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ABSTRACT 

Four fire protection systems have been attached to a small building model for testing their 

dynamic properties. Three of the systems used CPVC (fire rated) plastic pipes while the fourth 

was made from schedule-40 steel pipe. The building model was securely attached to a three by 

three foot shake table in one of two orientations and was able to experience base accelerations 

along both its principle axis (longitudinal, transverse). Test procedures involved sending a sine 

sweep with a progressively increasing frequency at a constant acceleration value. Various 

recording locations provided data showing fundamental frequencies with pronounced 

amplification over the base input accelerations. First the buildings natural frequencies were 

obtained. Then each sprinkler system was tested for acceleration values at the sprinkler drops. 

Sprinkler drops were affixed with an accelerometer at the fitting connection and one at the 

sprinkler head. Comparisons are made between the fundamental frequencies of the building and 

the fire sprinkler system. 

An analytical model of the four sprinkler systems was designed on the SAP2000 

computer program.  The test frequency range providing clean data was from 10 Hz – 25 Hz. In 

this range the computer analysis identified all of the first observed fundamental frequencies. The 

SAP2000 Analysis also identified the distinct second fundamental frequencies obtained from 

testing. 

Large acceleration amplifications were observed at fundamental frequencies in the 

building and in the sprinkler systems. The largest amplification was sixty times that of the base 

input experienced by one of the CPVC drops. The steel sprinkler line also experienced large 
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amplification values of up to 35 times the base level acceleration. The fire systems were filled 

with water to simulate a wet-system and to indicate potential failures. No failures occurred in any 

of the four test systems. After testing each sprinkler design multiple times it is concluded that 

sprinkler systems should remain functional following a seismic event. Sprinkler systems installed 

to NFPA-13 code (National Fire Protection codebook) standards have been proven to perform in 

earthquakes as well as the structures they’re attached to. Improper connectors and lack of 

required pipe clearances are the main factors attributed to researched fire system failures. 
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1 INTRODUCTION 

LITERATURE REVIEW 
The Fire Sprinkler Advisory Board of Southern California published Northridge 

Earthquake January 17,1994, a report that compiles efforts of the National Fire Sprinkler 

Association with the U.A Sprinkler Fitters Union to identify automated sprinkler line 

failures in the San Fernando Valley resulting from the Northridge Earthquake. The report 

findings suggest that failed sprinkler systems were either result of a failed structural 

system or from use of construction practices non-compliant with current codebook 

NFPA-13. Modern sprinkler systems performance to a large seismic event proved to be 

resistant to failure, documented in the findings from the Northridge Quake. 

NFPA-13 outlines code requirements for fire sprinklers installation used 

throughout the United States. American Building code refers to NFPA-13 and requires 

modern designs to conform to the specified procedure. The preliminary investigation to 

this study involved review of the NAPA-13 codebook. Special attention was paid towards 

the seismic and static support sections. The sprinkler designs used in the experimental 

test of this report conformed to all NFPA-13 requirements. Because the small size of the 

sprinkler designs tested, support and seismic bracing used were conservative according to 

NFPA-13 requirements. 

PURPOSE OF RESEARCH 
Failure means the discharge of the system due to breaking of service pipes. 

Broken sprinkler systems will release water until the shut-off can be reached. Frequently 

large financial losses result from interior water damage after fire-system failure. When a 

sprinkler system discharges due to fire discharge, only the areas burning hot enough will 
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melt the glass bulbs and discharge the sprinklers. The mechanical properties of the 

sprinkler head allow for near a hundred percent reliability. Failure of fire sprinklers 

almost always results from shearing pipe or pulling out from compression fittings. 

Because a fire sprinkler system failure carries with it large consequences, the decision 

was made to study the seismic reaction to sprinkler designs. 

Fire sprinkler design changes on a continual basis as new and improved design 

components become available. Enough design change has occurred within the past ten 

years that anyone with limited knowledge of the system could detect the age of the 

technology. If a fire protection system is properly designed to NFPA-13 standards the 

system should suffer no damage other than that imposed by a failing structure. Prior to 

1990 California allowed plumbers to install fire protection. Now in California only 

licensed fire protection contractors are allowed to install sprinkler systems. California's 

efforts to establish design conformity have provided for current and upgraded designs to 

perform under seismic loads. Most failures of sprinkler systems within undamaged 

structures are a result of systems with old static designs or even more commonly of poor 

workmanship. Without proper enforcement by planning officials the codes in place are 

always vulnerable to being overlooked.  

During the January 17, 1994 Northridge Earthquake, most of the 3000 + sprinkler 

systems failed only when the surrounding structural components failed. However some 

structures sustained sprinkler failure with no other associated building failures. These 

cases were mostly due to improper or outdated installation procedure. Northridge 

Hospital and St. John's Hospital in Santa Monica both experienced failed sprinkler 

systems without any structural collapse. Both sprinkler designs were insufficient by 
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current code standards. The two most common code infractions, pullout of powder driven 

studs and insufficient clearance given to pipes passing through membranes, caused 

failures at the Northridge Hospital. At the St. John's Hospital sprinkler failure resulted 

from insufficient seismic bracing, the contractor performing the repairs reported the 

system having no retaining straps. Both hospitals lost beds during a critical crisis event in 

the city (FSAB, 1994, Appendix C). 

The beginning conception entailed utilizing resources available at Cal Poly State 

University as well as from local sprinkler contractors to create a legitimate model for 

testing. Projected outcome included recordings of several induced accelerations as well as 

witnessing a potential failure. 

OBJECTIVES 
After deciding to study the dynamic properties of fire sprinklers the desired 

testing procedure developed. The goals of experimental testing were as follows: 

‹ To use the available seismic testing equipment available at the Dynamics 

Lab, Building 13, Cal Poly State University, San Luis Obispo, California. 

‹ Develop a model capable of containing a fire sprinkler system and adapted 

to fit on the Shake Table in the Dynamics Lab. 

‹ Obtain data representing fire protection systems undergoing induced 

seismic forces. 

REPORT REVIEW 
Results from this study are obtained through frequency sweep tests preformed on 

both the test model and the particular sprinkler system plumbed within. For each test a 

frequency sweep was pasted through the model at a specified transmitted input 
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acceleration. The symmetry of the bolt pattern on the test table allowed for the model to 

be tested in the two main perpendicular axes. The Shake table shakes in one direction and 

the model was rotated to align the desired side of the model to the shake direction. For 

testing the long side of the model is labeled Longitudinal and the short side is labeled the 

transverse side. The first and second natural frequencies of the model were observed prior 

to installing sprinklers. 
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 2 REVIEW OF SEISMIC CODES 
In the seismically active Western United States building codes have been adopted 

to provide for adequate resistance to horizontal ground accelerations from structures as 

well as to their mechanical elements. The State of California adopted the U.B.C. as a 

minimum building standard in 1991. At the same time California adopted the 1989 

edition of NFPA-13, as standard for sprinkler system design. Separate editions NFPA-

13R and NFPA-13D outline sprinkler design for residential units up to four stories and 

single-family dwellings or mobile homes respectfully. NFPA-13 currently outlines the 

national standard fire sprinkler installation. Both codes state: the structure must be 

designed for it's intended loads and be able to tolerate expected ground movements. A 

fire protection system designed in California must follow NFPA-13 standards to insure 

the system can remain intact while the building shakes from ground accelerations 

Expected possible earthquake responses are taken from the historical record. 

Occasionally that database might grow, for example, when a previously unrecorded faults 

slips. County planning departments assign a seismic Roman numeral classification within 

their governing territories based on available earthquake records. Direct zones of 

influence from active faults in the region are the best indications for assuming probable 

ground accelerations. Counties give special seismic consideration to design in regions of 

high earthquake probability and in structures considered vital for community well being. 

Along with design of structural components, special design considerations need to be 

made for the mechanical and electrical components. In an attempt to maintain 

serviceability of structures during severe ground movement both the U.B.C. and NFPA-

13 outline seismic design requirements necessary to stabilize the structure and prevent 
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possible failures within. The section on fire sprinkler seismic design, NFPA-13-6 is 

included in the appendix. 

The automatic fire sprinkler code, NFPA-13, covers system design from where 

the supply line contacts the foundation and on into the structure. When subsurface pipe 

failures occur from ground movement they are often the result of concrete pieces 

penetrating the ductile iron pipe within the surrounding trench backfill. Often shut-off 

valves are installed in-line along the exterior riser before the supply line enters the 

building. Some counties will require in-line monitoring units such as activation alarms 

and pressure gauges to be installed in the supply line. In seismic zones special flexible 

couplings must be installed to allow for any variability in ground and building motions 

during ground accelerations. 

When the main line rises from the sub-surface to the building the pipe must be 

connected using OSHPD pre-approved flexible fittings and, as with all vertical risers, 

secured at the top by a proper four-way sway brace. Flexible fittings (bends, tees and 

couplings) are utilized throughout sprinkler designs as required by NFPA-13. Flexibility 

is achieved by clamping a rubber seal around grooved ends. Attention must be paid to 

worn seals in order to prevent potential failures. The code requires flexibility connection 

joints through out sprinkler systems as well as seismic bracing on pipes to insure the 

sprinkler system will move only with the building. The code also makes provisions for 

proper clearance required for pipes penetrating solid membranes.  

Proper seismic bracing is critical for a designs seismic performance. A high 

percentage of recorded sprinkler system failures resulting from the 94' Northridge 

Earthquake was caused from the improper installation of the seismic bracing. Seismic 
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bracing consists of steel connection members used as tension members, compression 

members, or commonly both. The NFPA-13 codebook requires the seismic braces are 

used to resist any potential movement of the sprinkler pipes. The codebook refers to 

seismic braces as sway braces. 

Figure 1 NFPA-13-6-4.5 Sway Bracing 

The two most common reasons for failure of seismic restraints are when the 

restraint member pulls away from its support attachment and when the restraint member 

shears at a threaded connection. Both cases are usually related to improper construction 

procedures.  

Connection bolts have been known to pull out from structural members if they 

had been fastened using short-cut methods. Contractors have been known to use powder-

shot fasteners in the form of penetrating hardened steel nails. These are shot from a gun 

using a .22 caliber charge; they quickly fasten locations to concrete or steel. The shot-

driven anchors are unsuitable for overhead installations due to their low pullout value. 

Many of the sprinkler line failures reported during the Northridge earthquake were due to 

powder-shot fastener pulling out from both steel and concrete surfaces.  

Proper anchorage for seismic bracing on the structural elements is: 

For Concrete, wedge anchor bolts or cast in place anchor bolts: 
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For Steel, through bolts at approved locations or welded connections;  

For Wood Parallel to Grain, through bolts or for thick members lag screws pre-drilled to 

1/8 less than screw shank, (NFPA-13 4-14.4.3.5.6). Seismic bracing has commonly 

dislodged from wood supports when lag dolts were hammered into pre-drilled holes for 

fasteners (evidently was once a common trade practice in areas).  

The code does not require lateral seismic bracing when the pipe support is less 

than six inches. No seismic bracing is usually needed for CPVC sprinkler designs other 

than that which is provided by the support anchors them selves. The CPVC supports hold 

the pipe close to structure providing both lateral and horizontal support. Steel sprinkler 

designs are usually supported from the structure at a distance greater than the six inches. 

The following two figures are a picture of the seismic brace used in the steel sprinkler 

system testing and a company description of the product. 
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Figure 2 View of the Seismic Brace used in the Steel Sprinkler Design 

 
Figure 3 No-Thread Swivel Sway Brace used for Steel Design
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A common cause of brace failures befalls when thin walled threaded pipes are 

improperly used in a cross-member, shearing can occur at their weak threads. Sprinkler 

system failure can also stem from improper clearance between pipes passing through 

floors and walls. When a building shifts from ground acceleration those passageways 

without proper clearance bind and shear confined pipes within. The NFPA-13 code 

requires an extra 2 in diameter clearance for pipes less than 4 inches in diameter and an 

extra 4-in diameter clearance for pipes with 4 inches or greater diameter, (NFPA-13 sec 

4-14.4.3.4.1). Almost never will a sprinkler system fail at the sprinkler heads during an 

earthquake. 

Seismic Design according to NFPA-13 
‹ Make sure lengths crossing structural separations are fitted with flexible fittings to 

protect against differential movement.  
‹ Provide the required pipe clearances through any penetrated membrane.  Keep 

sprinkler system at least 2 inches away from any structural member. 
‹ After the required pipe sizes have been chosen, seismic bracing is required where 

the support hangers have a drop length greater than 6 inches. 
‹ Install lateral braces at a maximum spacing of 40ft on center and at the end of any 

feed or cross main. 
‹ Install longitudinal bracing with a maximum spacing of 80ft on center and no 

greater than 40 ft from the end of a pipe. 
‹ Determine the brace size from NFPA-13 Table 6-4.5.8 based on brace angle. 
‹ Braces must be attached to structural members using the appropriate fasteners 

outlined in NFPA-13 Table 6-4.5.9. 
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3 TYPICAL SPRINKLER SYSTEMS 
Three types of piping materials are available for sprinkler installation. The 

traditional steel pipes are still the most common, especially in commercial settings. The 

use of copper and high-pressure CPVC Pipe has been gaining popularity in the light 

commercial and residential markets. The limits on copper and CPVC piping diameters 

still make them suitable for most residential and light commercial applications. CPVC's 

fire rating makes it unsuitable for most commercial applications. 

COMMERCIAL DESIGN 
Large steel supply and distribution pipes are joined using compression fittings. 

For 2 1/2in or larger diameter piping, NFPA-13 outlines seismic standards for required 

flexure joints, (NFPA-13 4-14.4.3.2). These standards require flexibility within the 

system design with a purpose to prevent possible shearing of the sprinkler line. Large 

steel supply lines must be supported for static loads as well as being braced for seismic 

loads. The codebook provides required guidelines that designers must follow. Designers 

must choose their pipe sizes according to the quantity of water required for the cubic feet 

of service area. As with all the mechanical systems within a building, the goal for the 

design in seismically active regions is to limit the potential for shearing by providing 

flexibility and to decrease potential moment forces by properly fixing flexible sections. 

Providing the most optimum system would entail obtaining the highest degree of 

flexibility along with bracing all sections for possible movement. The code bracing 

requirements must be satisfied to provide for an approved seismic design. 

Steel pipes less than 2 1/2 in diameter are often joined in threaded connections. 

Threaded connections can be unions, bends, or tees. Threaded connections are more 
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vulnerable to shearing due to the removed volume at threaded pipe ends. Potential shear 

forces created at threaded connections should be limited by bracing. 

RESIDENTIAL DESIGN 
Copper pipes are joined with solder connections and provide for a long-lasting 

efficient system. Benefits of copper include its ductile properties as well as its 

lightweight. The ductility of copper helps to limit shear forces. Sufficient solder must be 

filled into copper joints to achieve strong bonds. A transfer from steel to copper piping 

noticeably reduces the imposed sprinkler line dead load on its supporting members. Since 

the introduction of CPVC sprinkler pipe, copper design has been phasing out of use in 

sprinkler designs.  

When the sprinkler line changes to a lighter material all the required connection 

materials are sized to accommodate. Plastic piping is the lightest material used for 

sprinkler line, its weight is only a fraction of the fluid-filled system. Plastic fire sprinkler 

line is available as fire retardant PVC dubbed CPVC. In the current residential and light 

commercial areas CPVC installation has become the common trade practice. The 

popularity of CPVC is due to the speed and ease of installation as well as the long-term 

dependability. From structural dynamics I have learned by decreasing the imposed dead 

load on the roofs of structures a building will attract less earthquake forces. Combined 

with the obvious advantages to the speed of assembly, reduced material and labor costs, 

there's no question why many current designs use plastic.  

Plastic PVC sprinkler pipes are joined using the appropriate bonding glue. Plastic 

systems ductile properties allow for rotation. Available rotations within the system serve 
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to limit shear forces. PVC seismic bracing consists of plastic straps fixed to the structure 

as well as the secured bracing required by NFPA-13 code.   

In residential systems where fire sprinkler installation commonly involves plastic 

or copper systems, static and dynamic support is provided by the small clamps used to 

stabilize the lines as they pass through rafters and floor joists. Because the systems often 

have short support spans, required pipe clearances become the main seismic design 

consideration. 
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4 BUILDING DESIGN 

DESIGN 
The model fits upon the 3' x 3' Dacron Shake Table. The symmetry of the model 

and table bolt connections offers two model placement possibilities. Either the model can 

be shaken along its long axis or can be rotated 90 degrees to shake along its short axis. 

The model had to be at best a small version of a real structure. The constructed model 

looks like an extra large "dog-house" with an overhanging gabled roof. The constructed 

model serves its purpose of providing a structure with distinct measurable natural periods 

and a platform for testing simple sprinkler designs. Due to a total weight about 500lb the 

model was equipped with steel straps that allowed it to be picked from above and wheels 

to roll on. By hoisting the model with the crane available in the lab, moving around the 

model was easily performed by one person. 

CONSTRUCTION 
The model is a timber structure. The studs, rafters, and floor joists are cut from 

2x4 Douglas fir. The barge rafter and fascia board are cut from 2x6 Douglas fir. The sub-

floor and roof sheathing are cut from 5/8 inch CDX plywood. Walls were sheeted with 

1/2-inch structural plywood. The underside was sheeted with 1/2 inch CDX to provide a 

flat base. Six hold-downs were spaced every 16 inches along the two longest walls. Two 

more holes were drilled through the sub-floor to provide a total of eight bolted 

connections. High-grade 1/2-inch steel bolts of proper lengths are used as connections to 

the table. 
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DRAWINGS AND PHOTOS 


Figure 4 Drawing of Model (Scale 1/4" = 1') 

Figure 5 Picture of Partially Completed Model 
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Figure 6 View of the Transverse Side with the Model Bolted onto Shake Table. The Model is 
plumbed with a Steel Sprinkler System 
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Figure 7 View of the Longitudinal Side with the Model Bolted onto Shake Table. The Workstation is 
Visible in the Background. 
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Figure 8 View of a hold-down from inside. 
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5 EXPERIMENTAL PROGRAM 

SHAKE TABLE DESCRIPTION 
The Shake table used for testing is bolted to the strong floor of the Dynamics Lab 

in Building 13 at Cal Poly State University.  The Table consists of a three by three foot 

hydraulic platform driven by a separate motor and controlled by a workstation. 

Participating Software allows the workstation to record input from three separate data 

input channels. The first channel is dedicated for recording the base acceleration 

delivered to the shake table platform. The two remaining input channels allow for two 

acceleration data inputs per test run.   

Base acceleration is applied in one direction only. Use of the Software allows for 

the input frequencies and the base acceleration to be programmed and for two recordings 

measuring acceleration data to be stored. The accelerometers were not designed to record 

accurately at low frequencies and the table hydraulics vibrated ate high frequencies. The 

frequency range for clean data was from 10-25 Hz. The Recorded data goes into a 

predetermined folder on the hard drive.  
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TESTS PERFORMED 

Longitudinal Direction Shaking 

Figure 9 Model Placement for Longitudinal Testing 
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Transverse Direction Shaking 

Figure 10 Model Placement for Transverse Testing 

PLACEMENT OF ACCELEROMETERS 
The accelerometers each recorded along the length of their tubular casing. The 

alignment of the accelerometers were set to the direction of shaking except for one 

placement that was set to record a vertical torsion response. Physical connection of the 

accelerometers involved using beeswax for adhesive and tape for added reinforcement. 

Cables ran from the accelerometers to the inputs of the workstation. The cables were 
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secured with tape to the model so the cables weight wouldn't pull on the attached 

accelerometers during testing. 

The decision on where to place accelerometers was based on particular points of 

interest. Test figures show the location and direction of the two acceleration readings 

with colored arrows that match the corresponding data series. 

DIFFERENT SPRINKLER SYSTEMS CONSIDERED 
The two types of sprinkler systems considered comprised of steel and CPVC. 

Today steel and CPVC are the most common materials used for sprinkler design. CPVC's 

introduction to the market has lessened installation costs and caused copper designs to 

become outdated. When a structures fire rating allows for a non-steel sprinkler design 

traditionally in the past copper systems were installed. In light commercial and residential 

sprinkler installations labor and material costs are saved when the design uses CPVC pipe 

verses copper pipe.  The reduction in installation time for CPVC sprinkler systems 

compared to both steel and copper sprinkler systems is great because fitting are glued. By 

testing both steel and CPVC systems an understanding of the seismic properties 

associated with the different materials was gained. 

CPVC Sprinkler System 
A small sprinkler design was installed in the model. The first design included just 

one sprinkler drop. The second design extended the first to include a second drop. The 

third test design involved fixing the end drop to the model to prevent rotation of the head. 

A shut-off valve was installed at the model's base to hold water in the system. Threads 

were wrapped in teflon tape and spun into fittings using opposing pipe wrenches. The 

Sprinkler line was charged with water by adapting a garden hose to the shut-off valve 
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connected to the hose bib in the lab. The one inch CPVC piping, required fittings, 

sprinkler heads, glue and required connectors were donated from Wayco Fire Protection 

and Alpha Fire Protection. The designs are shown in the following figure. Inserted next to 

the test set-up is a list of the tools and materials used for the sprinkler system assembly. 

Figure 11 CPVC Sprinkler System Designs 

Steel Sprinkler System 
The steel design tested copied the geometry of the double drop CPVC design. One 

inch steel pipes were donated, cut and threaded to length by Wayco Fire Protection. 

Wayco also provided all the steel fittings and the seismic restraint. Threads were wrapped 

in teflon tape and spun into fittings using opposing pipe wrenches. A shut-off valve was 

installed at the model's base to hold water in the system. The Sprinkler line was charged 
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with water by adapting a garden hose to the shut-off valve connected to the hose bib in 

the lab. The one-inch seismic brace was fastened to the center rafter of the model. The 

brace was a diagonal pipe brace wrapped to the sprinkler line and pined to the rafter. The 

other pipe connectors used were vertical support hangers and one-inch pipe mounts for 

the two wall connections. The design is shown in the following figure. Inserted next to 

the test set-up is a list of the tools and materials used for the sprinkler system assembly. 

Figure 12 Steel Sprinkler System Design 
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Figure 13 Threading Steel Pipe 
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6 DYNAMIC PROPERTIES OF BUILDING 
For each of the two test directions the building had pronounced natural 

frequencies. Recorded acceleration data at locations identified by drawings are presented 

in the following. The two sections are tests grouped according to the model's shaking 

direction. 

The first tests on the model were done using input accelerations of 0.1 - 0.2(g) at 

the base. Once comfortable with the structural integrity of the model tests were run as 

high as 0.5(g). At the higher input base acceleration levels, the attached sprinkler systems 

achieved such a great level of observed and recorded amplification that, going any higher 

was not done for fear of failing the building or the sprinkler system. The main reason for 

not wanting to fail the building it was needed for following tests. Now that fire sprinkler 

testing has been performed the Civil Engineering Department can use the building for 

further testing of attached mechanics or any other interior component. The stable design 

of the timber building allowed it to withstand all tests without any sign of damage. 

Assumedly the building would absorb much greater base accelerations before reaching 

structural failure. Average seismic designs use an expected seismic acceleration value of 

0.4(g). 
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FIRST FUNDAMENTAL FREQUENCY IN LONGITUDINAL 
DIRECTION 

Building longitudinal direction (.2g), 
Red data @ ridge 

(10-26-2001) 

0 

0.5 

1 

1.5 

2 

2.5 

3 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Frequency (Hz) 

A
cc

el
er

at
io

n 
(g

) 

Accel Channel 3 1995 Control Freq Input  Primary Natural Frequency 

Graph 1 Building Test in Longitudinal Direction (10-26-01) 

Figure 14 Placement of Accelerometer in Graph 1  
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 Building longitudinal direction (.4g), Accel. #3 @ ridge, 
Accel. #2 on fascia 

(02-07-2002) 
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Graph 2 Building Test in Longitudinal Direction (02-07-02) 

Figure 15 Placement of Accelerometers in Graph 2 
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FIRST 2 FUNDAMENTAL FREQUENCIES IN TRANSVERSE 
DIRECTION 

 Building transverse direction (.1g) 
Blue data @ fascia midpoint 
Red data @ ridge midpoint 

(11-01-2001) 
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Graph 3 Building Test in Transverse Direction (11-01-01) 

Figure 16 Placement of Accelerometers in Graph 3 
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 Building transverse direction (.1g) 
Blue data @ end of facia 

Red data @ opposite end of facia 
(11-01-2001) 

0 

0.2 

0.4 

0.6 

0.8 

1 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

Frequency (Hz) 

A
cc

el
er

at
io

n 
(g

) 

control Ch.2 1985 
Ch.3 1995 First Natural Frequency 
Second Natural Frequency 

Graph 4 Building Test in Transverse Direction (11-01-01) 

Figure 17 Placement of Accelerometers in Graph 4 
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 Building transverse direction  ( .1g) 
Blue data @ upper wall corner 

Red data @ opposite upper wall corner 
(11-01 2001) 
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Graph 5 Building Test in Transverse Direction (11-01-01) 

Figure 18 Placement of Accelerometers in Graph 5 
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 Building transverse direction (.2g) 
Blue data @ upper wall corner 

Red data @ opposite upper wall corner 
(11-01-2001) 
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Graph 6 Building Test in Transverse Direction (11-01-01) 

Figure 19 Placement of Accelerometers in Graph 6 




 

  

 

 

 

 
 

 
 

   

   

    

    

    

    

 

  

 

 

 

 

 

 

 

 

   

 

- 33 -

BUILDING TEST RESULTS 
Table 1 Fundamental Frequencies of The Building 

Test Direction Base 
Acceleration 

Natural 
Frequency 

Location(s) of 
Recording 

Maximum 
Amplification 

Longitudinal 0.2 g 16.9 Hz Ridge 12x 

Longitudinal 0.4 g 15.2 Hz Fascia, Ridge 10x 

Transverse 0.1 g 15.5, 21.5 Hz Fascia, Ridge 7x 

Transverse 0.1 g 15.5, 21.5 Hz Rafter Tails 8x 

Transverse 0.1 g 15.5, 21.5 Hz Wall Corners 7x 

Transverse 0.2 g 13.7, 20.3 Hz Wall Corners 7x 

A natural frequency shift towards lower values occurred as the base acceleration 

increased. The two longitudinal tests show comparisons between both a change in input 

acceleration and testing at different times. The transverse tests were all performed in the 

early stages of testing before the model was fit with sprinkler systems. The building 

received numerous shakings over the course of testing that has likely caused the natural 

frequencies to lower slightly as the building loosened. In the following sprinkler system 

data, accelerometers were not available to register the building accelerations along with 

the sprinkler line accelerations. The buildings natural frequencies from the two highest 

base accelerations are used to represent the building contribution to each of the following 

sprinkler system graphs. 
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7 DYNAMIC PROPERTIES OF CPVC SPRINKLERS 

DESCRIPTION OF TEST SET-UPS 
The tested design involved bringing the sprinkler line up the back of the model 

through the opening under the eve and into the inside. The first set-up had one small drop 

plumbed in the middle of the model's interior. The second CPVC design doubled the 

center drop in length and included a longer drop run down the front face of the model. 

The final third plumbed design was the second design altered to test the effects of 

increasing the system restraints. The following data was recorded at both ends of fire 

system drops. 
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 LONGITUDINAL DATA   

 1 inch cpvc, 6" drop, Doghouse excited at .4 g in 
longitudinal dir. 

Red data @ head 
Blue data @ elbow 

(11-09-2001) 

0 

2 

4 

6 

8 

10 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

frequency (Hz) 

A
cc

el
er

at
io

n 
(g

) 

control ch.2 1985 ch.3 1995 First Natural Frequency of Building 

Graph 7 Test of CPVC Sprinkler Design 1 (11-09-01) 

Figure 20 The Placement of the Accelerometers for Graph 7 
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1 inch cpvc, 12" drop recorded before fixing 16" 
drop for rotation, Doghouse excited at .4 g in 

longitudinal dir. 
Red data @ head 
Blue data @ tee 

(11-09-2001) 
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Graph 8 Test of CPVC Sprinkler Design 2  (11-09-01) 

Figure 21 The Placement of the Accelerometers for Graph 8 
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1 inch cpvc, 16" drop recorded before being fixed 
for rotation, Doghouse excited at .4 g in 

longitudinal dir. 
Red data @ head 

Blue data @ elbow 
(11-09-2001) 
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Graph 9 Test of CPVC Sprinkler Design 2 (11-09-01) 

Figure 22 The Placement of the Accelerometers for Graph 9 
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 1 inch cpvc, 12" drop recorded with 16" drop 
fixed for rotation, Doghouse excited at .4 g in 

longitudinal dir. 
Red data @ head 
Blue data @ tee 

(11-26-2001) 
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Graph 10 Test of CPVC Sprinkler Design 3 (11-26-01) 

Figure 23 The Placement of Accelerometers for Graph 10 
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 1 inch cpvc, 16" drop fixed 5" from head Doghouse 
excited at .4 g in longitudinal dir. 

Red data @ head 
Blue data @ elbow 

(11-26-2001) 
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Graph 11 Test of CPVC Sprinkler Design 3 (11-26-01) 

Figure 24 The Placement of the Accelerometers for Graph 11 




 

  

 

 

 

 
 

 

 

- 40 -


TRANSVERSE DATA 


 1 inch cpvc, 6" drop, Doghouse excited at .2 g in 
transverse dir. 

Red data @ head 
Blue data @ elbow 

(11-03-2001) 
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Graph 12 Test of CPVC Sprinkler Design 1 (11-03-01) 

Figure 25 The Placement of the Accelerometers for Graph 12 
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1 inch cpvc, 16" drop recorded before being fixed for 
rotation, Doghouse excited at .4 g in transverse dir. 

Red data @ head 
Blue data @ elbow 

(11-09-2001) 
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Graph 13 Test of CPVC Sprinkler Design 2 (11-09-01) 

Figure 26 The Placement of the Accelerometers for Graph 13 
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 1 inch cpvc, 12" drop recorded before fixing 16" drop 
for rotation, Doghouse excited at .4 g in transverse dir. 

Red data @ head 
Blue data @ tee 

(11-09-2001) 
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Graph 14 Test of CPVC Sprinkler Design 2 (11-09-01) 

Figure 27 The Placement of the Accelerometers for Graph 16 
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 1 inch cpvc, 12" drop vertical acceleration recorded, 
Doghouse excited at .4 g in transverse dir. 

Red data @ head 
Blue data @ tee 

(11-17-2001) 
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Graph 15 Test of CPVC Sprinkler Design 2 (11-17-01), a Recording of the Vertical Acceleration 

Figure 28 The Placement of the Accelerometers for Graph 15 
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  1 inch cpvc, 16" braced drop recorded, Doghouse 
excited at .4 g in transverse dir. 

Red data @ head 
Blue data @ elbow 

(11-26-2001) 
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Graph 16 Test of CPVC Sprinkler Design 2  (11-26-01) 

Figure 29 The Placement of the Accelerometers for Graph 16 
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    1 inch cpvc, 12" drop recorded with 16" drop fixed for 
rotation, Doghouse excited at .4 g in the transverse dir. 

Red data @ head 
Blue data @ tee 

(11-26-2001) 
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Graph 17 Test of CPVC Sprinkler Design 3 (11-26-01) 

Figure 30 The Placement of the Accelerometers for Graph 17 
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 1 inch cpvc, 12" drop recorded with 16" drop 
fixed for rotation, Doghouse excited at .3 g in 

transverse dir. 
Red data @ head 
Blue data @ tee 

(01-18-2002) 
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Graph 18 Test of CPVC Sprinkler Design 3 (01-18-02) 

Figure 31 The Placement of the Accelerometers for Graph 18 
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1 inch cpvc, 12" drop recorded with 16" drop 
fixed for rotation, Doghouse excited at .4 g in 

transverse dir. 
Red data @ head 
Blue data @ tee 

(01-18-2002) 
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Graph 19 Test of CPVC Sprinkler Design 3 (01-18-02) 

Figure 32 The Placement of Accelerometers for Graph 19 
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1 inch cpvc, 12" drop recorded with 16" drop 
fixed for rotation, Doghouse excited at .5 g in 

Transverse dir. 
Red data @ head 
Blue data @ tee 

(01-18-2002) 
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Graph 20 Test of CPVC Sprinkler Design 3 (01-18-02) 

Figure 33 The Placement of the Accelerometers for Graph 20 
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SAP 2000 CPVC Sprinkler Design 1 Analysis 
The material properties of CPVC used in the SAP2000 Analysis of all three 

designs are as follows: 
Modulus of elasticity = 420,000 psi 
Poisson's Ratio = 0.41 
Coefficient of Thermal Expansion = 3.5 x 106 in/in/degree F 

Longitudinal Mode Shapes 

Longitudinal Mode 1 

Period = 0.0661 seconds 


frequency = 15.1 Hz
 

Figure 34 The First Longitudinal Mode Shape from the Sap2000 Analysis of CPVC Sprinkler Design 
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Longitudinal Mode 2 

Period = 0.0274 seconds 


frequency = 36.5 Hz
 

Figure 35 The Second Longitudinal Mode Shape from the Sap2000 Analysis of CPVC Sprinkler 
Design 1 

Transverse Mode Shapes 

Transverse Mode 1 

Period = 0.0665 seconds 


frequency = 15 Hz
 

Figure 36 The First Transverse Mode Shape from the Sap2000 Analysis of CPVC Sprinkler Design 1 
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Transverse Mode 2 

Period = 0.0284 seconds 


frequency = 35.2 Hz
 

Figure 37 The Second Transverse Mode Shape from the Sap2000 Analysis of CPVC Sprinkler Design 
1 

Transverse Mode 3 

Period = 0.0272 seconds 


frequency = 36.7 Hz
 

Figure 38 The Third Transverse Mode Shape from the Sap2000 Analysis of CPVC Sprinkler Design 
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SAP 2000 CPVC Sprinkler Design 2 Analysis 

Longitudinal Mode Shapes 

Longitudinal Mode 1 

Period = 0.0662 seconds 


frequency = 15.1 Hz
 

Figure 39 The First Longitudinal Mode Shape from the Sap2000 Analysis of CPVC Sprinkler Design 
2 

Longitudinal Mode 2 

Period = 0.0596 seconds 


frequency = 16.8 Hz
 

Figure 40 The Second Longitudinal Mode Shape from the Sap2000 Analysis of CPVC Sprinkler 
Design 2 
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Longitudinal Mode 3 

Period = 0.0274 seconds 


frequency = 36.5 Hz
 

Figure 41 The Third Longitudinal Mode Shape from the Sap2000 Analysis of CPVC Sprinkler 
Design 2 

Longitudinal Mode 4 

Period = 0.0256 seconds 


frequency = 39 Hz
 

Figure 42 The Fourth Longitudinal Mode Shape from the Sap2000 Analysis of CPVC Sprinkler 
Design 2 
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Transverse Mode Shapes 

Transverse Mode 1 

Period = 0.1774 seconds 


frequency = 5.6 Hz
 

Figure 43 The First Transverse Mode Shape from the Sap2000 Analysis of CPVC Sprinkler Design 2 

Transverse Mode 2 

Period = 0.0664 seconds 


frequency = 15.1 Hz
 

Figure 44 The Second Transverse Mode Shape from the Sap2000 Analysis of CPVC Sprinkler Design 
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Transverse Mode 3 

Period = 0.048 seconds
 

frequency = 20.5Hz
 

Figure 45 The Third Transverse Mode Shape from the Sap2000 Analysis of CPVC Sprinkler Design 
2 

Transverse Mode 4 

Period = 0.0274 seconds 


frequency = 36.5 Hz
 

Figure 46 The Fourth Transverse Mode Shape from the Sap2000 Analysis of CPVC Sprinkler Design 
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SAP 2000 CPVC Sprinkler Design 3 Analysis 

Longitudinal Mode Shapes 

Longitudinal Mode 1 

Period = 0.0662 seconds 


frequency = 15.1 Hz
 

Figure 47 The First Longitudinal Mode Shape from the Sap2000 Analysis of CPVC Sprinkler Design 
3 

Longitudinal Mode 2 

Period = 0.0274 seconds 


frequency = 36.5 Hz
 

Figure 48 The Second Longitudinal Mode Shape from the Sap2000 Analysis of CPVC Sprinkler 
Design 3 
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Longitudinal Mode 3 

Period = 0.0257 seconds 


frequency = 38.9 Hz
 

Figure 49 The Third Longitudinal Mode Shape from the Sap2000 Analysis of CPVC Sprinkler 
Design 3 

Transverse Mode Shapes 

Transverse Mode 1 

Period = 0.0665 seconds 


frequency = 15 Hz
 

Figure 50 The First Transverse Mode Shape from the Sap2000 Analysis of CPVC Sprinkler Design 3 
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Transverse Mode 2 

Period = 0.0506 seconds 


frequency = 19.8 Hz
 

Figure 51 The Second Transverse Mode Shape from the Sap2000 Analysis of CPVC Sprinkler Design 
3 

Transverse Mode 3 

Period = 0.0274 seconds 


frequency = 36.5 Hz
 

Figure 52 The Third Transverse Mode Shape from the Sap2000 Analysis of CPVC Sprinkler Design 
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DATA REVIEW 
For each of the experimental tests the building's natural frequencies are shown in 

all the graphs. This is to gain insight on the conditions of the sprinkler system while the 

building goes through its resonance periods. The placement of accelerometers was chosen 

to obtain acceleration data that represented the locations of the greatest expected 

movement in the sprinkler system. In most tests the location of the second accelerometer 

(blue) was attached to a fitting located close to a pipe support. In these locations the blue 

data closely represents the data collected from the building. When the accelerometer 

collecting the blue data was fixed close to a supported pipe the data collected became a 

base line for evaluating the amplification found between the building and the sprinkler 

head (blue vs. red).  

Three separate CPVC sprinkler systems were tested. The first with a single drop 

of 6-inch, the second with both 12-inch and 16-inch drops, and the third was a 

modification to the supports of the second system. For the second test system the 16-inch 

drop was left un-braced. The support at the elbow fitting allowed the drop to rotate freely, 

giving the end of the system a large amount of flexibility. When the 16-inch drop was 

secured at the head with a pipe support the freedom of movement for that drop was 

removed resulting in increased amplification to the adjoining 12-inch drop. 

CPVC Sprinkler Design 1 

Frequencies of Sprinkler System Compared to Frequencies of the 
Building 

Both the longitudinal and transverse testing showed that the 6-inch drop exhibited 

natural frequencies similar to the building's natural frequency. There was a second 
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observed longitudinal natural frequency of the sprinkler system that the building did not 

share. 

Floor Acceleration vs. Acceleration at the Head 
The base accelerations used were 0.4g in the longitudinal direction and 0.2g when 

the model was tested in the transverse direction. The maximum acceleration when tested 

in the longitudinal direction with a base acceleration of 0.4g observed at the head was 8g. 

Testing in the transverse direction with a base acceleration of 0.2g yielded maximum-

recorded acceleration of 3g at the head. Since test data from the second accelerometer 

(blue data) records from a joint of the sprinkler system that's fixed securely to the ridge 

board, the amplification observed closely represents the models own amplification.  

Amplification Observed 
The amplification of the acceleration at the base to the accelerations recorded at 

the head was from 15 to 20 times. The acceleration at the head records the maximum 

amplification of the sprinkler system as its being driven by the acceleration from the top 

of the building. The amplification of the sprinkler drop over the input acceleration from 

the building in both the test directions is about 3 times. 

Frequencies of the Test Design Compared to the SAP2000 Results 
The SAP2000 program identified a longitudinal and transverse first mode shape 

around 15Hz. Test data showed that under longitudinal shaking the only observed mode 

shape centered about 15Hz. The buildings first longitudinal mode shape is also around 

15Hz and this created increased amplification in the accelerations of the sprinkler system. 

At 15Hz excitement in the transverse direction the 6-inch did not show a peak in 

amplification even though it was excited. The influence of the building shaking during 
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testing makes it difficult to pick out any independent sprinkler mode shapes. SAP2000 

analysis predicted modal frequencies outside of the test range and are included in the data 

to show there are expected mode shapes in the high frequency range.   

CPVC Sprinkler Design 2 

Frequencies of Sprinkler System Compared to Frequencies of the 
Building 

This CPVC design included a large degree of flexibility from the lack of 

rotational restraints. The system was free to rotate from the elbow connection at the back 

of the building to the end of the last drop. Therefore test results from the 16-inch drop at 

the sprinkler head exhibited no response from the buildings amplification. The 

acceleration data from the elbow of the 16-inch drop peaked at similar natural 

frequencies to the building. The data collected at the head of the 16-inch drop showed 

one exhibited natural frequency of about 10 Hz in the longitudinal plane and about 11.5 

in the transverse plane. The data from head and tee fitting of the 12-inch drop showed the 

natural frequencies of the sprinkler section were similar to the buildings at 12 and 19.5Hz 

in the transverse direction and 15.4Hz in the longitudinal direction.       

Floor Acceleration vs. Acceleration at the Head 
The base accelerations used was 0.4g in both directions of testing. The maximum 

acceleration found from the test in the longitudinal direction was observed at the head of 

the 12-inch drop at 12g. Testing in the transverse direction yielded a maximum 

acceleration of 8g at the head of the 12-inch drop. When the 16-inch drop was tested the 

accelerations recorded at the head exhibited independent natural frequencies to the 

remaining parts of the model. That drops flexibility allowed the particular section of the 

sprinkler system to have a higher natural period than the rest of the model. The recorded 
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acceleration from the elbow (blue data) of the 16-inch drop displayed similar natural 

frequencies to the building in both planes of testing. The flexibility of the 16-inch CPVC 

pipe between the elbow and the head acted to dampen any input accelerations from the 

rest of the model to the sprinkler head. The recorded acceleration values for the 16-inch 

drop are much less than those observed at the 12-inch drop. The recorded acceleration of 

the sprinkler head at the end of the 16-inch drop was 6.5 and 3.5g in the longitudinal and 

transverse shake planes respectively. 

During Transverse testing it was noted that the 12-inch drop exhibited a strong 

vertical mode shape during the second natural frequency of the system. The test 

represented by Graph 15 displays that vertical acceleration data experienced at the drop, 

figure 25 shows the location of the accelerometers on the model. Acceleration values 

were greatest at the tee fitting. This second mode shape caused the suspended CPVC line 

to experience torsion resulting a vertical acceleration of 4.5g at the tee. 

Amplification Observed 
The amplification of the acceleration at the base to the accelerations recorded at 

the head of the 12-inch drop was from 20 times for longitudinal and 30 times for the 

transverse recording. The amplification observed at the 16-inch drop was 15 times in the 

longitudinal test and 9 times in the transverse test. The amplification of the 12-inch 

sprinkler drop over the input acceleration from the building in both the test directions is 

about 3 times. The amplification of the 16-inch drop during longitudinal testing is 

independent of the buildings natural frequency. The amplification of 15 times that of the 

base input is due to the physical properties of the CPVC drop itself. The amplification in 
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the 16-inch drop at 9 times during transverse testing is also independent from the 

amplification of the building. 

Frequencies of the Test Design Compared to the SAP2000 Results 
For this design SAP2000 predicted mode shapes for the sprinkler system that 

resembled the buildings natural frequencies. This sprinkler model was amplified at the 

frequencies identified in the SAP2000 Analysis, except at the 16-inch drop. Due to the 

flexibility, the 16-inch drop exhibited mode shapes independent from the rest of the 

model and not identified by the SAP2000 analysis. SAP2000 analysis predicted modal 

frequencies outside of the test range and are included in the data to show there are 

expected mode shapes before and after the test frequency range. 

CPVC Sprinkler Design 3 
This design fixes the 16-inch drop to the building but in all other ways is identical 

to the previous model set-up. 

Frequencies of Sprinkler System Compared to Frequencies of the 
Building 

By fixing the 16-inch drop the stiffness of the sprinkler system was increased. The 

observed natural frequencies from both drops now showed similarities to the natural 

frequencies of the entire sprinkler line. The natural frequencies of the 12-inch drop 

remained the same as system design 2, while the natural frequencies of the 16-inch drop 

changed to resemble those similar to the buildings. 

Floor Acceleration vs. Acceleration at the Head 
The base acceleration was 0.4g in the longitudinal direction of testing. The 

maximum acceleration of the 12-inch drop when tested in the longitudinal direction was 
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13g. The maximum acceleration of the 16-inch drop when tested in the longitudinal 

direction was 3g at the head and 5g at the elbow. The higher acceleration observed at the 

elbow is due to the u-shaped support that allowed a greater freedom of movement than 

did the clamp support used to attach the remainder of the sprinkler system. 

The base acceleration at testing in the transverse direction yielded a maximum-

recorded acceleration of 12g with a base input of 0.3g, 23g with a base input of 0.4g, 25g 

with a base input of 0.5g at the head of the 12-inch drop. The goal of changing the base 

input was to see how the percent of amplification at the sprinkler head changed from 

incremental increases.  The 16-inch drop was tested in the transverse direction at 0.4g and 

yielded a max acceleration value of 4g during the frequency range where both the 

building and the sprinkler system were experiencing resonance.  

The recorded acceleration values from the 16-inch drop are much less than those 

observed from the 12-inch drop. With the 12-inch drop left as the only section of the 

sprinkler system able to rotate freely in the transverse direction its acceleration at the 

drop was magnified twice as much as the previous recordings when the 16-inch drop was 

free to rotate.  The recorded acceleration of the sprinkler head at the end of the 16-inch 

drop was just 6.5 and 3.5g in the longitudinal and transverse shake planes respectively. 

Amplification Observed 
The transverse recording of the 12-inch drop yielded the largest observed 

acceleration amplification of all tests. To finish the testing of CPVC sprinkler system 3 

three tests of the 12-inch drop were run in the transverse direction to get a range of 

amplification over a range of base input acceleration values. The last three base 

acceleration inputs tested were 0.3, 0.4, and 0.5g. The change in amplification of the 12-
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inch drop during the three different base input levels was greatest when the base 

acceleration increased to 0.4g from 0.3g. At that change the amplification from the base 

to the sprinkler head increased from 40 times to 63 times When the model was then tested 

at 0.5g the amplification at the sprinkler head dropped to 54 times.  

The amplification of the 16-inch drop was 10 times at the head and 12.5 times at 

the elbow when tested in the longitudinal direction. The amplification at the elbow was 

higher than that from the head due to the location of the clamp near the head and the fact 

that the u-shaped support at the elbow was only restraining the pipe in the vertical 

direction. The elbow ended up being less stiff than the sprinkler head. When the 16-inch 

drop was tested in the transverse direction the overall increased stiffness caused the 

elbow to react with significant amplification during both the building natural frequencies 

At the other end the head exhibited signs of significant amplification only at a frequency 

slightly before the buildings first natural frequency. 

Frequencies of the Test Design Compared to the SAP2000 Results 
Little change occurred in the expected modal frequencies when the SAP2000 

analysis of CPVC Sprinkler Design 2 was modified to become CPVC Sprinkler Design 3. 

Confirmed by the test results showing the change from CPVC Design 2 to 3 induced no 

change in modal frequencies. SAP2000 analysis predicted modal frequencies outside of 

the test range and are included in the data to show there are expected mode shapes before 

and after the test frequency range. The computer analysis results identified all the first 

modal frequencies recorded during CPVC testing, as well as the second transverse mode 

shapes from designs two and three. The test range for data collection was only from 10-

25 Hz. 
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RESULTS FROM CPVC SPRINKLER SYSTEM TESTING 

Table 2 Tabulated Results From CPVC Sprinkler Testing 

Test 
Direction Design Recording 

Location 
Excited Freq. 
Ranges (Hz) 

Highest 
Amplification 

SAP2000 
Fundamental 

Frequencies (Hz) 
CPVC 1 6” drop 15-17, 18-22 22 x 15.1, 36.5 

CPVC 2 
12” drop 15-17, 19-22 30 x 

15.1, 16.8, 36.5, 
39Longitudinal 16” drop 9-11, 15-17, 

20-22 16 x 

CPVC 3 
12” drop 15-17, 20-22 30 x 

15.1, 36.5, 38.9 
16” drop 15-17 13 x 

CPVC 1 6” drop 13-14, 19-22 15 x 15, 35.2 36.7 

CPVC 2 
12” drop 11-14, 18-23 20 x 

5.6, 15.1, 20.5, 
36.5Transverse 16” drop 11-14, 18-23 9 x 

12” drop 10-13, 18-23 58 x 
15, 19.8, 36.5 

CPVC3 16” drop 10-13, 18-23 10 x 

Vertical 12” drop 10-13, 18-23 11 x --------------------- 

The frequency testing range that gave clean acceleration recordings was from 

about 9 Hz to just past 30Hz. Defined mode shapes were observed within the frequency 

sweep from 10 Hz to 25 Hz. In the transverse shaking direction the designs showed signs 

of an early and late mode shapes however this erratic data could not be used to define a 

mode natural frequency. The purpose of mentioning any mode shapes outside the tested 

range is because the three SAP 2000 analyses' identifies modal frequencies both before 
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and after the test range. The displayed natural frequencies from the three SAP2000 

computer models identified in the test range are close to identical to the mode shapes 

observed in testing. Any acceleration data collected before or after this sweep range 

appeared as erratic. Erratic data is labeled as noise because no sense can be made of it. 

By testing both ends of the sprinkler drops a good reference was made between 

the acceleration delivered from the building and the additional acceleration developed at 

the end of the hanging drop. The blue data from pipe sections securely fixed to the model 

served as a baseline to compare the accelerations coming from the building to the 

amplified accelerations in the sprinkler heads.  

The computer models of the three test set-ups generated results that closely 

mirrored the modal frequencies found from testing. In many of the test cases the 

amplification observed at the sprinkler head was closely associated with the driving 

frequency of the building itself.  

No failures of any kind occurred during the CPVC sprinkler tests. 
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8 DYNAMIC PROPERTIES OF STEEL SPRINKLERS 

DESCRIPTION OF TEST SET-UPS 
The tested design involved bringing the sprinkler line up the back of the model 

through the opening under the eve and into the inside. The set-up had a 12-inch drop 

plumbed in the middle of the model's interior and a 16-inch drop extending out the other 

side and down the front gable. The following data was recorded at both ends of fire 

system’s drops. 
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LONGITUDINAL DATA 


1 inch steel, 16" drop, Doghouse Excited at .3 g in 
Longitudinal Dir. 
Red data @ head 

Blue data @ elbow 
(02-07-2002) 
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control Accel 1985 Accel 1995 First Natural Frequency of the Building 

Graph 21 Test of Steel Sprinkler Design (02-07-02) 

Figure 53 The Placement of the Accelerometers for Graph 21 
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1 inch steel line, 16" drop Doghouse excited at .4 g in 
Longitudinal Dir. 
Red data @ head 

Blue data @ elbow 
(02-07-2002) 
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Graph 22 Test of Steel Sprinkler Design (02-07-02) 

Figure 54 The Placement of the Accelerometers for Graph 22 
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1 inch steel line, 12" drop, Doghouse excited at .3 g in 
Longitudinal Dir.
 
Red data @ head
 
Blue data @ tee
 

(02-07-2002)
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Graph 23 Test of Steel Sprinkler Design (02-07-02) 
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Figure 55 The Placement of the Accelerometers for Graph 23 
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1 inch steel line, 12" drop, Doghouse excited at .4 g in 
Longitudinal Dir.
 
Red data @ head
 
Blue data @ tee
 

(02-07-2002)
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Graph 24 Test of Steel Sprinkler Design (02-07-02) 
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Figure 56 The Placement of the Accelerometers for Graph 24 
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TRANSVERSE DATA 


1 inch steel line, 16" drop, Doghouse excited at 
.3 g in Transverse Dir. 

Red data @ head 
Blue data @ elbow 

(02-07-2002) 

0 
2 
4 
6 
8 

10 
12 
14 
16 

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

A
cc

el
er

at
io

n 
(g

) 

control Accel. 1985 

Accel. 1995 First Natural Frequency of the Building 

Second Natural Frequency of the Building 

Graph 25 Test of Steel Sprinkler Design (02-07-02) 

Figure 57 The Placement of the Accelerometers for graph 25 
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1 inch steel line, 16" drop, Doghouse excited at .4 
g in transverse dir. 
Red data @ head 

Blue data @ elbow 
(02-07-2002) 
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Graph 26 Test of Steel Sprinkler Design (02-07-02) 

Figure 58 The Placement of the Accelerometers for Graph 26 
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1 inch steel line, 12" drop, Doghouse excited at .3 
g in transverse dir. 
Red data @ head 
Blue data @ tee 

(02-07-2002) 
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Graph 27 Test of Steel Sprinkler Design (02-07-02) 

Figure 59 The Placement of the Accelerometers for Graph 27 
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1 inch steel line, 12" drop, Doghouse excited at 
.4 g in transverse dir. 

Red data @ head 
Blue data @ tee 

(02-07-2002) 
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Graph 28 Test of Steel Sprinkler Design (02-07-02) 

Figure 60 The Placement of the Accelerometers for Graph 28 




 

  

 

 

 
 

 
 

 

 

 

- 77 -

SAP2000 Steel Sprinkler System Analysis 

Longitudinal Mode Shapes 

Longitudinal Mode 1 

Period = 0.0703 seconds 


frequency = 14.2 Hz
 

Figure 61The First Longitudinal Mode Shape from the SAP2000 Analysis of Steel Sprinkler Design 

Longitudinal Mode 2 

Period = 0.0221 seconds 


frequency = 45.2 Hz
 

Figure 62 The Second Longitudinal Mode Shape from the SAP2000 Analysis of Steel Sprinkler 
Design 
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Transverse Mode Shapes 

Transverse Mode 1 

Period = 0.0761 seconds 


frequency = 13.1 Hz
 

Figure 63 The First Transverse Mode Shape from the SAP2000 Analysis of Steel Sprinkler Design 

Transverse Mode 2 

Period = 0.0336 seconds 


frequency = 29.8 Hz
 

Figure 64 The Second Transverse Mode Shape from the SAP2000 Analysis of Steel Sprinkler Design 
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DATA REVIEW 

Frequencies of Sprinkler System Compared to Frequencies of the 
Building 

The longitudinal testing on the 16-inch drop yielded natural frequencies of the 

head and elbow placement directly in line with the buildings natural frequency. The data 

collected from the 16-inch drop showed one exhibited natural frequency at 15 Hz in the 

longitudinal plane. During the longitudinal tests of the 12-inch drop the recording at the 

tee exhibited scattered results while the sprinkler head displayed data portraying a natural 

frequency peaking at the same time as the buildings natural frequency. 

In the transverse test direction the system showed a clear first natural frequency at 

10Hz plus or minus half a hertz during the four tests performed. Following that first 

natural frequency of the sprinkler system the sprinkler line showed acceleration 

amplification as a result of the buildings resonance input.                                                                    

Floor Acceleration vs. Acceleration at the Head 
The base accelerations used were 0.3 and 0.4g in both directions of testing. The 

maximum acceleration found from the test in the longitudinal direction was observed in 

the 16-inch drop at 5g while the model shock from a base input of 0.4g. The maximum 

acceleration at the head of the 12-inch drop was 4g with the base input 0.4g. 

Testing in the transverse direction yielded a maximum acceleration of 16g at the 

head of the 16-inch drop.  The 12-inch drop experienced accelerations of up to 5g when 

testing at 0.4g. 

Amplification Observed 
The amplification of the acceleration at the base to the accelerations recorded at 

the head was from 10 to 40 times. The amplification of the sprinkler drop over the input 
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acceleration from the building in the longitudinal direction is about 1.5 times at the 16-

inch drop and zero at the 12-inch drop. In the transverse direction the both drops 

experienced amplification about 2 times over the buildings accelerations.  

Frequencies of the Test Design Compared to the SAP2000 Results 
The computer analysis identified the first model frequencies observed during 

testing. SAP2000 also identified a second mode shape in both test directions, included in 

the data as expected second modes. 
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RESULTS FROM STEEL SPRINKLER SYSTEM TESTING 

Table 3 Tabulated Results From Steel Sprinkler Testing 

Test Direction Recording 
Location 

Excited 
Frequency 

Ranges (Hz) 

Highest 
Amplification 

Sap2000 
Fundamental 

Frequencies (Hz) 

Longitudinal 
12” drop 13-16 10 x 

14.2, 45.2 
16” drop 13-16 13 x 

Transverse 
12” drop 8-13, 15-17, 

18-20 
13 x 

13.1, 29.8 
16” drop 9-14, 18-21 35 x 

The end of the sprinkler system acted like a cantilever out from the seismic brace. 

During longitudinal testing the seismic brace absorbed all the moments imposed upon it 

from the two sprinkler drops. The design of the brace allowed for flexibility by having 

moveable joints at both points of contact. During longitudinal testing the visual 

movement from the seismic brace while the buildings exhibited its mode shape was 

impressive. The rotation at the brace connection pins allowed the brace to act like a shock 

absorber and provided a secure attachment for the sprinkler pipe.  

The placement of the seismic brace allowed the sprinkler line to rotate freely in 

the transverse direction. The accelerations recorded during transverse testing suggest that 

the steel sprinkler line had a distinctive first transverse mode shape at ~10Hz. Effects 

from the buildings excitement were represented in the sprinkler drop data. The buildings 

amplification is greatest along the upper rafters where the seismic brace is bolted. The 

building accelerations were observed to amplify through the drops as the sprinkler heads 

acted as weighted cantilevers being shock from a fixed end. 
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Because of the interference from the seismic brace, longitudinal acceleration for a 

sprinkler section securely attached to the building wasn't available like in the CPVC tests. 

The test of the 16-inch drop shows equal accelerations from both ends of the drop. This 

suggests the stiffness of the drop causes the entire drop to amplify with the amplification 

of the building alone. Amplifications observed in the longitudinal tests come from the 

amplification of the building alone. The recorded amplification of 10 times greater than 

the base is consistent with amplification previously recorded along the roof ridge of the 

building. 

The excitation of the seismic brace induces acceleration data to scramble. 

Visually the area at the top of the 12-inch drop is rattling violently while the seismic 

brace securely fixes the sprinkler line. Longitudinal data from the tee shows up like 

background noise and is included in the graphs just to show that action in the area 

existed.  

No failure occurred in the Steel Sprinkler system during the shake tests.  
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9 CONCLUSION 

1. 	Each of the sprinkler designs tested performed without any failures. Amplitudes of 

the recorded accelerations suggest that forces were present that could have failed an 

improperly attached support. The visual responses as well as the data collected during 

testing showed high levels of accelerations present. 

2. 	The highest level of acceleration recorded was at the head on the 12-inch drop of 

CPVC design 3. The acceleration developed was 26g when the system was resonating 

from the base level acceleration of 0.5g. The largest amplification of sixty times over 

the base level occurred at the same CPVC drop when the test ran in the transverse 

direction at 0.4g. 

3. 	The CPVC sprinkler systems developed large amplifications and remained 

completely elastic. The extreme flexibility of the material along with the high 

strength of the CPVC glue denotes the likelihood of a properly secured CPVC 

sprinkler system failing before the building to be slim to none.   

4. 	Each sprinkler system tested experienced amplification over the base acceleration 

input, as well as over the buildings own amplification. Each sprinkler design was 

bolted to peak of the building's roof, where the buildings own amplification was 

recorded at ten times the base level. When comparing the accelerations in the 

sprinkler line to those delivered by the building, the CPVC systems were found to 

have amplification of three to five times above, and the steel sprinkler system shows 

amplifications two to three times above the building's own amplification. 

5. 	In some sections of the design the sprinkler systems included a high degree of 

flexibility. In these loose sections the natural mode shapes were witnessed at a 
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frequency less than when the building became excited. In cases where the sprinkler 

systems were securely attached to the building, the natural frequencies tested were 

close to identical to the building's own natural frequencies. Testing showed securely 

fixed sprinkler systems experience amplification when the building it's attached to 

resonates. 

6. 	Had the sprinkler drops been restricted by any obstacle damage would have likely 

occurred from impact pounding. Code allows membranes like gypsum board to 

surround sprinkler pipes since they fail easily before the sprinkler does. Since gypsum 

board fails by crushing it would likely act to cushion the sprinkler head movement. 

With solid objects in the way of a sprinkler line, damage is likely to create potential 

failures to the system. For each sprinkler design tested there was no interference to 

sprinkler system movement.   

7. 	 The largest unsupported drop tested was 16 inches long. Drops were shown to have 

the highest level of amplification. These amplifications developed due to the sprinkler 

heads freedom to move. Current sprinkler designs often have greater drop lengths 

than 16 inches and should be expected to develop high accelerations during an 

earthquake. If moment forces get high enough at a fixed end, cases of sheer failure 

can occur at the threaded connection.  Because of the flexibility of CPVC moment 

forces would have to be extreme to cause a shear failure. As long as CPVC sprinkler 

systems are glued correctly designs appear to be indestructible in the light of 

acceleration forces. 

8. 	Code requirements are in place to ensure sprinklers are installed securely on a 

structure. When a structure moves, the code emphasizes ample clearance along with 
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flexibility of joints to prevent sprinkler failing before the building. Test performed by 

the model in this report demonstrate how code approved sprinkler designs remain 

intact while the building shakes.  

9. 	 Reducing the flexibility within the sprinkler system by securely fixing sections to the 

building caused the system to respond to the building's natural frequency. In CPVC 

sprinkler design 2, the 16-inch drop had a large degree of flexibility, which gave it a 

natural mode shape independent from the buildings. By fixing the 16-inch drop to the 

building, amplification during testing was greatly reduced.  If the sprinkler system is 

completely supported and given proper clearance it will perform as well as the 

structure during an earthquake.   
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10 POTENTIAL FOR FUTURE RESEARCH 

Further research into the seismic properties of sprinkler systems can be taken in 

two pathways:  

1. 	 Larger more complicated sprinkler systems can be tested to witness shaking effects in 

different sized components. A room-size model should provide enough space to 

plumb many different sprinkler designs. A model with multiple floors could test how 

flexible couplings react at the floor interface. The greatest aid in collecting data 

would be the availability of multiple recording inputs. With more recording inputs 

more of the system can be represented for each dynamic test. With enough available 

inputs the model structure should also be sampled in each test in order to observe any 

structural changes. 

2. 	 Effects on a room’s non-structural interior from a dynamic sprinkler system can be 

researched. In a room-size model multiple interior objects can be studied to observe 

the interaction to a dynamic sprinkler system. Potential items are gypsum board, 

dropped ceiling grids, mechanical equipment, etc. 

The new 10’ x 10’ shake table at Cal Poly is the right platform to test a room size 

model. A two-story model can be attached to test the effects of inter-story drift on a 

sprinkler system. 
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APPENDIX 
NFPA-13 1999 SEISMIC CODE 6-4 
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