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Abstract Defined errors are entered into data collections in order to test their influence

on the reliability of multivariate rankings. Random numbers and real ranking data serve as

data origins. In the course of data collection small random errors often lead to a switch in

ranking, which can influence the general ranking picture considerably. For stabilisation an

objective weighting method is evaluated. The robustness of these rankings is then com-

pared to the original forms. Robust forms of the published Shanghai top 100 rankings are

calculated and compared to each other. As a result, the possibilities and restrictions of this

type of weighting become recognisable.

Keywords Objective weighting � Robustness � Fault tolerance � Shanghai

ranking
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Introduction

The contribution of this study to scientometric research is to demonstrate fault tolerance

with multivariate rankings. In this context Shanghai rankings serve merely as a specific

example to illustrate the method.

Error sources

Kendall (1955) writes ‘…what the ranking loses in accuracy it gains in generality, for if we

stretch the scale of measurement… the ranking remains unaltered.’ It therefore seems
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reasonable that inaccurate data would barely influence rankings, which otherwise look

reliable.

Robustness in statistics signifies the insensitivity of a result to small deviations from the

assumptions (Huber and Ronchetti 2009). Slight data aberrations are considered as devi-

ations from the assumed accuracy. Random measuring errors are inevitable as an

expression of natural noise.

With Shanghai rankings (also known as ARWU = Academic Ranking of World Uni-

versities) Liu et al. (2005) rely on error rates of \1 % for counting errors and \2 % for

attribution errors. Van Raan (2005) has provided evidence for error rates in attribution of

approximately 7 % for the methodology used in Shanghai. This high prevalence is thought

to be mainly due to the off-label use of scientist’s citation indices as an evaluation method

for their universities.

Weighting types

Ding and Qiu (2011) distinguish between subjective and objective weighting types and

have tested different weighting algorithms for university rankings. Every weighting that is

solely based on quantitative differences between indicators is considered as objective or

evidence-based. Subjective or arbitrary weightings are not fully comprehensible. Analo-

gously, they could be defined as ‘eminence-based’.

Wiesemüller et al. (2003) mention specifically that no weighting is entirely free from

subjective influences, if different methodologies are available, for example. Objective

weighting is then concerned with minimising subjective influences and making them

quantifiable.

Practical usage of objective weighting can be found in the selection of examination

questions (Lienert and Raatz 1994) or in the variance principle of insurance theory (Walz

2004).

If the number of test items clearly exceeds the number of available indicators, a

weighting method for differentiation becomes essential. While in the first Shanghai ranking

of 2003 all indicators were considered to be equal, in subsequent years the influence of two

of the six indicators has been limited by some ambiguous weighting (Billaut et al. 2010).

This review is concerned with multivariate assessments. As rankings attach to them,

they are influenced in the same way and can serve as an illustration.

Materials and methods

The methodology of Shanghai rankings has been adopted for direct comparability despite

its obvious weaknesses (Billaut et al. 2010). This means that all subjective weights con-

tinue to be used. Additional variability weights are introduced. Subjective and objective

weights do not conflict with each other.

The test system

The test system consists of specially developed simulation programs. Some parameters are

pre-selectable:

• Either random numbers or real ranking data are available.
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• The number of indicators with ranking data is set to 6, whereas it is adjustable with

random numbers.

• The length of ranking orders is selectable up to 100.

• The maximum field size is limited by the available computing power to currently 600,

e.g. 100 test items 9 6 indicators.

• Different weighting algorithms as well as no weighting are available. In each test two

of these possibilities are compared by means of the same data.

Figure 1 shows the modular structure of the test system with the inner loop specified for

weighting and the outer one for comparison.

Functioning of the test system

1. Each data line contains the indicators of a test item, i.e. a specific university. The

total score of indicators is calculated per line. This leads to an unweighted ranking

(1u…Tu).

Fig. 1 Modular test system for rankings
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2. The weight of every indicator is calculated according to a selected weighting

algorithm, e.g. a measure of variability.

3. The value of every indicator is multiplied by its calculated weight. The total

weighted scores are generated line by line. Altogether this results in a further

ranking, which is weighted (1w…Tw).

4. Both rankings are standardised to the same maximum score.

5. Every line is given a specific rank marker for each ranking.

6. In the original data field a pre-set number of randomly chosen points is altered

intentionally.

7. With these modified data all calculations are repeated. The previously calculated

weights are left unchanged. This leads to two more scores for each line and to two

further rankings (1um…Tum, 1wm…Twm).

8. For the analysis of robustness the original ranking orders are restored by interchanges

of neighbouring ranks. The smallest required number of such switching operations is

determined (Kendall 1955). The more robust a ranking is, the fewer interchanges are

needed to restore the original sequence.

9. In each test run the type of weighting with fewer interchanges receives a point. No

point is given for equal switch numbers.

10. This single simulation is repeated many times with different data and varying

alterations. The points for each type of weighting are totalled.

Indicators and attributed weights

The six indicators of Shanghai rankings are currently defined according to Liu et al. (2013).

Alumni, weight 10 %: The total number of an institution winning Nobel prizes and

Fields medals. Alumni are defined as those who obtain Bachelor’s, Master’s or Doctor’s

degrees from the institution. If a person obtains more than one degree from an institution,

the institution is considered once only. Different weights are set according to the decades

in which the degrees were awarded.

Award, weight 20 %: The total number of the staff of an institution winning Nobel

prizes in Physics, Chemistry, Medicine and Economics and Fields medals in Mathematics.

Staff is defined as those who work at an institution at the time of winning the prize.

Different weights are set according to the decades in which the degrees were awarded.

HiCi, weight 20 %: The number of Highly Cited Researchers in 21 subject categories.

These individuals are the most cited within each category. If a Highly Cited Researcher has

two or more affiliations, he/she was asked to estimate his/her weights for each affiliation.

N&S, weight 20 %: The number of papers published in Nature and Science within the

last 5 years. To distinguish the order of author affiliation, a weight of 100 % is assigned for

corresponding author affiliation, 50 % for first author affiliation, 25 % for next author

affiliation, and 10 % for other author affiliations.

PUB, weight 20 %: Total number of publications indexed in Science Citation Index-

Expanded and Social Science Citation Index during the last year. When calculating the

total number of papers of an institution, a special weight of two was introduced for papers

indexed in Social Science Citation Index.

PCP (Per Capita Power), weight 10 %: The weighted scores of the above five indicators

divided by the number of full-time equivalent academic staff. If the number of academic
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staff for institutions of a country cannot be obtained, the weighted scores of the above five

indicators is used.

The attributed weights of the six indicators may differ by a factor of two. This uneven

treatment is not explained by the producers of the ranking. It is also evident that each

indicator contains in its construction further attributed weights which may differ up to one

magnitude. With the HiCi indicator possible internal weights are no longer explicitly

quantifiable. Thereby this indicator loses its reproducibility, which was in 2005 declared as

standard also by Liu et al.

Computer assistance

The ranking shifts of the individual institutions are calculated with MS Excel�. Plotting the

results is done with DPlot� from HydeSoft Computing, LLC. Distances and statistical tests

are calculated with the universally applicable Mathematica� software package from

Wolfram Research, Inc. Special programs have been developed in Mathematica� to

simulate fault tolerance with rankings. Anyone who wants to reproduce this kind of

software can contact the author in order to obtain support.

Results

Weighting principle

In a first simulation uniformly distributed pseudo-random numbers are used to generate 10

test items with 10 artificial indicators each. The standard deviations and means of such

indicators differ in small samples only because of real deviations from the uniform dis-

tribution. The values of each indicator are weighted by the variation coefficient, which is a

normalised, dimensionless variability measure. The variation coefficient is defined as the

standard deviation divided by the arithmetic mean. A varying number of points in the data

field are either set to zero or their values are doubled. Each test is run 10,000 times per data

point. The results are given in Fig. 2.

Figure 2 shows that weighted rankings are more robust over a wide range of data

alterations. Variability weighting therefore seems to be a suitable method to obtain robust

rankings.

Upgrading

The number of test items is tripled while the number of indicators is reduced. Both

alteration types are combined: In each test one half are deletions and the other half are

doubled values. Synthetic rankings are generated by using Shanghai top 100 data from

2004 to 2012 in a random mix. The number of data alterations is varied at intervals of 2

(Fig. 3).

Figure 3 shows the differing robustness of rankings derived either from random num-

bers or from real data. Both rankings have undergone the same weighting procedure

according to their variation coefficients. If deletion of data and doubled values occur

simultaneously, weighted rankings are favourable over the whole range. Rankings made up

of Shanghai ranking data become several times more robust through weighting than

rankings consisting of random numbers.
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Synthetic rankings

Randomly mixed Shanghai rankings with lengths of 100 are generated, i.e. the data for

each ranking position have been randomly chosen from the years 2004 to 2012, which

allows for a vast number of varied rank orders to work with. Data alterations are limited to

Fig. 2 Robustness of rankings with variability weighting. Deletion and doubling. 10 test items, 10
indicators, random data, n = 10,000 per data point

Fig. 3 Robustness of rankings with deletion-doubling combination. 30 test items, 6 indicators, random and
synthetic ranking data, n = 5,000 per data point
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±2 %. Such minor alterations can be taken as a simulation of counting errors. The

awarding of points is further differentiated: cases with equal robustness of both rankings

are also taken into account (Fig. 4).

Figure 4 shows that already with slight changes of a small number of data the weighted

ranking performs better in the majority of cases. With an increasing number of alterations

this relative frequency gradually improves further until a maximum of about 90 %. The

number of undecidable cases forms the smallest fraction already with few changes and

diminishes further until the possible maximum of 600.

Shanghai rankings

Table 1 shows the variation coefficients for each indicator. The 150 top ranked universities

from every year of Shanghai rankings are taken into account. This table shows clear

differences between the indicators and relatively similar data within each individual

indicator. As a result some critical aspects are apparent.

PCP

Although one could expect that this size-dependent indicator would most likely show

consistency, in fact, it scatters most when variation coefficients are compared over the

years given in Table 1. The size of an institution has been defined as the number of full-

time equivalent faculty members (Liu and Cheng 2007). To acquire these data one is

dependent on the current administrations of each university. Such data are difficult to

obtain and verify (Florian 2007) and are possibly also politically influenced. The extensive

Fig. 4 Robustness of rankings with alterations of ± 2 %. 100 test items, 6 indicators, synthetic ranking
data, n = 5,000. Key The segments in vertical direction indicate how frequently each particular ranking type
performs better
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scattering of PCP and likewise its subjectively reduced weight seem to confirm my own

experience in getting these data from some Swiss universities.

Award

Of the indicators considered, the Award indicator, i.e. Nobel prizes and Fields medals,

shows the largest variation coefficient. This finding is quite amazing, if one considers the

numerical limitation of prize-givings. Liu et al. (2005) have done a great deal to increase

scattering. First of all, they consider the awards over the last 100 years, i.e. over several

former generations of research workers. Then the size of the university at the time of the

award is used as a multiplier. If it is already difficult to determine the present number of

full-time equivalent faculty members of a university, this becomes even more difficult for

the period covering the past 100 years. I wonder whether such questions can be answered

seriously without the study of sources on site. At most these deductions lead to approxi-

mate values, which make the indicator entirely irreproducible. If, in addition, a designated

Nobel prize winner changes university, his or her research performance is erroneously

attributed to the new institution. The relationship between such number games and the

current ‘research performance’ (Liu and Cheng 2007) of institutions remains quite

incomprehensible.

Alumni

The Alumni indicator has been calculated since 2004 with regard to the university work

history of the awarded scientists. In light of the critique by van Raan (2005) and others, the

problematic inclusion of size into the indicator has in fact been omitted. Nevertheless,

Alumni has a desirably wide range, which furthermore is very stable in the time frame

(Table 1). As a result, the Alumni indicator would actually form an ideal substitution for

the Award indicator. It remains an open question as to why Alumni is not rated at its full

value.

Table 1 Variation coefficients of indicators for the top 150 universities according to Shanghai rankings

Year Alumni Award HiCi N&S PUB PCP

2003 – 1.152 0.570 0.502 0.248 0.459

2004 0.852 1.104 0.555 0.500 0.241 0.493

2005 0.873 1.108 0.549 0.516 0.244 0.391

2006 0.857 1.085 0.530 0.523 0.241 0.369

2007 0.853 1.074 0.516 0.516 0.248 0.375

2008 0.870 1.062 0.514 0.518 0.242 0.377

2009 0.855 1.069 0.509 0.524 0.241 0.385

2010 0.852 1.056 0.513 0.519 0.243 0.393

2011 0.838 1.024 0.517 0.501 0.245 0.404

2012 0.878 1.041 0.521 0.510 0.241 0.404

Alumni bachelors, masters or doctors of an institution winning Nobel prizes and Fields medals, Award
number of the staff of an institution winning Nobel prizes and Fields medals, HiCi highly cited researchers,
N&S articles published in Nature and Science, PUB articles indexed in Science Citation Index-expanded and
Social Science Citation Index, PCP The weighted scores of the above five indicators divided by the number
of full-time equivalent faculty members
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The inner circle

Those research institutions which were among the Shanghai top 100 every year are cur-

rently being examined further. At the end of 2012 this so called inner circle had a size of

83. The inner circle is further divided into research institutions inside and outside the USA.

The official Shanghai rank minus the weighted rank, which has been calculated from the

variation coefficients of the same year, leads to an annual ranking shift for each university.

The definition shift = rankunweighted - rankweighted has been chosen in the sense that a

positive shift coincides with a better ranking in the weighted case.

Table 2 shows the research institutions of the inner circle belonging to the USA in

alphabetical order with their medians of ranks and of ranking shift for 2003–2012.

Tables 2 and 3 show that higher-ranking institutions generally have smaller ranking

shifts. This corresponds with a better alignment of both rankings in the foremost third. The

differences averaged for other members of the inner circle can amount to more than 30

ranks.

US vs. non-US comparison

The US institutions seem to score generally weaker in weighted rankings (Tables 2 and 3).

For each Shanghai top 100 ranking the shifts of each subgroup–US and non-US institu-

tions—are cumulated and their median is calculated. Both subgroups are compared in all

ranking shifts annually by means of a Mann–Whitney test. The differences are expressed

quantitatively in Table 4 and shown in Fig. 5.

Table 4 shows that the annual cumulation of ranking shifts is negative for US institu-

tions but positive for non-US institutions. The medians of the US group are negative or

zero, whereas they are positive in the other group. The right-hand column gives the

probabilities of error (p) of the Mann–Whitney test, assuming that the ranking shifts of

both subgroups belong to different populations. As a result, both subgroups are signifi-

cantly different for each year.

The underlying causes of this decomposition could be of linguistic or historical nature.

They are not the subject of this investigation. However, by means of objective weighting

the overall picture of a ranking should not change essentially in order to still be classified

as robust. Through variability weighting the problematic Award indicator becomes further

amplified. Surprisingly, the PUB indicator cannot differentiate the institutions sufficiently

and therefore receives only a low weight (Table 1). This weak performance of the PUB

indicator is seen in connection with the nonlinear characteristic adjustment (Florian 2007)

by the ranking team.

In light of all the inaccuracies of Shanghai rankings I do not intend to publish their

explicit weighted forms. The raw data of the top 150 institutions are listed in Freyer (2012)

for the purpose of verification.

As a result, variability weighting is not to be understood as a corrective for methodo-

logical discrepancies. On the contrary, these inaccuracies can thereby be discovered and

analysed.

Distance measures

Distance comparisons show whether the differences between rankings as a whole are

relevant. The similarity of rankings is compared in Table 5 by means of the Damerau–

Levenshtein distance (DLD) according to Damerau (1964), as specified in Wolfram
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Table 2 Selected US research institutions in alphabetical order with their medians of ranks and of ranking
shift for 2003–2012

Institutions of the USA State Median of
weighted
rank

Median of
ranking shift

Median of
unweighted
rank

1 Boston University Massachusetts 105 -17.5 80.5

2 Brown University Rhode Island 66.5 0 69.5

3 California Institute of Technology California 6 -0.5 6

4 Carnegie Mellon University Pennsylvania 38 20 59

5 Case Western Reserve University Ohio 76.5 6 80.5

6 Columbia University New York 9 -1 7.5

7 Cornell University New York 12 0 12

8 Duke University North Carolina 55.5 -24 32

9 Harvard University Massachusetts 1 0 1

10 Massachusetts Institute of Technology
(MIT)

Massachusetts 3.5 1 5

11 Michigan State University Michigan 108.5 -24 84

12 New York University New York 29 1 30.5

13 Northwestern University Illinois 34 -3.5 30

14 Pennsylvania State University,
University Park

Pennsylvania 69 -26 42.5

15 Princeton University New Jersey 7 1 7.5

16 Purdue University, West Lafayette Indiana 67.5 1 68.5

17 Rice University Texas 67 22 89

18 Rockefeller University New York 17.5 13.5 31

19 Rutgers, The State University of New
Jersey, New Brunswick

New Jersey 51.5 -1 50.5

20 Stanford University California 5 -2 2

21 The Johns Hopkins University Maryland 19 0 19

22 The Ohio State University, Columbus Ohio 92.5 -28 63

23 The University of Texas at Austin Texas 43 -5 38

24 The University of Texas Southwestern
Medical Center at Dallas

Texas 33.5 8.5 40

25 University of Arizona Arizona 106.5 -30.5 76.5

26 University of California, Berkeley California 4 0 4

27 University of California, Davis California 79.5 -36.5 44.5

28 University of California, Irvine California 45 0.5 46

29 University of California, Los Angeles California 13 -0.5 13

30 University of California, San Diego California 14 0 14

31 University of California, San Francisco California 19 -1.5 18

32 University of California, Santa Barbara California 30.5 4 34.5

33 University of Chicago Illinois 8 1 9

34 University of Colorado at Boulder Colorado 30 3 34

35 University of Florida Florida 92 -29 62.5

36 University of Illinois at Urbana-
Champaign

Illinois 22 3 25

37 University of Maryland, College Park Maryland 40 -3 37.5
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Research, Inc (2013): The DLD between two strings u and v gives the number of one-

element deletions, insertions, substitutions and transpositions required to transform u to v.

A Mann–Whitney test presents a significant difference between the DLD of weighted

and unweighted rankings on the one hand and the DLD of unweighted consecutive

rankings on the other. The probability of error is 0.004, assuming that the differences from

2003 to 2012 are not random. Consequently the weighted and unweighted rankings of the

same year differ significantly more than the unweighted rankings of two consecutive years.

Mechanism

Figure 6 shows the total score in relation to rank for the top 100 rankings 2003–2012. As a

result, the scale range is better utilised through weighting. This provides an explanation for

the robustness of these rankings.

Discussion

Problems relating to Shanghai rankings

When I first heard about Shanghai ranking, I sent an e-mail to N.C. Liu. I welcomed his

approach, but suspected that a ranking of several hundred items by only five indicators

could be inherently unstable. I asked the ranking team whether they had tried different

weights for the indicators in order to improve stability. Liu e-mailed back: ‘The weights of

the five criteria are rather arbitrary. Changing the weights could change the position of a

specific university, however, it did not make much difference on the ranking picture in

general’ (Liu 2004, personal communication). Table 4 shows that this statement is neither

applicable to the top 100 for 2003 nor for the subsequent years.

Table 2 continued

Institutions of the USA State Median of
weighted
rank

Median of
ranking shift

Median of
unweighted
rank

38 University of Michigan, Ann Arbor Michigan 33 -12 21

39 University of Minnesota, Twin Cities Minnesota 40.5 -9.5 30.5

40 University of North Carolina at Chapel
Hill

North Carolina 68.5 -22.5 46.5

41 University of Pennsylvania Pennsylvania 15 0 15

42 University of Pittsburgh Pennsylvania 79 -29 51

43 University of Rochester New York 76.5 -3.5 74.5

44 University of Southern California California 51 -3.5 46.5

45 University of Utah Utah 97.5 -17.5 82.5

46 University of Washington, Seattle Washington 17.5 -1 16

47 University of Wisconsin, Madison Wisconsin 16 1.5 17

48 Vanderbilt University Tennessee 37 5 41.5

49 Washington University in St. Louis Missouri 27 1 28.5

50 Yale University Connecticut 11 0 11
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Table 5 quantifies these general ranking pictures by means of DLD. While there is a

considerable distance between the rankings of 2003 and 2004, the later rankings obviously

resemble each other much more. The big difference between 2003 and 2004 is mainly due

to the introduction of the Alumni indicator. This can be verified by recalculating the 2004

ranking without Alumni.

Table 3 Selected research institutions outside the USA in alphabetical order with their medians of ranks
and of ranking shift for 2003–2012

Institutions outside the USA Country Median of
weighted rank

Median of
ranking shift

Median of
unweighted
rank

1 Karolinska Institute Sweden 38.5 8 45.5

2 King’s College London UK 67 9 77

3 Kyoto University Japan 24 -0.5 23.5

4 Leiden University Netherlands 67.5 3.5 71.5

5 McGill University Canada 87 -24 63

6 McMaster University Canada 83 6.5 89

7 Osaka University Japan 100 -33 67.5

8 Pierre and Marie Curie University,
Paris 6

France 39.5 2 41.5

9 Swiss Federal Institute of
Technology Zurich

Switzerland 21 4.5 24.5

10 Technical University Munich Germany 44.5 10 55

11 The Australian National University Australia 62.5 -4.5 58

12 The Hebrew University of Jerusalem Israel 60 4.5 64.5

13 The Imperial College of Science,
Technology and Medicine

UK 24 0.5 23.5

14 The University of Edinburgh UK 59 -6 52

15 The University of Manchester UK 54 -4.5 46

16 The University of Tokyo Japan 26 -6.5 20

17 University College London UK 23 -1.5 21.5

18 University of Basel Switzerland 74 12.5 86.5

19 University of Bristol UK 64 -0.5 62

20 University of British Columbia Canada 41 -5.5 36

21 University of Cambridge UK 2 2 4

22 University of Copenhagen Denmark 45.5 4 45.5

23 University of Heidelberg Germany 58.5 6 64

24 University of Helsinki Finland 73 0.5 73

25 University of Melbourne Australia 83.5 -7.5 76.5

26 University of Munich Germany 51 1.5 52.5

27 University of Oslo Norway 50 19 68

28 University of Oxford UK 10 0 10

29 University of Paris Sud (Paris 11) France 32.5 15 48.5

30 University of Toronto Canada 30.5 -5.5 24

31 University of Zurich Switzerland 54 2 56.5

32 Uppsala University Sweden 53.5 14 66.5

33 Utrecht University Netherlands 44.5 -0.5 44.5
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Despite the recognised need for improvement and a corresponding announcement (Liu

and Cheng 2007), the official ranking methodology has not been developed further since

2004. What happened? The ranking team has primarily been focused on credibility through

consistent rankings over the years. Therefore, I would assume that they are fairly busy now

with the adjustment of the data using their so-called ‘standard statistical techniques’

against ‘any significant distorting effect’ (Liu and Cheng 2007) whatsoever.

Instead of a linear characteristic, the PUB indicator shows a power function with an

exponent\1 (Florian 2007). Such curves intensify small inputs and weaken large ones. In

Table 4 The top 100 research institutions with cumulated ranking shifts (D) and medians of ranking shifts
2003–2012, differentiated between US and non-US institutions, ranking shifts compared by means of Mann–
Whitney tests

Year Cumulation
of US D

Median of
US D

Cumulation of
non-US D

Median of
non-US D

p (Mann–
Whitney)

2003 -312 -1 67 2 0.0038

2004 -267 0 152 2 0.0078

2005 -299 -1 160 2 0.0054

2006 -306 0 106 4 0.0130

2007 -333 -1 107 2 0.0043

2008 -271 -1 88 3 0.0119

2009 -272 -1 71 2 0.0086

2010 -261 0 72 2 0.0081

2011 -248 -1 34 2 0.0084

2012 -223 -1 67 1 0.0313

Fig. 5 Ranking shift versus rank. The top 100 institutions 2003–2012 with their ranking shifts in relation to
original rank
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this way an indicator receives different weights according to its size, which has not hitherto

been justified in the case of rankings.

The official methodology cannot be developed substantially without some temporary

loss of consistency as long as the number of indicators considered is so limited. Even the

claim of a mere research ranking (Liu and Cheng 2007) cannot be met by Shanghai

rankings. For this purpose indicators from application-oriented research, like for instance

the number of patents, should not be entirely absent.

Table 5 Comparisons of top 100 ranking data in weighted and unweighted forms

Year (y) DLD wy-uy DLD uy-uy?1 First difference Overlap (%)

2003 82 83 3rd place 90

2004 78 67 2nd place 92

2005 81 55 3rd place 93

2006 79 53 3rd place 89

2007 81 56 2nd place 90

2008 81 51 2nd place 91

2009 80 57 2nd place 92

2010 79 62 2nd place 93

2011 79 57 2nd place 93

2012 81 – 2nd place 94

Key Column 2 gives the Damerau-Levenshtein distance (DLD) between weighted and unweighted rankings
of the same year; column 3 shows the DLD between the unweighted rankings of consecutive years; column
4 gives the foremost rank, where a modification occurs through weighting; column 5 shows the percentage
of congruence between both rankings

Fig. 6 Distribution of total score in relation to rank. Top 100 rankings 2003–2012
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Methodological limitations

The limitations for variation coefficient weights relate to the different types of error. While

the influence of random errors in robust rankings is reduced, this is not the case with

systematic errors.

On the other hand, the influence of systematic errors on the calculation of variability

weights can be reduced. For this reason the variation coefficient is preferred for weighting.

If, for example, all values of an indicator are systematically underestimated by the same

percentage, the variation coefficient remains unaffected. Standard deviation and variance,

which would also lead to robust rankings, do not offer this advantage.

Another case to be investigated is error propagation within rankings. If, for instance, the

size of an institution has been falsely determined, all size-dependent indicators are

affected. With reference to Shanghai rankings PCP and the Award indicator would be

directly compromised. These subsequent errors are predictable according to the theory of

errors. So far the applied programs cannot produce such combined errors for simulations.

Another limitation arises from the type of weighting algorithm used here. Weights for

stabilisation should lead to a wider range of total scores, as shown in Fig. 6. A single

indicator for differentiation is optimally selective if its values are dispersed uniformly over

the whole scale. The extent to which a real indicator resembles this ideal can be termed as

its discriminatory power. The usual measures of dispersion like standard deviation do not

cover this key feature of indicators satisfactorily. For example, they overestimate

peripheral values and they do not account for the shape of the frequency distributions.

Defining more sensitive algorithms for quantifying the discriminatory power is feasible.

Reasons for variability weighting

To evaluate indicators according to their faculty of discrimination is methodologically

quite reasonable. On the one hand, the application of variability weighting is justifiable on

a practical basis with more reliable results.

On the other hand, a theoretical explanation comes from palaeontology, where the

changing spread of variation has been described by Gould (1996) as a crucial element in

the process of evolution. From this perspective, rankings appear rather as an element of

morphology than as a political instrument. The advancement of ranking methodology in

the context of systems science seems to be both probable and desirable.

Conclusion

Robust rankings in the form shown here are a first approach. New weighting algorithms are

easy to evaluate by direct comparisons in the test system.

The extension of objective weighting to other structure-finding procedures (Backhaus

et al. 1994) seems reasonable if this leads to better results, for instance to more reliable

dendrograms.

Multivariate rankings with subjective weighting or no weighting at all are relatively

unstable. Such weak constructions should not be taken as absolute, but only treated with

wellfounded caution.

Error-tolerant methods should become routine if a ranking could serve for decision

making, and therefore is not an aim in itself. Robust rankings are an attempt to avoid

inappropriate evaluations.
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In all cases, objective weighting provides a different view on the same data and thereby

offers a second opinion: ‘Same same but different’.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.
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