant pressure gradient is also known in closed form

P̄(z) = 2

Re
(2π − z). (18)

Direct numerical simulations have been performed at Re = 100 using both the nektar++ [10] and nek5000
[16] incompressible spectral element codes in a three-dimensional duct of square cross-section, A = 1.
The length of the domain, Lz = 2π , along the homogeneous spatial direction, z, has been chosen so as to
match the fundamental wavenumber, β = 2π/Lz = 1, at which instability analysis has been performed. In
the nektar++ code, a pressure gradient along the spanwise direction, ∂ P̄/∂z = 2/Re, has been imposed,
while in the nek5000 code a constant volume flow rate Q was used to drive the flow. The linear relationship
between Q and w̄ has been verified numerically by Tatsumi and Yoshimura [54], who also presented the
value Q = 1.1264 corresponding to w̄(x = 0, y = 0) ≈ 0.58937 that (17) delivers at A = 1. Both of the
present simulations were validated against these results, in terms of recovery of the midpoint spanwise velocity
value, an inflow pressure of P̄inf = 0.12566 that is consistent with (18) when an outflow pressure P̄out = 0
is imposed, and a perfectly linear pressure decay along z. Subsequently, simulations were set up such that
w̄(x = 0, y = 0) = 1, consistently with earlier analyses [54,63]. To this end, a volume flow rate Q = 1.90816
was used in nek5000, while in nektar the above-mentioned midpoint velocity value was used to scale w̄ to
unity, leading to P̄inf = 0.21321. In both cases, simulations started with fluid at rest and the unsteady equations
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Fig. 3 Steady laminar base flow spanwise velocity component, w̄(x, y, z), and base flow pressure, P̄(x, y, z), obtained by DNS
in a rectangular duct at Re = 100

of motion were marched in time until the three-dimensional laminar steady base flow shown in Fig. 3 was
obtained; the base flow results of the two spectral element codes at the same polynomial expansion, typically
p = 7 − 9, are identical.

Instability analysis in a time-stepping context did not employ nek5000, since Fourier expansions are not
implemented in this fully three-dimensional code, which solves the present BiGlobal as a three-dimensional
eigenvalue problem. By contrast, in the nektar++ package that was used for the present analysis the homoge-
neous spatial direction, z, is expanded using a small number of 4− 8 Fourier modes and the stability analysis
is performed using the FullMode option, which solves the complex BiGlobal EVP. Additional parameters
utilized in the time-stepping context at this low Re have been a rather short integration time, T = 1, and large
value of the time-step, �t = 0.025, and a Krylov subspace dimension of 40. Convergence of the results was
achieved in less that 500 iterations.

The eigenspectra obtained by closing the governing equations with either of the LPPE or the PC boundary
conditions in a matrix-forming context, as well as the leading eigenvalues obtained by nektar++ close to the
origin, are shown in Fig. 4. In all three sets of results, all but the strongest damped members of the respective
eigenspectra are converged in their eigenvalues. Of interest in this figure are the following aspects. First,
excellent agreement can be seen between the results of the LPPE matrix-forming and the nektar++ time-
stepping methodologies for the solution of the complex BiGlobal EVP. The eigenvalues marked as Modes
I-V on this Figure are found in Table 3. Second, the results of the PC closure are in agreement with those
of LPPE and nektar++ for most of the eigenvalues, including the least damped eigenmode recovered by the
LPPE and nektar++, indicated as Mode I. However, what appears to be a branch exclusive to the PC results
is also visible and actually contains eigenvalues that are less damped than Mode I of Table 3; in the absence
of independent confirmation of the results of LPPE, the least damped member of the PC eigenspectrum could
have been mistaken as the least damped flow eigenmode.

Visual inspection of the amplitude functions corresponding to the least damped eigenmodes obtained by
the LPPE and PC closure methodologies, shown in Fig. 5, reveals that the “additional” eigenmode delivered by
the pressure compatibility condition is spurious; the same holds for all other modes found in this eigenspectrum
but not present in that delivered by the linearized pressure Poisson equation (12) or nektar++. By contrast,
eigenmodes delivered by both of the PC and the LPPE closures are well resolved and correct. Consequently, the
PC boundary closure could be used (and has been used in the literature, e.g., [63]) but care must be exercised
in analyzing its results, since there exists no a priori means of distinguishing between physically relevant and
numerically erroneous eigenmodes. In practice, one could inspect all of the physically most relevant–most
amplified/least damped members of the eigenspectrum delivered by the PC condition; however, this task,
besides not being satisfactory from a theoretical point of view, is also tedious to perform at each different
set of parameters analyzed; use of the LPPE to close the eigenvalue problem is free from such additional
post-processing, as it delivers only physically relevant eigenvalues.
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Fig. 4 Comparison of eigenspectra in square duct flow at Re = 100, β = 1, obtained using the LPPE and PC boundary closures
in a matrix-forming context, as well as time-stepping using nektar++

Table 3 The five least damped eigenmodes of the rectangular duct flow at Re = 100, β = 1

LPPE nektar++

ωr ωi ωr ωi

Mode I 0.59418 −0.14050 0.59435 −0.14071
Mode II 0.52530 −0.22519 0.52503 −0.22564
Mode III 0.80570 −0.24463 0.80582 −0.24428
Mode IV 0.71887 −0.26485 0.71924 −0.26470
Mode V 0.46237 −0.26495 0.46199 −0.26598

3.3 The flat plate boundary layer [11]

An open flow example which is used to evaluate the performance of the LPPE boundary closure for global
instability analysis is the classic laminar incompressible flow over a flat plate. From the outset, it should be
noted that the author’s point of view is that, from a physical perspective, instability analysis of the flat plate
boundary layer can optimally be performed by local and non-local linear theory tools or direct numerical
simulation. Nevertheless, the global eigenspectrum of the Blasius boundary layer has appeared several times
in the literature, on occasion together with imposition of the PC boundary closure alongside claims of excellent
agreement between two-dimensional eigenfunctions and results of the Orr–Sommerfeld equation or the linear
Parabolized Stability Equations (PSE) [6,24,26]. It was thus found interesting to highlight the differences
between the results of the LPPE and PC boundary closures in the context of this open flow configuration.

Lengths are scaled with the (finite) plate half-width, and the base flow has been obtained by incompressible
two-dimensional direct numerical simulation [11]. The two-dimensional (β = 0) temporalBiGlobal eigenvalue
problem is solved in a rectangular domain defined by x ∈ [100, 650]×y ∈ [1, 36], corresponding to aReynolds
number Re = 2400 at the beginning of the domain. The matrix-forming approach discussed by Paredes et
al. [44] is used, in which equations (2–5) are discretized by a 16th-order FD-q finite-difference method using
Nx = 601 and Ny = 101 nodes along the x− and y−directions, respectively. The eigenspectra delivered
by the LPPE and the PC closures are shown in Fig. 6, where it can be seen that, as in the closed flow cases
previously discussed, substantial differences exist. The PC spectrum is actually more unstable than that of the
LPPE and also contains unstable branches than are altogether absent in the LPPE result.
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Fig. 5 Rectangular duct at Re = 100, β = 1. Amplitude functions of the least damped LPPE eigenmode (upper row) correspond-
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Fig. 6 Comparison of eigenspectra in the flat plate boundary layer at Re = 2400, β = 0, obtained using the LPPE and PC
boundary closures

As is well known for this flow [2,48], these eigenspectra are not converged. Instead, they are both composed
of what is commonly referred to in the literature as box modes, the location of which shifts in parameter space,
depending on resolution and size of the discretized domain [48]. The reader is warned that both in matrix-
forming and in time-stepping solutions of the two-dimensional eigenvalue problem, spurious modes related
with insufficient domain length may also be present in the eigenspectrum [5]; this is not an issue in the present
example, in which a large number of Tollmien–Schlichting wave periods has been included in the calculation
domain. As is also known from non-modal analyses of the Blasius boundary layer [39,46,51,66], complete
description of the physics of linear instability in this flow requires adopting a non-modal approach, which has
been introduced in a global context by Abdessemed et al. [1]. This approach will not be followed here, since
the present focus is on performance of the boundary conditions to close the eigenvalue problem system, a
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Fig. 7 Amplitude functions on the flat plate at Re = 2400, β = 0. Left-to-right columns: isolines of û(x, y), v̂(x, y), p̂(x, y).
Upper row: LPPE result corresponding to ωLPPE = 0.121308 + 0.00739111i. Lower row: PC result corresponding to ωPC =
0.117821 + 0.00903062i

numerical issue which can also impact conclusions reached on flow instability from a physical point of view.
Instead, three types of comparisons of the results obtained by the two boundary closures will be performed.

First, the amplitude functions of two members of the LPPE and PC spectra which correspond to two
close-by eigenvalues, ωLPPE = 0.121308 + 0.00739111i and ωPC = 0.117821 + 0.00903062i are monitored
in terms of the overall shape of each component of the respective eigenvector, as well as in terms of profiles
at selected locations. The former result is shown in Fig. 7 where one may notice that, although the results are
qualitatively analogous, the LPPE eigenfunction persists at substantially larger distances along the plate; also,
oscillations are present in the far-field part of the amplitude functions delivered by the PC boundary closure,
as have been seen in both closed flow examples analyzed in the previous sections.

Second, cuts through the LPPE and PC amplitude functions at an arbitrarily chosen location along the plate,
x = 370, are presented as profiles in Fig. 8. Shown are the normalized streamwise, û(y), and wall-normal,
v̂(y), profiles close to the wall, where noticeable differences can be seen; thesemay be explained by the slightly
different eigenvalues ωLPPE and ωPC. However, as the free-stream is approached (not shown) the LPPE profile
decays smoothly while the PC result shows oscillations that increase in amplitude, as can be appreciated in
the results of Fig. 7. The question that these comparisons pose is: which global instability analysis result is
closer to that of Blasius theory?

This question is answered by the third kind of comparison performed, between predictions of the LPPE
boundary closures against results of linear PSE computations. The reasoning behind this comparison lies in
the results of the celebrated work of Bertolotti et al. [6], in which PSE predictions of the spatial evolution of
Tollmien–Schlichting (TS) waves developing in the incompressible flat plate boundary layer were shown to be
in excellent agreement with results delivered by independently performed spatial direct numerical simulation
of laminar-turbulent transition, in both of the linear and nonlinear regimes. In the PSE work performed here,
the European aeronautics industry-standard NOLOT [24,26] code has been utilized.

The PSE space marching procedure is started at x = 50, using the (complex) eigenvalue ωLPPE =
0.121308 + 0.00739111i that the LPPE analysis has delivered. The equations are marched until an arbi-
trary streamwise location, x = 370, where the streamwise perturbation velocity of the TS wave predicted
by PSE is compared with û(x = 370, y) extracted from the LPPE eigenvector shown in Fig. 7; excellent
agreement between the moduli of the respective (complex) streamwise perturbation velocity components is
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Fig. 9 The û(y) profile extracted from the LPPE result at x = 370 and compared with that delivered by linear PSE analysis at
the same location

seen in Fig. 9. Analogous results have been obtained for the remaining components of the eigenvector and
at other streamwise locations, not shown here for brevity. This result, in conjunction with the disagreement
between PC and LPPE predictions seen in Fig. 8, is supportive of use in open flows too of the LPPE boundary
closure for the numerical solution of the BiGlobal EVP on collocated grids. The convincing agreement of
the profiles obtained at all stations where such comparisons have been made underlines the fact that either
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instability analysis methodology, namely linear PSE or solution of the two-dimensional eigenvalue problem
using the LPPE boundary closure, may be used to predict linear instability physics in the open flow at hand.

It has to be stressed at this point that the intention of the manuscript is not to claim that use of the LPPE
can deliver converged spectra in open flows in general, or in the Blasius boundary layer in particular. As stated
at the beginning of this section, the author does not view solution of a two-dimensional eigenvalue problem
as the appropriate methodology to perform analysis of instability in the flat plate boundary layer. The pitfalls
of solving a two-dimensional BiGlobal EVP in boundary layer flows have been discussed by Rodríguez and
Theofilis [48], who demonstrated the sensitivity of results of 2D EVP solutions to inflow/outflow boundary
conditions. However, in literature relating to instability analysis of the Blasius boundary layer claims can be
found of excellent agreement between results delivered by the Orr–Sommerfeld equation, (classic) PSE and
the two-dimensional BiGlobal EVP. Such claims can be misleading, especially when no mention is made of
the wall-boundary conditions imposed. The work presented in this manuscript demonstrates by comparison
with independently performed PSE analyses, that, as far as the wall-boundary condition is concerned, results
obtained by the PC are inferior to those delivered by the LPPE.

A further comment that can be made on open flow eigenspectrum convergence is that either the PSE, as an
initial value problem, or the BiGlobal EVP, as one in which inflow and outflow boundary conditions need to
be specified, will deliver results as good (or as bad) as the inflow (for the PSE) or as the inflow and outflow (for
the 2D BiGlobal EVP) boundary conditions imposed. It is these conditions that lead, or not, to convergence of
the spectra in open flows. The LPPE wall-boundary condition, subject of the present manuscript, deals with
the ability to obtain accurate solutions of the LNSEwhen a wall is present in the flow and notwith the ability to
converge an open flow eigenspectrum. Of course, when all inflow/outflow/far-field/wall-boundary conditions
have been set appropriately, converged spectra should be expected, as has been demonstrated in the closed
flows discussed in this manuscript.

3.4 The 3d lid-driven cavity

The cubic lid-driven cavity permits assessing the performance of the three-dimensional LPPE (13) for modal
TriGlobal linear stability analysis. Albensoeder and Kuhlmann [3] have provided accurate predictions for the
steady three-dimensional base flow while linear instability has been addressed successfully numerically by
Giannetti et al. [18], Feldman and Gelfgat [15] and Gómez et al. [19], among others, and experimentally by
Liberzon et al. [34]. In the present work, the domain is defined in	 = {[0, 1]3} and flow is set up by horizontal
motion of the wall y = 1 along the positive Ox axis direction. In order to preserve spectral accuracy, in a
manner analogous to (14), a regularization of the lid motion using p = 16 has been implemented, [33]

ū(x, y = 1, z) = [
1 − (2x − 1)p

]2 [
1 − (2z − 1)p

]2
. (19)

Base flow computations have been performed with nek5000 [16] to time-march the flow to steady state,
obtained after≈ 100 and 250 time units at Re = 200 and 1000, respectively. The cubic domain was discretized
by 10 elements per spatial direction, each of which was resolved with polynomials of degrees varying from 5
to 11. Figure 10 displays the convergence of residuals, defined by

q f = ln

[
q(t) − qc

qc

]
(20)

with subscript f denoting any velocity component or pressure. Due to the exact symmetry of the base flow
along the z-spatial direction, the w̄ component of velocity vanishes at the midpoint of the cavity at which
probes are taken, (x, y, z) = (0.5, 0.5, 0.5). Straightforward signal manipulation [59] delivers the slope of the
straight line fitting the linear decay of residuals (20) over time, a = −0.45085.

The three-dimensional eigenvalue problem is solved by the matrix-forming approach discussed in Gómez
et al. [20]. First, using a modified version of the nek5000 internal routine int_tp, the base flow is interpolated
spectrally from the spectral element grid onto a cubic domain discretized by 101 mapped Chebyshev Gauss
Lobatto points in each spatial direction. Subsequently, the interpolated base flow is again interpolated spectrally
onto the mesh used for the eigenvalue problem solutions, the latter built using 4th- and 6th-order FD-q
methods [44] and comprising from 313 to 613 discretization nodes. The system (7–10) is then solved subject
to homogeneous Dirichlet boundary conditions for the disturbance velocity components on all boundaries and
pressure perturbation boundary conditions provided by the three-dimensional LPPE (13).
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Fig. 10 Left convergence history of the cubic lid-driven cavity at Re = 200, showing residuals at (x, y, z) = (0.5, 0.5, 0.5),
linear fit of which in the range t ∈ [20, 50] yields a slope a = −0.45085. Right same at Re = 1000 delivers a = −0.14019

Table 4 Convergence of the least damped eigenmodes in the cubic lid-driven cavity at Re = 200 and 1000 using the three-
dimensional LPPE equation (13)

N q Re = 200 N q Re = 1000

ωr ωi ωr ωi

31 4 ±0.1337 −0.41602 31 4 0 −0.13961
41 4 ±0.1326 −0.41635 41 4 0 −0.13221
31 6 ±0.1321 −0.41635 41 6 0 −0.13410
41 6 ±0.1320 −0.41639 61 6 0 −0.13408
nek5000 ±0.1304 −0.41594
Giannetti et al. [18] 0 −0.1453
Gómez et al. [19] 0 −0.1382
Liu [37] 0 −0.1372
31 4 0 −0.45095 31 4 ±0.47310 −0.14029
41 4 0 −0.45092 41 4 ±0.45693 −0.13938
31 6 0 −0.45071 41 6 ±0.45608 −0.13995
41 6 0 −0.45073 61 6 ±0.45615 −0.13985
nek5000 0 −0.45058
Giannetti et al. [18] ±0.457 −0.1377
Gómez et al. [19] ±0.485 −0.1348
Liu [37] ±0.488 −0.1304
31 4 ±0.4541 −0.57796 31 4 ±0.31533 −0.139454
41 4 ±0.4536 −0.57884 41 4 ±0.28229 −0.140843
31 6 ±0.4533 −0.57935 41 6 ±0.28189 −0.142181
41 6 ±0.4533 −0.57933 61 6 ±0.28192 −0.141572
nek5000 ±0.4492 −0.57963 ±0.2797 −0.1402
Giannetti et al. [18] ±0.284 −0.1356
Gómez et al. [19] ±0.285 −0.1360
Liu [37] ±0.299 −0.1353

Shown are also results obtained by nek5000 in the regularized cavity, aswell as available literature data in the singular configuration

Table 4 presents the convergence history of the leading (damped) eigenmodes at Re = 200 and Re = 1000,
where it can be seen that convergence of five significant places in most of the eigenvalues has been reached in
the LPPE results. One also observes that the monotonic decay of the perturbation shown at Re = 200 in Fig. 10
corresponds to the least damped stationary mode recovered by the LPPE boundary closure, ωi = −0.45073
at this Reynolds number. The relative difference of this eigenvalue and the slope of the straight line computed
by post-processing the nek5000 DNS results is lower than 0.02%. Table 4 also presents the converged results
of time-stepping solution of the TriGlobal EVP, obtained by nek5000. The base flow has been interpolated on
grids featuring between 43 and 83 elements, which are resolved by polynomials of degrees 5 ≤ p ≤ 9. The
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Fig. 11 Amplitude functions of the cubic lid-driven cavity at Re = 1000, pertinent to the stationary mode ω = (0, −0.13408).
Upper left û(x, y, z); Upper right v̂(x, y, z); Lower left ŵ(x, y, z); Lower right p̂(x, y, z). Arbitrary levels have been chosen,
while color is determined by the magnitude of the pressure perturbation (color figure online)

analysis computes 4 eigenmodes converged within a tolerance τ = 10−5 in a Krylov subspace of dimension
40. The discrepancy of the results obtained by nek5000 at Re = 200 and those delivered by the LPPE boundary
closure is seen to be confined between the third and fifth significant figure of either the real or imaginary part
of the eigenvalue.

At the higher Reynolds number value examined, Re = 1000, the results delivered by the LPPE boundary
closure, new results obtained by the nek5000 code in the regularized cavity, as well as results obtained by
Giannetti et al. [18], Gómez et al. [19] and Liu [37,38] are also presented in Table 4. Here it may be observed
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that the perturbationbeingdamped in thenek5000DNSresults, also shown inFig. 10, is a travelingmode andhas
a damping rate that can be predicted by the slope of the residual and the stability analysis asωi ≈ −0.1402. On
the other hand, despite the fact that work performed in [18,19,37,38] has considered the singular configuration,
the distances in parameter space between eigenvalues predicted by any of the three previous works and the
present analysis are of the same order of magnitude for all three modes. Perhaps the only qualitative difference
between the instability analysis results in the singular and the regularized lid-driven cavity at Re = 1000 is
the fact that the leading eigenmode in the latter configuration is a stationary disturbance, as opposed to the
traveling mode being the least damped in the singular cavity.

The amplitude functions of the leading stationary mode at Re = 1000 obtained by the LPPE closure are
shown in Fig. 11 where, besides the rather well-known velocity perturbations, also the amplitude function of
the pressure perturbations is shown. Isosurfaces very close to zero have been included in the presentation of
the p̂(x, y, z) amplitude function in order to highlight the degree of complexity expected in this component
of the eigenvector as the Reynolds number increases. This is a consequence of the gradients of the base flow
at Re = 1000 in conjunction with the coupled base flow derivatives appearing in the right-hand side of (13)
and implies that the base flow monitored should be sufficiently well represented in order for reliable results
of the eigenvalue problem (7–10) to be obtained. As a matter of fact, in all analyses performed the pressure
amplitude function has been found to be a reliable diagnostic tool to determine the quality of the base flow
analyzed; converged instability analysis results can only be obtained when this component of the eigenvector
is well resolved.

4 Summary

Two forms of the linearized pressure Poisson equation (LPPE), one pertinent to BiGlobal and one to TriGlobal
linear instability analysis, have been derived. These equations have been used to provide boundary closure
for the pressure perturbation in the respective systems of linearized Navier–Stokes equations, the latter solved
as an eigenvalue problem in a matrix-forming context on collocated meshes. Steady laminar flows in closed
domains have been analyzed in two spatial dimensions, where results of the LPPE boundary closure have
been compared with those obtained by the FreeFEM++ matrix-forming and the nektar++ and Semtex time-
stepping codes; excellent agreement was obtained in all three classes of flow instability problems considered.
The superior performance of the LPPE over the more commonly used PC boundary closure was demonstrated
in terms of the absence from the LPPE results of spurious modes found in the PC eigenspectrum. The structure
of the three-dimensional pressure perturbation amplitude function was seen to provide a diagnostic tool to
assess the quality of the results obtained by the pressure compatibility closure. In the flat plate boundary layer,
stability of which is discussed from a physical point of view by Saric et al. [50], results of the two-dimensional
eigenvalue problem obtained by the LPPE boundary closure were seen to agree very well with PSE space
marching solutions of the linearized perturbation equations pertinent to this non-parallel base flow. Finally, the
regularized cubic lid-driven cavity was analyzed using the LPPE boundary closure and results were obtained
in relatively close agreement with existing literature on the singular counterpart of this flow as well as with
those obtained herein by the time-stepping module of the nek5000 code. The results presented, and others not
shown here for brevity, demonstrate that the LPPE provides reliable pressure perturbation boundary conditions
for the solution of the BiGlobal and TriGlobal eigenvalue problems in a matrix-forming context on collocated
grids.
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