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Abstract This paper proposes an effective method for

very accurate parameter estimation of single- and double-

diode solar cell models. For this purpose, unknown

parameters of model are estimated by minimization of an

objective function using a new highly effective modified

version of artificial bee colony (ABC) algorithm. The

proposed algorithm is used for parameter estimation of

single- and double-diode models and the results are com-

pared, from different aspects, with recently developed

related works (including those applied GA, CPSO, PS, SA,

IGHS, ABSO, ABC, GGHS, and IADE for this purpose).

The proposed algorithm is also compared with other

modified explanations of ABC algorithm. The results show

that the proposed strategy is considerably faster and more

accurate compared to all the previous studies.

Keywords Parameter estimation � Solar cell � Single- and
double-diode models � Modified artificial bee colony

(MABC) algorithm

Introduction

The solar energy constitutes the biggest source of energy in

our world. This kind of energy is clean, cheap, endless, and

reachable in most parts of the planet. Nowadays, according

to the limitations of fossil fuels and their proved

consequences on climate change and global warming, there

is an increasing attention to solar energy all around the

world.

Solar cells are often used to get energy from the sun

light, especially when the electrical energy is needed. It

yields the fact that analysis and predicting the behavior of

solar cells at different working conditions with a high

precision is of high importance in practice. Of course, this

task cannot be performed without accurate modeling of

these devices. So far, various electrical models have been

developed for extracting the I–V curve of solar cells (see,

for example, [1–4] and the references therein). Among

others, the so-called single- and double-diode models are

more often used in practice. At this time, a variety of

methods are available for parameter estimation of these two

electrical models. Some attempts in this field are focused on

using classical analytical and numerical methods for

parameter estimation based on minimization of a suitably

chosen cost function [1, 5–10]. The main drawback of such

classical methods is the high probability of falling in local

optimums, besides the complexity of calculations.

In recent years, according to the advances in the field of

meta-heuristic optimization algorithms, these methods are

also widely used for parameter estimation of solar cell

models. For example, application of genetic algorithm

(GA) [11–13], particle swarm optimization (PSO) [14–16],

simulated annealing (SA) [17], differential evolution (DE)

[18–22], pattern search (PS) [23], harmony search (HS)

[24], artificial bee swarm optimization (ABSO) [25], bird

mating optimizer (BMO) [26], bacterial foraging opti-

mization (BFO) [27], artificial bee colony (ABC) [28],

biogeography-based optimization algorithm with mutation

strategies (BBO-M) [29] and teaching–learning based

optimization (TLBO) [30] for this purpose can be found in

the literature.
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As a well-known fact, any optimization algorithm has its

own advantages and disadvantages. For example, GA is

often known for its slow convergence. PSO is fast but

commonly the accuracy of solutions is not increased by

increasing the number of iterations (to be adjusted by trial

and error) [31]. High sensitivity to the initial guess and low

probability of finding the global optimum are the main

drawbacks of SA. A similar discussion goes on other

optimization algorithms. In general, algorithms with

smaller number of parameters (to be adjusted by user by

trial and error), faster convergence and higher probability

of skipping from local optimums are identified as more

effective algorithms. It is very important to note that

effectiveness of a certain algorithm strictly depends on the

problem it is going to solve. In other words, it may happen

that a certain algorithm be very successful in dealing with a

problem while it is quite unsuccessful in dealing with

another one. For this reason and as a common practice,

researchers apply different techniques to a certain problem

to find the best method suited to solve it. More often

authors try to combine two or more methods in a single

hybrid one [32–34]. The aim is to use different models with

unique features to overcome the single negative perfor-

mance and finally improve the performances. Hence,

proposing the most effective algorithm (i.e., the one at once

with the highest accuracy, fastest convergence, smallest

number of parameters, most ease of use, etc.) for parameter

estimation of solar cell models is of high importance in

practice.

The main aim of this paper is to develop a modified

explanation of artificial bee colony (ABC) algorithm,

MABC, and study its applications for parameter estimation

of single- and double-diode solar cell models and compare

the results with competing methods. ABC, which is

inspired from the behavior of honey bees in nature, is

originally developed by [35] as a tool for solving nonlinear

optimization problems. So far, this algorithm has been

successfully used for solving wide variety of real-world

problems (see, for example [36–38], for some very recent

applications of this algorithm). In this paper, we have

modified the definition of the so-called scout bees in

classical ABC algorithm to arrive at a version of this

algorithm which, compared to all previous studies, is

highly effective for solving the problem under considera-

tion (and probably many others as well).

The rest of this paper is organized as the following.

Formulation of the problem is presented in ‘‘Problem

description’’ section. In this section, single- and double-

diode models are reviewed and the proposed objective

function is introduced. The ABC algorithm is briefly

reviewed in ‘‘Summary of ABC Algorithm’’ section and

the proposed modification is also presented in this sec-

tion. In ‘‘Proposed ABC algorithm’’ section, the proposed

ABC algorithm is applied to some benchmark functions

and the results are compared with those obtained using

other modified ABC algorithms. ‘‘Simulation results for

benchmark function’’ section is devoted to simulation

results. In this section, the proposed approach is used for

parameter estimation of single- and double-diode models

and the results are compared (from different aspects) with

other algorithms. Finally, ‘‘Results and discussion’’ section

concludes the paper.

Problem description

As mentioned before, it is common practice to model solar

cells using the so-called single- and double-diode models,

where the parameters of these models are often calculated

by minimization of a suitably chosen cost function. In the

following, first we briefly review these two electrical

models and then we introduce our proposed cost function

to be minimized.

Double-diode model of solar cells

The double-diode electrical model of solar cells is shown in

Fig. 1. According to this figure, the electrical current

passing through the load is obtained as the following [4]:

IL ¼ Iph � Id1 � Id2 � Ish ð1Þ

where Iph is the electrical current generated by solar cell,

Id1 is the electrical current of first diode, Id2 is the electrical

current of second diode, Ish is electrical current of shunt

resistor and IL is the electrical current passing through the

load connected to solar cell. Id1 and Id2 in (1) are calculated

through the Shockley equation as the following:

Id1 ¼ Isd1½expð
qðVL þ RsILÞ

n1kT
Þ � 1� ð2Þ

Id2 ¼ Isd1½expð
qðVL þ RsILÞ

n2kT
Þ � 1� ð3Þ

where Rs is the resistor in series with load, Isd1 and Isd2 are

the reverse bias saturation currents, VL is the load voltage,

n1 and n2 are the diode ideality factors, k is the Boltzmann

constant, q is the electric charge of electron and T is the

Fig. 1 The double-diode model of solar cells
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absolute temperature of solar cell in Kelvin. On the other

hand, according to Fig. 1, Ish is calculated as the following:

Ish ¼
VL þ RsIL

Rsh

ð4Þ

Substitution of Id1, Id2 and Ish from (2), (3), and (4) in (1)

yields:

IL ¼ Iph � Isd1 exp
qðVL þ RsILÞ

n1kT

� �
� 1

� �

� Isd2 exp
qðVL þ RsILÞ

n2kT

� �
� 1

� �
� VL þ RsIL

Rsh

ð5Þ

Hence, the output power of the solar cell under con-

sideration is obtained as:

PL ¼ Iph�Isd1 exp
qðVL þ RsILÞ

n1kT

� �
� 1

� ��

�Isd2 exp
qðVL þ RsILÞ

n2kT

� �
� 1

� �
� VL þ RsIL

Rsh

�
VL

ð6Þ

In the double-diode model, as discussed above, the

seven parameters {n2, n1, Rsh, Rs, Isd2, Isd1, Iph} are con-

sidered as unknown parameters of problem to be estimated.

Single-diode model of solar cells

The single-diode model as shown in Fig. 2 is the most

widely used model for extracting the I–V curve of solar

cells. According to this figure, the load current provided by

cell is obtained as the following:

IL ¼ Iph � Isd1 exp
qðVL þ RsILÞ

nkT

� �
� 1

� �
� VL þ RsIL

Rsh

ð7Þ

This leads to the following formula for the power gen-

erated by this cell.

PL¼ Iph� Isd1 exp
qðVLþRsILÞ

nkT

� �
�1

� �
�VLþRsIL

Rsh

� �
VL

ð8Þ

In the single-diode model shown in Fig. 2 {Iph, Isd1, Rs,

Rsh, n} are assumed to be the unknown parameters to be

estimated.

Objective function

As mentioned before, the single- and double-diode models

consist of five and seven unknown parameters, respec-

tively, which are determined by solving a root mean square

error (RMSE) optimization problem in this paper. For this

purpose, the load current is calculated and measured at

different working conditions and the unknown parameters

are calculated such that the proposed objective function

defined as the following:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðIL;i � Imeas;iÞ2
vuut ð9Þ

where N is the number of measurements, and IL,i and Imeas,i

stand for the ith calculated and measured load currents,

respectively.

In this paper, a modified explanation of ABC algorithm

is proposed to find the value of unknown parameters of

model; the cost function given in (9) is minimized.

Summary of ABC algorithm

The ABC algorithm, which belongs to the family of nature-

inspired meta-heuristic optimization algorithms, was first

introduced in 2005 by Karaboga [35]. This algorithm is

inspired from the behavior of honey bees in nature and

provides us with a powerful tool for solving complex

optimization problems. In the ABC algorithm, artificial

bees in the colony are divided into three parts: employed

bees, onlooker bees, and scout bees. Employed bees

(whose number is equal to onlooker bees) discover the food

sources, bring the food to hive and share its location with

other bees. Onlooker bees stay in the hive and decide to

follow the employed bees based on the quality of the food

sources they have discovered. Scout bees randomly search

the outdoor (independent of employed bees) to find

(probably better) unseen food sources. In ABC algorithm,

the location of each food source identifies a point in the

domain of problem (i.e., a potential solution) and points

with smaller value for cost function are assumed to be

better food sources (better solutions).

Mathematically, in the first step of algorithm, the solu-

tion vectors are selected randomly from the domain of

problem. For this purpose, position of the nth artificial bee

(n = 1, 2, …, SN) is considered as the following:

Xn ¼ ½xn1; xn2; . . .; xnm� ð10Þ
Fig. 2 The single-diode model of solar cells
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where SN and m stand for the number of artificial bees and

number of variables, respectively, and xn1, xn2, …, xnm are

random numbers selected from the domain of definition of

problem. At each step, employed bees search around the

food sources xn (i.e., the previous solutions in their mem-

ory) to find the potentially better sources vn = [vn1, vn2, …,

vnm], where the components of xn and vn are related through

the following equation:

vni ¼ xni þ /ðxni � xkiÞ ð11Þ

In the above equation, k (k 6¼ n) is a randomly selected

integer in the range [1,SN] and /ni is a random number

with uniform distribution selected from [-1,1]. The new

solution vn is replaced with the previous one, xn, if

f(vn)\ f(xn), where f is the m-variable cost function to be

minimized. Else, the previous one is retained.

After calculating the location of new sources from (11)

and performing necessary substitutions, the fitness of each

new source is calculated from the following equation:

fitðXnÞ ¼
1

1þ f ðXnÞ
f ðXnÞ� 0

1þ f ðXnÞ f ðXnÞ\0

8<
: ð12Þ

Where fit(xn) is the fitness of the source located at xn, and

fit(xn) is the value of the (m-variable) cost function to be

minimized at this point. Then, onlooker bees in the hive

choose the employed bees of the next iteration based on the

quality of their food sources. More precisely, first the

probability of choosing the food source located at xn (to be

used in the next iteration for further search around) denoted

as Pn is calculated as the following:

Pn ¼
fitðXnÞPSN
k¼1 fitðXnÞ

ð13Þ

Then, a roulette wheel is used for determining the food

sources to be used by employed bees in the next iteration

(angles of the corresponding sectors of roulette wheel are

considered proportional to the probabilities calculated

from (13)). Note that at each iteration onlooker bees select

exactly SN bees by chance and, consequently, some of the

employed bees may not be selected at all, while some

others are selected more than once. In the standard ABC

algorithm, one of the employed bees is selected and clas-

sified as the scout bee [39] (later, this definition is slightly

modified in [40]). The classification is controlled by a

control parameter called ‘‘limit’’. In this manner if a

solution representing a food source is not improved after a

predetermined number of successive trials, then that food

source is abandoned by its employed bee and the employed

bee associated with that food source becomes a scout,

which searches around randomly. The number of trials for

releasing a food source is equal to the value of ‘‘limit’’,

which is an important control parameter in ABC algorithm.

In this paper, however, for increasing the accuracy of

results we have adopted more than one scout bee (similar

to [40]) and, moreover, the scout bees are assumed to

follow the best employed bee of colony instead of per-

forming a random search. More precisely, any employed

bee that cannot find a better solution (compared to its

previous findings) after ten successive iterations is con-

sidered as a scout bee who begins to follow the best bee of

colony.

Fig. 3 The flowchart of proposed algorithm
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To sum up, at each iteration first the new locations are

calculated from (11) and their qualities are evaluated

through (12). Then, necessary substitutions are performed

and the selection probabilities are calculated from (13).

Next, some of these locations are selected by onlooker bees

and the possible scout bee is determined, and this proce-

dure is repeated until a certain termination condition is

fulfilled. It is obvious that using this procedure low-quality

food sources are most likely to be abandoned by onlooker

bees and, as a result, employed bees tend to search around

the locations with higher fitness values. The location with

the highest fitness value (taking into account all iterations

and all bees) is considered as the final solution (of course,

for this purpose the best solution should be memorized at

each iteration).

Proposed ABC algorithm

In the classical ABC algorithm, random selection of the

location of scout bees reduces the effectiveness of algo-

rithm. The reason (especially when the objective function

is continuous and a large number of iterations is per-

formed) is that it is very improbable that the point ran-

domly selected by a scout bee be better than the solution

obtained by cooperative search of employed bees after

several iterations. However, in the proposed method the

position of scout bee is considered equal to the position of

the close to the best solution obtained so far, that is

Xscout ¼ Xbest � ð1þ randÞ ð14Þ

Obviously, using the above definition for scout bees

leads to a more search around the best solution obtained so

far. Currently, many methods are available to modify

Eq. (11) [41–44]. Especially, in [40] /ni is selected in the

range [-SF,SF] (SF is the scaling factor) where SF is

Table 1 Lower and upper bounds of the parameters used in the solar

cell model (both single- and double-diode models)

Parameter Lower bound Upper bound

Iph (A) 0 1

Isd (lA) 0 1

Rs (X) 0 0.5

Rsh (X) 0 100

n 1 2

Table 2 Results obtained for different values of limits value

Limit values Rastrigin Sphere Rosenbrock Griewank Ackley

MABC (limit = 0.008 itermax) 3.4106e-13 2.1845e-15 1.171287e-2 1.3461e-15 1.2168e-13

MABC (limit = 0.02 itermax) 4.5475e-13 1.5469e-15 1.171287e-2 6.5226e-16 9.0150e-14

MABC (limit = 0.03 itermax) 2.5580e-13 1.4633e-15 2.278471e-3 5.4123e-16 8.7486e-14

MABC (limit = 0.04 itermax) 1.7053e-13 1.3240e-15 6.708640e-3 3.1919e-16 8.4377e-14

MABC (limit = 0.05 itermax) 1.7053e-13 1.2465e-15 2.333607e-2 2.7756e-16 7.9936e-14

MABC (limit = 0.06 itermax) 1.2790e-13 1.1912e-15 3.621557e-2 2.4980e-16 8.2601e-14

MABC (limit = 0.08 itermax) 7.1054e-14 1.1914e-15 6.226325e-2 1.5266e-16 8.4821e-14

Table 3 Comparison between

the proposed method and ABC

[44], GABC [44] and GABC

[28]

Function Dimension Search space ABC GABC GABC Proposed

Rastrigin 60 [-5.12,5.12] 2.0647e-08 3.5242e-13 3.4712e-13 7.1054e-14

Sphere 60 [-100,100] 2.2777e-15 1.4338e-15 1.3901-e15 1.1912e-15

Rosenbrock 3 [-30,30] 6.4494e-02 2.6591e-03 2.5511e-03 2.278471e-3

Griewank 60 [-600,600] 2.5103e-13 7.5497e-16 7.3976e-16 1.5266e-16

Ackley 60 [-32,32] 1.6608e-13 1.0000e-13 1.08e-13 7.9936e-14

Fig. 4 Objective function under consideration versus a population

number and b iteration number for single-diode model
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selected using Rechenberg’s 1.5 rule mutation during

search. But in this paper, SF is modified through (15)

which is inspired by the PSO algorithm:

SF ¼ xmax �
xmax � xmin

iter

	 

itermax ð15Þ

In the above equation, xmax and xmin are selected equal

to 1 and 0.7, respectively. According to the above discus-

sion and Table 1, the modified ABC algorithm to estimate

the parameters of single- and double-diode models of solar

cells is proposed as Fig. 3.

Simulation results for benchmark function

To demonstrate the capabilities of the proposed algorithm,

it is applied to some benchmark functions [45]. The mean

result of 10 runs is summarized in Table 2. In this simu-
Fig. 5 Distribution of the objective function (RMSE) for single diode

model for 50 runs

Table 4 Estimated values for unknown parameters of single-diode model (using nine different algorithms) and the corresponding RMSE indices

Item GA CPSO PS SA IGHS ABSO GGHS ABC Proposed IADE

Iph (A) 0.7619 0.7607 0.7617 0.7620 0.7607 0.7608 0.76092 0.7608 0.760779 0.7607

Isd (lA) 0.8087 0.4000 0.9980 0.4798 0.3435 0.3062 0.32620 0.3251 0.321323 0.3361

Rs (X) 0.0299 0.0354 0.0313 0.0345 0.0361 0.0366 0.03631 0.0364 0.036389 0.0362

Rsh (X) 42.3729 59.0120 64.1026 43.1034 53.2845 52.2903 53.0647 53.6433 53.39999 54.764

n 1.5751 1.5033 1.6000 1.5172 1.4874 1.4758 1.48217 1.4817 1.481385 1.4852

RMSE 0.01908 0.00139 0.01494 0.01900 9.930e-4 9.912e-4 9.909e-4 9.862e-4 9.861e-4 9.890e-4

Fig. 7 Absolute error between

measured and calculated powers

in the single-diode model using

three different algorithms

Fig. 6 Absolute error between

measured and calculated

currents in the single-diode

model using three different

algorithms
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lation, the population of bee colony is considered equal to

80 and the maximum number of iterations is equal to 5000.

Several candidate values are considered for the limit val-

ues. The mean result of 10 runs for each limit is reported.

As it can be observed in Table 2, the best candidate value

is 0.06 itermax to 0.08 itermax. The result of proposed

method is compared with the Gbest Algorithm in Table 3.

Table 3 clearly shows that the proposed algorithm works

better than the Gbest Algorithm.

Results and discussion

Experimental data used in simulations of this paper are

adopted from [46] which correspond to a 57 mm diameter

commercial (R.T.C France) silicon solar cell at 33 �C.
Note that since meta-heuristic optimization algorithms are

probabilistic in nature, in all the following simulations the

algorithms under consideration are executed several times

and the best result is presented at each case.

Parameter estimation of single-diode model

According to Fig. 4 for the single-diode model, the

appropriate size of the bee colony is 100 and the number of

maximum iteration is 600. Figure 5 demonstrates the dis-

tribution of objective function (RMSE) for single-diode

model for 50 runs. As it can be observed, the average line is

close to minimum line which shows the capability of

proposed algorithm. The unknown parameters of the pro-

posed method are obtained by minimization of the cost

function given in (9). Note that since the exact value of

parameters is not known, the only way for comparing the

performance of different algorithms is to evaluate this

index. In fact, the algorithm that leads to a smaller value

for RMSE index is considered as a more effective one.

Table 4 shows the values obtained for unknown parameters

of model when nine different optimization algorithms (in-

cluding the proposed MABC algorithm) are applied [24].

The corresponding RMSE indices are also presented in this

table for comparing purposes. As it can be observed,

GGHS, MABC and IADE lead to relatively closer values

for RMSE index compared to others. To make a better

Fig. 8 P–V curve of the single-diode model (obtained using the

proposed MABC algorithm) and the experimental data points of solar

cell

Fig. 9 I–V curve of the single-diode model (obtained using the

proposed MABC algorithm) and the experimental data points of solar

cell

Fig. 10 Value of the objective function under consideration versus

iteration number (single diode model)
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comparison between these three algorithms, the absolute

errors between measured and calculated currents and

powers are calculated at each operating point through (16)

and (17) and the results are plotted in Figs. 6 and 7.

ecurrent ¼ jIL � Imeasuredj ð16Þ

epower ¼ jPL � Pmeasuredj ð17Þ

As it can be observed in Fig. 6, at voltages between

-0.2 and 0.45 V the MABC, IADE, and GGHS lead to

almost the same values for absolute current error, while at

voltages between 0.45 and 0.6 V the error caused by

Table 5 Measured and

calculated (using single-diode

model and the proposed MABC

algorithm) currents and powers

of the solar cell at 26 different

working conditions

Meas. no. VL (V) Imeas (A) Ical (A) Cur. rel. err. Pmeas Pcal Pow. rel. err.

1 -0.2057 0.7640 0.7641 -1.4626e-4 -0.1572 -0.1571 -1.4626e-4

2 -0.1291 0.7620 0.7627 -8.905e-4 -0.0984 -0.985 -8.9059e-4

3 -0.0588 0.7605 0.7614 -0.0011 -0.0447 -0.0448 -0.0011

4 0.0057 0.7605 0.7602 4.542e-4 0.0043 0.00433 4.5421e-4

5 0.0646 0.7600 0.7590 0.0013 0.0491 0.0490 0.0013

6 0.1185 0.7590 0.7580 0.0013 0.0899 0.0898 0.0013

7 0.1678 0.7570 0.7571 -9.8288e-5 0.1270 0.1270 -9.8288e-4

8 0.2132 0.7570 0.7561 0.0012 0.1614 0.1612 0.0012

9 0.2545 0.7555 0.7551 5.811e-4 0.1923 0.1922 5.8117e-4

10 0.2924 0.7540 0.7536 4.839e-4 0.2205 0.22047 4.8395e-4

11 0.3269 0.7505 0.7514 -0.0011 0.2453 0.2456 -0.0011

12 0.3585 0.7465 0.7473 -0.0011 0.2676 0.2679 -0.0011

13 0.3873 0.7385 0.7401 -0.0022 0.2860 0.2866 -0.0022

14 0.4137 0.7280 0.7274 8.738e-4 0.3012 0.3009 -8.7388e-4

15 0.4373 0.7065 0.7070 -6.5600e-4 0.3090 0.3092 -6.5600e-4

16 0.4590 0.6755 0.6753 3.234e-4 0.3101 0.3100 3.2346e-4

17 0.4784 0.6320 0.6308 0.0019 0.3023 0.3018 0.0019

18 0.4960 0.5730 0.5719 0.0018 0.2842 0.2837 0.0018

19 0.5119 0.4990 0.4996 -0.0013 0.2554 0.2558 -0.0013

20 0.5265 0.4130 0.4137 -0.0016 0.2174 0.2178 -0.0016

21 0.5398 0.3165 0.3175 -0.0032 0.1708 0.1714 -0.0032

22 0.5521 0.2120 0.2122 -7.777e-4 0.1170 0.1171 -7.777e-4

23 0.5633 0.1035 0.1023 0.0120 0.0583 0.0576 0.0120

24 0.5736 -0.0100 -0.0087 0.1282 -0.0057 -0.0050 -0.1282

25 0.5833 -0.1230 -0.1255 -0.0204 -0.0717 -0.0732 -0.0204

26 0.5900 -0.2100 -0.2085 0.0073 -0.1239 -0.1230 0.0073

Mean absolute error (MAE) 8.3118e-4 MAE 3.365e-4

Standard deviation absolute error (SAE) 5.4125e-4 SAE 3.4412e-4

Table 6 Estimated values for unknown parameters of double-diode model (using seven different algorithms) and the corresponding RMSE

indices

Item HS PS SA IGHS ABSO GGHS ABC Proposed

Iph (A) 0.76176 0.7602 0.7623 0.7608 0.7608 0.76056 0.7608 0.7607821

Isd1 (lA) 0.12545 0.9889 0.4767 0.9731 0.2671 0.37014 0.0407 0.6306922

Rs (X) 0.03545 0.0320 0.0345 0.0369 0.0366 0.03562 0.0364 0.03671215

Rsh (X) 46.82696 81.3008 43.1034 56.8368 54.6219 62.7899 53.7804 54.7550094

n1 1.49439 1.6000 1.5172 1.9213 1.4651 1.49638 1.4495 2.00000538

Isd2 (lA) 0.25470 0.0001 0.0100 0.1679 0.3819 0.13504 0.2874 0.24102992

n2 1.49989 1.1920 2.000 1.4281 1.9815 1.92998 1.4885 1.4568573

RMSE 0.00126 0.01518 0.01664 9.8635e-4 9.8344e-4 0.00107 9.861e-4 9.8276e-4

20 Int J Energy Environ Eng (2016) 7:13–25

123



MABC is considerably smaller than IADE and GGHS.

Similarly, Fig. 7 shows the absolute error in power versus

voltage when again these three algorithms are applied. As

it can be observed in this figure, MABC exhibits a con-

siderably better performance, especially at voltages

between 0.5 and 0.6 V.

Figures 8 and 9 show the P–V and I–V curves of the

single-diode model (identified using the proposed MABC)

and the corresponding experimental data points, respec-

tively. As it is observed, the curves obtained using MABC

perfectly match the real-world data points. This observa-

tion confirms the accuracy of the proposed method.

Another advantage of the proposed MABC algorithm

is its very fast convergence. More precisely, in the above

simulations, it was observed that MABC converges after

about 600 iterations while ABSO (which is the fastest

one among all the algorithms presented in Table 4,

except MABC) converges after about 5000 iterations.

Figure 10 shows the value of objective function versus

iteration number when the proposed MABC [39] is

applied. This figure clearly shows the considerably faster

convergence of MABC, which also leads to a lower

value for objective function. Note that finding smaller

values for objective is equivalent to more accurate

estimation of unknown parameters of the model.

Table 5 represents the measured and calculated currents

at 26 different working conditions and powers of the solar

cell under consideration at 26 different working conditions

when the proposed MABC algorithm is applied. Investi-

gating the numbers presented in this table confirms the high

accuracy of the proposed method for parameter estimation

of single-diode models.

Parameter estimation of double-diode model

Table 6 shows the values obtained for unknown param-

eters of the double-diode model under consideration

using seven different algorithms. According to Fig. 11

for a double-diode model, the appropriate size of the bee

colony is 200 and maximum number of iterations is 600

where again the limitations of Table 1 are considered.

Figure 12 demonstrates distribution of the objective

function (RMSE) for double-diode model for 50 runs. In

Fig. 11 Objective function under consideration versus Population

number and Iteration number for double-diode model

Fig. 12 Distribution of the objective function (RMSE) for double-
diode model for 50 runs

Fig. 13 Absolute error between

measured and calculated

currents of the double-diode
model using three different

algorithms
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this figure, the average line is close to the minimum line

which shows the capability of proposed algorithm. The

corresponding RMSE indices are also presented in this

table. Note that here the number of iterations of MABC

algorithm is considered equal to 600 which is consid-

erably smaller than the 5000 iterations used by ABSO

and IGHS. Since in Table 6 ABSO, IGHS, and MABC

lead to more closer values for RMSE performance index

we have plotted the absolute current and power errors

(calculated from (16) and (17), respectively) in Figs. 13

and 14 to make a better comparison. As it can be

observed in these figures, the proposed MABC algorithm

leads to considerably more accurate results both in cur-

rent and power estimations, especially in the voltage

range 0.45 to 0.6 V.

To study the accuracy of the double-diode model

obtained using MABC algorithm, the corresponding P–

V and I–V curves of the model and real-world solar cell are

shown in Figs. 15 and 16, respectively. As it can be

observed, at each figure the curve of model perfectly

matches the corresponding data points of the real-world

solar cell. This observation again verifies the accuracy of

the proposed method.

The last simulation of this paper studies the effect of

the proposed modification in ABC algorithm on its per-

formance. For this purpose, the value of objective func-

tion (RMSE) is plotted versus the iteration number in

Fig. 17 As it can be observed, this figure clearly shows

the considerably faster convergence. Note that, as it is

expected, the values obtained for objective function in

double-diode case are typically smaller than the values

obtained for it in single-diode case (compare Figs. 10,

17). However, since in Fig. 17 MABC leads to slightly

smaller values for objective function, it is expected that

the corresponding double-diode model also be more

accurate.

Fig. 14 Absolute error between

measured and calculated powers

of the double-diode model using

three different algorithms

Fig. 15 P–V curve of the double-diode model (obtained using the

proposed MABC algorithm) and the experimental data points of solar

cell

Fig. 16 I–V curve of the double-diode model (obtained using the

proposed MABC algorithm) and the experimental data points of solar

cell
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Finally, relative errors between estimated (using double-

diode model) and measured currents and powers are sum-

marized in Table 7 for 26 different working conditions when

MABC is applied. According to the data presented in this

table, it can be easily verified that MABC has estimated both

the current and power with a very high accuracy.

Conclusions

In this paper, we modified the definition of scout bees

in ABC algorithm to arrive at a more effective expla-

nation of this algorithm called MABC. Moreover,

despite all previous studies, we also took into account

the output power of solar cell in definition of the

objective function to be minimized for estimation. The

various simulations presented in this paper and the

comparisons made with real-world data proved that the

proposed modifications can highly improve the accuracy

and speed of algorithm.

Table 7 Measured and

calculated (using double-diode

model and the proposed MABC

algorithm) currents and powers

of the solar cell at 26 different

working conditions

Meas. no. VL (V) Imeas (A) Ical (A) Cur. rel. err. Pmeas Pcal Pow. rel. err.

1 -0.2057 0.7640 0.764 -3.603e-5 -0.1572 -0.1571 -3.6037e-5

2 -0.1291 0.7620 0.7626 -8.265e-4 -0.0984 -0.0985 -8.2655e-4

3 -0.0588 0.7605 0.7613 -0.0011 -0.0447 -0.0448 -0.0011

4 0.0057 0.7605 0.7602 4.374e-4 0.0043 0.00433 4.3747e-4

5 0.0646 0.7600 0.7591 0.0012 0.0491 0.0490 0.0012

6 0.1185 0.7590 0.7581 0.0012 0.0899 0.8980 0.0012

7 0.1678 0.7570 0.7571 -1.9385e-4 0.1270 0.12702 -1.9385e-4

8 0.2132 0.7570 0.7562 0.0011 0.1614 0.1612 0.0011

9 0.2545 0.7555 0.7551 4.938e-4 0.1923 0.1922 4.9382e-4

10 0.2924 0.7540 0.7537 4.301e-4 0.2205 0.2204 4.3016e-4

11 0.3269 0.7505 0.7514 -0.0011 0.2453 0.2456 -0.0011

12 0.3585 0.7465 0.7473 -0.0010 0.2676 0.2679 -0.0012

13 0.3873 0.7385 0.7400 -0.0020 0.2860 0.2866 -0.0020

14 0.4137 0.7280 0.7273 0.0010 0.3012 0.3009 0.0010

15 0.4373 0.7065 0.7069 -5.4256e-4 0.3091 0.3090 -5.4256e-4

16 0.459 0.6755 0.6752 3.715e-4 0.3101 0.3099 3.7154e-4

17 0.4784 0.6320 0.6308 0.0019 0.3023 0.3018 0.0019

18 0.496 0.5730 0.5720 0.0017 0.2842 0.2837 0.0017

19 0.5119 0.4990 0.4997 -0.0014 0.2554 0.2558 -0.0014

20 0.5265 0.4130 0.4137 -0.0018 0.2174 0.2178 -0.0018

21 0.5398 0.3165 0.3175 -0.0033 0.1708 0.1714 -0.0033

22 0.5521 0.2120 0.2121 -5.0682e-4 0.1170 0.1171 -5.0682e-4

23 0.5633 0.1035 0.1022 0.0130 0.0583 0.0575 0.0130

24 0.5736 -0.01 -0.0088 0.1201 -0.0057 -0.0050 0.1201

25 0.5833 -0.123 -0.1255 -0.0206 -0.0717 -0.0732 -0.0206

26 0.59 -0.2100 -0.2048 0.0078 -0.1239 -0.1229 0.0078

Mean absolute error (MAE) 8.2033e-4 MAE 3.3657e-4

Standard deviation absolute error (SAE) 5.5190e-4 SAE 3.5239e-4

Fig. 17 Value of the objective function under consideration versus

iteration number (double-diode model)
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