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Abstract
An adhesive elliptical contact is normally found in microscale applications that involve cylindrical solids, crossing at an 
angle between 0° and 90°. Currently, only one model is available to describe the elliptical contact’s surface interaction: the 
approximate Johnson–Kendall–Roberts (JKR) model which is limited to soft materials. In this paper, a new adhesive elliptical 
model is developed for a wide range of adhesive contacts by extending the double-Hertz theory, where adhesion is modeled 
by the difference between two Hertzian pressure distributions. Both Hertzian pressures are assumed to have an equivalent 
shape of contact areas, the only difference being in size. Assuming that the annular adhesive region is obtained by the area 
difference between the two Hertzian contact areas, the pull-off force curves can be calculated. In the limiting case of an 
adhesive circular contact, the results are very close to results from the existing models. However, for an adhesive elliptical 
contact in the JKR domain, lower pull-off forces are predicted when compared to the JKR values. Unlike the developed 
model, the shape of the JKR contact area varies throughout contact. Results show, particularly for conditions close to the 
JKR domain, that it is important to take into account that the adhesive region is the result of the two Hertzian contact areas 
having a non-equivalent shape.
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List of symbols
a, b	� Semimajor and semiminor axes 

of the contact ellipse
c, d	� Semimajor and semiminor axes 

of the adhesive ellipse
�0	� Ellipticity ratio at initial loading
�(pull-off)	� Ellipticity ratio at pull-off 

moment
�JKR(pull-off)	� Ellipticity ratio at pull-off 

moment from JKR elliptical 
model

�	� Ellipticity ratio throughout 
contact

�ab = b∕a	� Ellipticity ratio of the contact 
ellipse

�cd = d∕c	� Ellipticity ratio of the adhesive 
ellipse

r	� Radial coordinate
�p	� Angular coordinate
rab	� Radial coordinate of the contact 

ellipse
rcd	� Radial coordinate of the adhe-

sive ellipse
�skew	� Angle between crossing 

cylinders
E∗	� Reduced Young’s modulus
E1,E2	� Young moduli of the contacting 

materials
Rc	� Radius of cylinder
R′,R′′	� Principal relative radii of 

curvature
R =

√
R�R��	� Equivalent radius

�	� Poisson’s ratio
�	� Tabor parameter
k =

(
1 − �2

)1∕2	� Elliptic modulus (eccentricity)
k� =

(
1 − k2

)1∕2	� Complementary elliptic modulus
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� = sin−1
�
a∕

√
l + a2

�
	� Second argument of the incom-

plete elliptic integrals
K(k)	� Complete elliptic integral of the 

first kind
E(k)	� Complete elliptic integral of the 

second kind
F(�, k)	� Incomplete elliptic integral of 

the first kind
E(�, k)	� Incomplete elliptic integral of 

the second kind
v	� Scaling factor to keep σ0 and Δγ 

at a constant value
W 	� Applied load of single asperity
Δ�	� Work of adhesion
Poab	� Maximum pressure of the con-

tact ellipse
Pocd	� Maximum pressure of the adhe-

sive ellipse
�0	� Maximum adhesive stress
�inab

	� Surface displacement within the 
contact ellipse

�outab
	� Surface displacement outside the 

contact ellipse
�incd

	� Surface displacement within the 
adhesive ellipse

�0ab	� Combined surface displacement 
for 0 ≤ r ≤ rab

�abcd	� Combined surface displacement 
for rab ≤ r ≤ rcd

�	� Approach of distant points
z	� Initial gap in contact area
h	� Separation between surfaces in 

the adhesive region

1  Introduction

Surface adhesion is important in the mechanics of surface 
contacts, in particular at microscale [1–4], as a result of high 
surface area-to-volume ratios [5]. Various models have been 
developed to describe the adhesive contact between surfaces. 
In the context of modeling smooth surfaces, three impor-
tant adhesive contact theories exist: (1) the Johnson–Ken-
dall–Roberts (JKR) model [6]; (2) the Derjaguin–Mul-
ler–Toporov (DMT) model [7], which was later corrected 
by Muller et al. [8]; and (3) the Maugis–Dugdale (MD) 
model [9]. In the case of a circular contact, the JKR model 
relies on the assumption that short-range adhesion forces 
act within the contact area. Conversely, in the DMT model, 
long-range adhesion forces are assumed to act outside the 
contact area. Later, it was found that the DMT model and 
the JKR model had different pull-off predictions. This debate 

continued until a finding by Tabor [10] revealed that both 
theories were actually complementary. Solid materials with 
low surface energy are particularly suited to using the DMT 
model, while the JKR model is suitable for soft materials 
with high surface energy values. The important criterion 
to distinguish between the DMT model and the JKR model 
is the neck formation outside the contact area. The Tabor 
parameter μ is used to measure the ratio of neck height to 
the equilibrium separation [10]. For high values of μ, the 
adhesion forces outside the contact area can be disregarded 
as the surfaces are totally separated. This behavior perfectly 
describes the JKR contact [6]. As in the case of small μ val-
ues, the presence of adhesion forces is significant outside the 
contact area, as shown by the DMT model [7].

The transition between the DMT model and the JKR 
model is completed by the intermediate MD model that 
befits a wider range of common materials. Solutions from 
the MD model can be obtained analytically by solving a set 
of equations simultaneously. Greenwood and Johnson devel-
oped another transition model known as the double-Hertz 
(DH) model [11]. Not only has that model been proven to 
be feasible by producing similar results to those from the 
MD model, but it is also more straightforward in terms of 
mathematical formulations. All the models mentioned above 
have been extended for the application of line contacts, as 
shown by [12] with a JKR-based foundation and [13, 14] for 
cohesive MD models. The extension of the DH model was 
developed in [15]. Since its development, the DH model has 
been extended to various applications such as random multi-
asperity contacts [16] and a sinusoidal wavy surface [17].

At present, there is only one contact model that can 
describe the mechanics of an adhesive elliptical contact, 
namely the approximate JKR model [18]. The model is built 
on the assumption that both major and minor axes have iden-
tical values of the stress intensity factor at the edges of the 
contact. This assumption is to avoid the separation at both 
ends of the major axis, while the stress intensity factor at 
both edges of the minor axis remains lower than the critical 
value. The shape of the elliptical contact area is shown to 
vary with the applied load. This behavior is different from 
that predicted by the Hertz theory in which the ellipse’s 
growth rate remains radially constant as the load varies. Val-
idations for the elliptical JKR model have been conducted 
by several researchers, either by experimental or numerical 
studies. A finding in [19] shows that the difference between 
the pull-off forces from the experimental data and the model 
becomes prominently greater as the contact area approaches 
a slim elliptical shape. The same result was also reported in 
numerical simulations in [20]. It is found that in contrast to 
the JKR elliptical theory, the pull-off forces decrease as the 
skew angles become smaller in the numerical simulations.

For circular contacts, prediction of the contact behav-
ior in the adhesive region is straightforward with constant 
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deformations throughout the periphery. In the case of ellipti-
cal contacts, it is clearly a complex contact, involving vari-
ous contact geometries, ranging from nearly circular to slim 
elliptical contacts. The ellipticity ratio β is introduced to 
illustrate the deviation of the ellipse from the circular shape, 
given as:

From Eq. (1), the values of the ellipticity ratios are found 
to be within the range of 0 < β < 1 where β values closer to 
one have nearly circular contact areas, which are equivalent 
to having a nearly 90° angle between the cylinders. β values 
closer to zero have contact areas with shapes that resem-
ble line forms, due to really small skew angles. The shape 
variations of an elliptical contact are shown schematically 
in Fig. 1.

The current work focuses on extending the DH model 
for adhesive elliptical contacts with high initial ellipticity 
ratios β0 ranging from 0.8 to 0.99. The developed model is 
expected to behave similarly to the current adhesive models 
in the limiting case of circular contacts within the range of 
0.5 ≤ μ ≤ 5. In this paper, both contact and adhesive ellipses 
which bound the adhesive annular region are assumed to 
have identical, fixed ellipticity ratios throughout the contact, 
though the limit of this assumption must be evaluated. The 
developed model is also expected to follow the behavior of 
the JKR elliptical model in the JKR domain. It is shown 
that the pull-off behavior in the JKR domain is influenced 
by the unequal growth rate of its contact area in both the 
major and minor axes directions. However, the question of 
whether the adhesive region of the developed model is also 
subjected to the unequal growth rate, inside and outside the 
JKR domain, needs to be investigated. These aspects are 
explored in this paper.

(1)� =
semiminor axis

semimajor axis

2 � Model Development

2.1 � Non‑adhesive Elastic Contact

The Hertz model, described in [21], was the pioneer of con-
tact models. An elliptical contact is produced from crossed 
cylinders with skew angle, θskew, between 0° to 90°. The con-
tact area is an ellipse, with semimajor axis a and semiminor 
axis b, as shown in Fig. 2.

Formulations for the non-adhesive elliptical contact 
model are given in [21], in Cartesian coordinates. In this 
paper, all the equations are expressed in a polar coordi-
nate system, where geometrical parameters are defined in 
“Appendix 1”.

The initial gap, z, in polar coordinates is given in [21] by 
the general expression:

where R′ and R′′ are the first and the second principal rela-
tive radii of curvature for the cylinders. r is the radial coor-
dinate and θp is the angular coordinate of the chosen point in 
the contact region. R′ and R′′ are related to the angle between 
the crossing cylinders, θskew, by:

(2)z
(
r, �p

)
=

1

2R�

(
r cos �p

)2
+

1

2R��

(
r sin �p

)2

(3)R� = Rc

/(
1 − cos �skew

)

Fig. 1   Variation of an ellipti-
cal contact a nearly circular 
contact for β value close to 1 
(θskew ≈ 90°), b mildly elliptical 
contact for intermediate values 
of β (θskew < 90°)

Fig. 2   An elliptical contact due to crossed cylinders 
(0° < θskew < 90°)
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where the cylinders in contact are assumed to have the same 
radius Rc.

The effective radius, R, is given by:

(4)R�� = Rc

/(
1 + cos �skew

)

(5)R =
√
R�R��

where

Due to the pressure in Eq. (7), the surface displacement 
within the ellipse of two bodies, ω, is expressed in [21] as:

(11)

F1 =
(

4

�k2
�3∕2

{[
E(k)∕�2 − K(k)

]
[K(k) − E(k)]

}1∕2
)1∕3

and the effective Young’s modulus is:

where ϑ is the Poisson’s ratio and E* is the Young’s modulus 
for each cylinder.

When the adhesion effect is neglected, the Hertzian pres-
sure distribution, P, acting in the elliptical contact area as 
obtained by [21] can be expressed as follows:

For this pressure distribution, the maximum pressure in 
the contact ellipse, Poab, is given as:

where K(k) and E(k) are the complete elliptic integral of the 
first and second kind, and k is the elliptic modulus (eccen-
tricity of the ellipse). The value of β throughout the contact 
is equal to β0, the initial ellipticity ratio at initial loading that 
can be expressed as:

The total load compressing the cylinders, W, is related to 
the contact area as follows:

(6)E∗ =

(
1 − �2

1

E1

+
1 − �2

2

E2

)−1

(7)

P
(
r, �p

)
= Poab

[
1 −

(
r cos �p

/
a
)2

−
(
r sin �p

/
b
)2]1∕2

(8)Poab =
E∗

2R

k2a

�
{[
E(k)∕�2 − K(k)

]
[K(k) − E(k)]

}1∕2

(9)� = �0

(10)W =
4E∗

3RF3
1

(ab)3∕2

where l is the positive root to (r cos �p)
2

a2+l
+

(r sin �p)
2

b2+l
= 1.

Solutions for Eq. (12a) were obtained from [21]. Equa-
tion (12b) was solved in [22] and is applied here in our 
model. Further solutions for Eq.  (12b) can be found in 
“Appendix 2.” Surface displacements in Eq. (12) are then 
rewritten as:

where

and

(12a)�inab

�
r, �p

�
=

1

�E∗

⎧
⎪⎨⎪⎩

�Poabab

2

∞

�
0

�
1 −

�
r cos �p

�2
a2 + w

−

�
r sin �p

�2
b2 + w

�
dw��

a2 + w
��
b2 + w

�
w
�1∕2

⎫
⎪⎬⎪⎭

0 ≤ r ≤ rab

(12b)�outab

�
r, �p

�
=

1

�E∗

⎧
⎪⎨⎪⎩

�Poabab

2

∞

�
l

�
1 −

�
r cos �p

�2
a2 + w

−

�
r sin �p

�2
b2 + w

�
dw��

a2 + w
��
b2 + w

�
w
�1∕2

⎫
⎪⎬⎪⎭

r ≥ rab

(13a)
�inab

(
r, �p

)
=

1

�E∗

[
Linab −Minab

(
r cos �p

)2

−Ninab

(
r sin �p

)2]
0 ≤ r ≤ rab

(13b)
�outab

(
r, �p

)
=

1

�E∗

[
Loutab −Moutab

(
r cos �p

)2

−Noutab

(
r sin �p

)2]
r ≥ rab

(14a)Linab = � = �PoabbK(k)

(14b)Minab
= �Poab�[K(k) − E(k)]∕k2a

(14c)Ninab
= �Poab�

[
E(k)∕�2 − K(k)

]
∕k2a

(15a)Loutab = �PoabbF(�, k)

(15b)Moutab
= �Poab�[F(�, k) − E(�, k)]∕k2a
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F(φ, k) and E(φ, k) are the incomplete elliptic integral of 
the first and second kind. k′ is the complementary elliptic 
modulus and φ is the second argument of the incomplete 
elliptic integrals.

2.2 � Extension of the Double‑Hertz Theory 
to Adhesive Elliptical Contacts

We developed the adhesive elliptical contact model by 
extending the DH theory by [11], originally created for an 
adhesive circular contact. The basis of the DH model is that 
the adhesive tensile stresses are represented by the difference 
between two Hertzian pressure distributions of different radii 
(radial coordinates). The equations describing the adhesive 
stresses are given by:

where rab and rcd are the radial coordinates for the contact 
and the adhesive ellipses, respectively, such that rab < rcd. 
The contact ellipse is the Hertzian contact area that is due to 
the applied load. The additional pressure distribution creates 
the adhesive ellipse with semimajor axis c and semiminor 
axis d. Contact and adhesive ellipses bound the adhesive 
region, an annular elliptical-shaped area where the adhesion 

(15c)

N
out

ab
= �Po

ab
�

[
E(�, k) − k

�2
F(�, k)

−k2sin� cos�

/√
1 − (k sin�)2

]/
k
2
k
�2
a

(16a)

P
(
r, �p

)
= Pocd

[
1 −

(
r cos �p

c

)2

−

(
r sin �p

d

)2
]1∕2

− Poab

[
1 −

(
r cos �p

a

)2

−

(
r sin �p

b

)2
]1∕2

0 ≤ r ≤ rab

(16b)

P
(
r, �p

)
= Pocd

[
1 −

(
r cos �p

c

)2

−

(
r sin �p

d

)2
]1∕2

rab ≤ r ≤ rcd

Following the Hertzian assumption for elliptical contacts, 
the relation of

is maintained throughout the adhesive contact.
The maximum pressure in the adhesive ellipse, Pocd, is 

given as:

which is similar in form as Eq. (8) of the contact ellipse.
The surface displacements are:

Figure 3a shows the normalized pressure P/P0 curves, 
obtained using Eqs. (8), (16) and (20) at β0 = 0.99, which 
corresponds to θskew ≈ 90°. From Fig. 3a, the maximum 
adhesive stress can be seen to occur at rab and then decreases 
to approach a zero value at rcd. Surface displacements at 
β0 = 0.99 are also presented in Fig. 3b, using Eq. (21). The 
results of the original DH model for a circular contact are 
also included. A uniform displacement over the contact 
region is annulled by a rigid-body displacement over the 
adhesive region of rab ≤ r ≤ rcd to leave a gap. It can be 
observed that the surface deformations for the current model 
at β0 = 0.99 closely resemble those of the DH model for a 
circular contact. 

In a similar way as in the original DH model, the pressure 
expressions in Eq. (16) are scaled by ʋ to model the adhesive 
tensile stresses over the adhesive region, rab ≤ r ≤ rcd, which 
produces the final stresses distribution when combined with 
an unscaled Hertzian pressure. The scaling factor, ʋ, is deter-
mined by the surface forces, which will be further discussed 
in Sect. 2.3. The pressure equations are now expressed as:

(19)� = �(pull−off ) = �0

(20)Pocd =
E∗

2R

k2c

�
{[
E(k)

/
�2 − K(k)

]
[K(k) − E(k)]

}1∕2

(21a)�0ab

(
r, �p

)
= �inab

− �incd
0 ≤ r ≤ rab

(21b)�abcd

(
r, �p

)
= �outab

− �incd
rab ≤ r ≤ rcd

(22a)P
�
r, �p

�
= v

⎧⎪⎨⎪⎩
Pocd

�
1 −

�
r cos �p

c

�2

−

�
r sin �p

d

�2
�1∕2

− Poab

�
1 −

�
r cos �p

a

�2

−

�
r sin �p

b

�2
�1∕2⎫⎪⎬⎪⎭

0 ≤ r ≤ rab

forces act. In this paper, it is assumed that both contact and 
adhesive ellipses have equal values of ellipticity ratio during 
contact, which is expressed as:

which at the pull-off moment, the relation in Eq.  (17) 
becomes:

(17)� = �ab = �cd

(18)�(pull−off ) = �ab(pull−off ) = �cd(pull−off )

From Eq. (22b), it can be seen that the distribution of the 
tensile stress over the adhesive annular region is given by:

(22b)

P
(
r, �p

)
= vPocd

[
1 −

(
r cos �p

c

)2

−

(
r sin �p

d

)2
]1∕2

rab ≤ r ≤ rcd
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Then, at r = a and θp = 0°, the maximum adhesive stress 
is given by:

(23)

�ac
(
r, �p

)
= −P

(
r, �p

)

= − vPocd

[
1 −

(
r cos �p

c

)2

−

(
r sin �p

d

)2
]1∕2

(24)�0 = − vPocd

(
1 −

a2

c2

)1∕2

The combined load, including the load in Eq. (10), is 
expressed as:

To include the scaling factor ʋ, surface displacements in 
Eq. (21) are rewritten as:

(25)W =
4E∗

3RF3
1

{
(ab)3∕2 − v

[
(cd)3∕2 − (ab)3∕2

]}

(26a)�0ab

(
r, �p

)
= v

(
�inab

− �incd

)
0 ≤ r ≤ rab

Fig. 3   a The pressure difference 
between two Hertzian solutions, 
b surface displacements for both 
the DH circular model and the 
developed model
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The gap, h, for the area outside the contact where 
rab ≤ r ≤ rcd is then given by:

2.3 � Work of Adhesion

The work needed to break the intermolecular bonds at 
pull-off moment is termed work of adhesion. This work is 
required to create new surfaces when separating two bodies 
attached together due to the presence of the adhesion forces. 
The work of adhesion from [11] can be expressed as:

which becomes

where σac is dependent on the separation h. For an ellipti-
cal contact, h is a function of both r and θp, as shown in 
Eq. (27). Using the Jacobian of the transformation, the work 
of adhesion for an adhesive elliptical contact from Eq. (29) 
can be expressed as:

(26b)�abcd

(
r, �p

)
= v

(
�outab

− �incd

)
rab ≤ r ≤ rcd

(27)h
(
r, �p

)
= z + �outab

+ �abcd − �0ab − �

(28)Δ� =

∞

∫
0

�acdh

(29)Δ� =

∞

∫
0

�ac

∫
0

d�acdh

where the scaling factor ʋ is chosen such that the values of 
σ0 and Δγ are fixed.

In this paper, only the results for the angular coordinate 
at θp = 0° are shown, resulting in the model having a one-
dimensional solution for the contact problem. The expres-
sion for the work of adhesion in Eq. (30) for θp = 0° can be 
rewritten as:

3 � Results

Previous results are summarized in non-dimensional form 
following the work of [11, 23] by:

and

Further, the Tabor parameter is defined in [10] as:

(30)Δ� = 4

�∕2

∫
0

rcd

∫
rab

(
d�ac

dr

dh

d�p
−

d�ac

d�p

dh

dr

)
drd�p

(31)Δ� =

rcd

∫
rab

�ac(r)
dh

dr
dr

(32)a = cra
∗; b = crb

∗; c = crc
∗; d = crd

∗

(33)cr
3 = R2Δ�∕E∗

(34)W = 2�RΔ�W∗
/
sin�skew

(35)� = �0
(
R∕E∗2Δ�

)1∕3

Fig. 4   Variation of the contact 
semimajor axis a* with the 
normalized load W* for various 
values of μ 
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Using the equations above, the normal load in Eq. (25) is 
now expressed in non-dimensional form as:

The effects of changing the normalized load W* on the 
semimajor axes of contact and adhesive ellipses, a* and c*, 
are shown in Figs. 4 and 5. We obtained the values of c* 
and the factor ʋ by solving Eqs. (31) and (35) simultane-
ously in MATLAB. Due to incomplete elliptic integrals in 
Eq. (31), it cannot be solved directly in the same manner as 
in the DH circular contact. Both c* and ʋ values were then 
used in Eq. (36) to calculate the corresponding load. At a 
nearly circular contact, the model is compared to the original 
DH model for an intermediate case of μ = 1 and the JKR 
circular model for the soft material comparison at μ = 5. A 
β0 value of 0.99 follows the behavior of a circular contact 
accurately for all μ values. At μ = 0.5, the pull-off moment 
occurs at a near-zero contact with a high pull-off force. It 
is shown that the deformations due to adhesion forces are 
negligible, which is in agreement with the predictions of 
the DMT model. For μ = 5, the surface separation involves 
a low pull-off force at an apparent nonzero contact, which 
is similar to those predicted by the JKR model. In Fig. 5, c* 
values are shown to be highly influenced by the value of μ, 
such that they become smaller with increasing μ. As the μ 
values approach the JKR domain where materials are easily 
deformed, the adhesive ellipse becomes smaller, while the 
contact ellipse becomes larger, resulting in a narrow adhe-
sive region. This is in close agreement with the adhesive 

(36)

W∗ =
2

3�

sin�skew

F3
1

{
(a∗b∗)

3∕2 − v
[
(c∗d∗)

3∕2 − (a∗b∗)
3∕2

]}

behavior in the JKR domain, where adhesion is contained 
within the contact area. 

The performance of the developed model is further inves-
tigated for particular μ groups, as shown in Figs. 6 and 7. 
Both graphs plot the semimajor axes of contact and adhe-
sive ellipses, a* and c*, versus the normalized load W*. 
Results are shown for various β0 values at μ = 0.5 and μ = 5, 
respectively. At μ = 0.5, it is shown that with decreasing β0 
values, the gap between a* and c* becomes considerably 
wider. This shows that, outside the contact area, an expan-
sion of the adhesive region along the major axis is predicted 
for contacts which deviate from a circular shape. However, 
there is barely any effect at μ = 5, as shown in Fig. 7. At 
μ = 5, a* values are nearly equal to c* values, indicating a 
narrow adhesive region. 

In Fig. 8, the model is compared to the JKR elliptical 
model at its adhesive domain of μ = 5. Only the curve of 
β0 = 0.99 has a close fit to the JKR elliptical model. The 
difference in pull-off force values between both models is 
more apparent with decreasing β0. Although both models 
show similar deformations, the pull-off forces predicted by 
the developed model at β0 values of 0.8 and 0.9 are consider-
ably low for β0 values that are considered to be close to one.

As previously shown in Fig. 8, the initial assumption of 
an adhesive region with both contact and adhesive ellipses 
having equal ellipticity ratios that remain constant as the 
load varies, as given in Eqs. (17) and (19), is not realistic 
for β0 values of 0.8 and 0.9. To further analyze the behavior 
of the adhesive region during contact, the pull-off moment 
results from the assumption of Eq. (19) are compared to 
when the model employed JKR-like behavior, in which its 

Fig. 5   Variation of the adhesive 
semimajor axis c* with the 
normalized load W* for various 
values of μ 
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ellipticity ratio is constantly changing as the load varies. 
At the pull-off moment, both results employ Eq. (18) for 
the relation between the contact and adhesive ellipses. For 
the JKR-like behavior, the ellipticity ratios of both contact 
and adhesive ellipses are made equal as the ellipticity ratio 
of the contact area obtained from the JKR elliptical model, 
which is expressed as β(pull-off) = βJKR(pull-off), for all β0 values 
of 0.8, 0.9 and 0.99.

The variation of the normalized pull-off force Wmax* with 
the Tabor parameter μ is shown in Fig. 9a. Results from 
both assumptions employed in the developed model are 
compared with the existing adhesive circular and elliptical 
models. Both results from the developed model produce 
curves which lie close to the other adhesive circular and 
elliptical models at β0 = 0.99. At β0 values of 0.8 and 0.9, the 
assumption of Eq. (19) produces results which clearly devi-
ate from the JKR elliptical model. With the new assumption 

Fig. 6   Contact and adhesive 
semimajor axes a* and c* ver-
sus the normalized load W* for 
various β0 values at μ = 0.5

Fig. 7   Contact and adhesive 
semimajor axes a* and c* ver-
sus the normalized load W* for 
various β0 values at μ = 5
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of JKR-like behavior, the gap between the predicted pull-off 
forces of the developed model and the JKR values is slightly 
improved for β0 values of 0.8 and 0.9, as shown in the rela-
tive errors graph in Fig. 9b. It must be noted that a perfect fit 
between the JKR curves and the developed model cannot be 
expected in the JKR domain. The adhesive force for the JKR 
model is restricted within its contact area, which is different 
from the adhesive behavior outside the JKR domain, where 
the adhesive region is present outside the contact ellipse. 
This is an important characteristic of the developed model 
that must be taken into consideration.

4 � Discussion

At β0 values of 0.8 and 0.9, results from the developed 
model show an apparent deviation for the nearly circu-
lar contact comparison. Using the initial assumption of 
β = β(pull-off) = β0 throughout the contact until the pull-off 
moment, the adhesive region becomes smaller as the load 
decreases, but it maintains its annular elliptical shape. This is 
due to a constant deformation rate along the major and minor 
axes directions for both the contact and adhesive ellipses. As 
for the JKR contact, which assumes a constantly changing β 
during contact (β(pull-off) ≠ β0), the shape of the contact area 
that contains the adhesive stresses slowly changes from an 
ellipse to a nearly circular shape at the pull-off moment. 
From the initial load, the deformation rate along the minor 
axis of the elliptical contact slowly increases, the shape of 
which eventually turns into a nearly circular contact area 
during pull-off. Adhesion that acts within a nearly circular 

contact area requires a higher pull-off force for the separa-
tion compared to a narrow annular elliptical-shaped adhesive 
region. Figure 10 illustrates the evolution of the adhesive 
region and the contact area for the developed model with 
β = β(pull-off) = β0 assumption, including the JKR contact area 
as a comparison. The assumption of identical, fixed elliptic-
ity ratios throughout the contact for the contact and adhesive 
ellipses which bounded the adhesive region is shown to be 
unsuitable for the pull-off force prediction, as seen in the 
limiting JKR case where the pull-off force is underestimated.

At the JKR domain, pull-off moment results from the new 
assumptions (β(pull-off) = βJKR(pull-off)) are closer to the JKR 
elliptical model, compared to those from the initial assump-
tion of β = β(pull-off) = β0. The results provide insight into how 
the developed model should behave near the JKR domain, 
which has ellipticity ratios that are continuously changing 
as the load varies. At μ = 5, a smooth transition cannot be 
expected between the developed model with either the initial 
or the new assumption and the JKR elliptical model, because 
the developed model cannot model the adhesion inside the 
contact area, which is the foundation of the JKR model.

Additionally, assuming an equal value of β for both con-
tact and adhesive ellipses (β = βab = βcd) over a wide range 
of μ is also unrealistic. It is important to find the real geo-
metrical behavior of both contact and adhesive ellipses to 
improve the model’s prediction, regardless of material types 
and crossing angles. It is expected that the adhesive ellipse 
has the same ellipticity ratio as the contact ellipse for low μ 
values, while nearly circular adhesive regions are expected 
for high μ values that are closer to the JKR domain. Further 
work is essential to predict realistic geometrical behavior 

Fig. 8   Variation of the contact 
semimajor axis a* with the 
normalized load W* for various 
β0 values at μ = 5
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of contact and adhesive ellipses to enable accurate predic-
tion for an adhesive elliptical contact. Numerical simula-
tions such as [20, 24] have been shown to be able to model 
adhesive contact accurately, which can help us to predict the 
behavior of both contact and adhesive ellipses.

5 � Conclusions

A model has been developed for predicting the adhesive 
elliptical contact by extending the DH model. Both con-
tact and adhesive ellipses have identical, fixed ellipticity 
ratios, following the Hertzian assumption. Based on this, 
the geometry of the adhesive contact can be modeled, 
allowing pull-off force predictions for adhesive elliptical 

Fig. 9   a Normalized pull-off 
force Wmax* as a function of the 
Tabor parameter μ for vari-
ous ellipticity ratios β0, b the 
percentage of relative error for 
both results from the developed 
model when compared to the 
JKR elliptical model in the JKR 
domain
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contacts. The results are in agreement with those obtained 
using existing adhesive circular and elliptical models, but 
only at nearly circular contacts. Mildly elliptical contacts 
have better results when the adhesive region is assumed to 
be constantly changing, as taken into account in the JKR 
model. This behavior is also expected for non-JKR contacts, 
based on the transition from the JKR model to the developed 
model in the pull-off prediction.
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Appendix 1: Coordinate System 
for Governing Equations

See Fig. 11.

where

(A1)rab = ab

/√(
b cos �p

)2
+
(
a sin �p

)2

(A2)rcd = cd

/√(
d cos �p

)2
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(
c sin �p

)2

(A3)x = r cos �p

(A4)y = r sin �p

Appendix 2: Solutions for Incomplete Elliptic 
Integrals
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