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Asymmetric Grading Error and
Adverse Selection: Lemons in the

California Prune Industry

James A. Chalfant, Jennifer S. James,
Nathalie Lavoie, and Richard J. Sexton

Grading systems are often introduced to address the classic adverse selection
problem associated with asymmetric information about product quality. However,
grades are rarely measured perfectly, and adverse selection outcomes may persist
due to grading error. We study the effects of errors in grading, focusing on
asymmetric grading errors-namely when low-quality product can erroneously be
classified as high quality, but not vice versa. In a conceptual model, we show the
effects of asymmetric grading errors on returns to producers. Application to the
California prune industry shows that grading errors reduce incentives to produce
more valuable, larger prunes.
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Introduction

Adverse selection is a concern in many agricultural product markets due to imperfect
information about product quality. Grading is one way to mitigate this problem. The
price premiums and discounts associated with commodity grades provide incentives
for market participants to alter the distribution of quality characteristics. Various
researchers (e.g., Matsumoto and French; Lichtenberg) have studied farmers' incentives
to alter cultural practices in response to grade-based prices, while others have investi
gated handlers' incentives to alter the distribution of quality through blending and
cleaning products such as grain (Hennessy 1996a; Hennessy and Wahl; Giannakas,
Gray, and Lavoie). Other authors have utilized hedonic models to investigate the failure
of grading systems to provide appropriate signals (Naik; Bierlen and Grunewald).

Grading almost always involves error, but this aspect has received comparatively
little attention and represents the focus of this study. We present a conceptual and
empirical analysis of the economics of size-based grading for agricultural commodities
in the presence of grading error. We develop a formal model to show that most sizing
methods have an inherent adverse selection bias due to grading error, which acts to
discourage the production ofhigh-quality product. In our model, all agents have perfect
information regarding product quality and the measurement error. It is assumed that
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each producer provides product of mixed quality which must be subjected to grading.
These latter characteristics are particularly descriptive of agricultural markets where
grading is mandated by the government or through marketing orders. We show that the
imperfect measurement associated with the assignment of size grades can result in an
adverse selection outcome: low-quality goods driving out high-quality goods. Notably,
the adverse selection outcome in this context emerges without resorting to asymmetric
information and heterogeneous producers.

The model and our main results pertain to the case ofasymmetric or one-way grading
errors-product can masquerade as having higher than its actual quality, but not lower
than actual quality. However, our main results do not require this assumption, which
we make both for purposes of exposition and for compatibility with our application to
California prunes. Prunes are graded by size into one of five categories, and they are
subject to asymmetric errors in grading. We examine the effect of this measurement
error on prices and on the incentives for producers to adopt cultural practices to grow
prunes of larger sizes.

A Review of Past Research on
Grading Errors

Grading errors can emerge both as a consequence ofsampling errors and from imperfect
testing. Most commodity grading is done on a sampling basis, because grading is costly
and often involves destruction ofthe tested product. Starbird studied sampling error in
grading processing tomatoes for worm damage and concluded that a primary factor
motivating pesticide applications in the industry was to reduce the risk that shipments
would be rejected due to erroneous test results. Lichtenberg similarly observed that
sampling error may playa role in growers' application of pesticides to meet cosmetic
standards for fruits and vegetables.

The effects of imperfect testing have been investigated conceptually by Heinkel; De
and Nabar; Mason and Sterbenz; and Hennessy (l996b). Heinkel showed that ex post
testing and imposition of penalties for low quality could attenuate Akerlof's classic
lemons problem in the used automobile market. However, Heinkel also found that, as
the accuracy of the test diminishes, dealers' incentives to perform maintenance on low
quality automobiles similarly diminishes, because the inaccuracies in testing reduce the
chance to avoid penalties for selling low-quality cars.

While testing or grading is mandatory in the situations studied by several researchers
(Starbird; Lichtenberg; and HeinkeD, studies by De and Nabar and by Mason and
Sterbenz investigate the effects of errors in testing on sellers' incentives to undertake
voluntary product certification. De and Nabar show that, whereas low-quality sellers
have no incentive to certify their product under perfect testing, they may undertake
certification when grading errors are present in hopes of obtaining an erroneous high
quality certification. Mason and Sterbenz's model is similar to that ofDe and Nabar, but
they allow producers to conceal test outcomes ifthey wish. In this case, imperfect testing
is even more likely to produce inefficient, pooling outcomes wherein both low- and high
quality producers engage in testing. Inaccurate tests lead to the same incentive for low
quality producers to undertake testing (De and Nabar). In addition, because highly
accurate tests increase the price of certified units and unfavorable outcomes need not
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be revealed, increased accuracy may paradoxically cause low-quality producers to under
take the test in hopes of obtaining a high-quality certification.

The antecedent work most closely related to this study is by Hennessy (1996b), who
investigates the effect ofimperfect testing on producers' incentives to invest in quality
improving capital. With imperfect testing, high-quality product can erroneously be
classified as low quality and vice versa. Thus, the market prices for high-quality product
must reflect the fact that the measured grade contains some low-quality product and
vice versa. The market accordingly fails to reward properly the technological invest
ment, and this results in underinvestment and market failure. 1

Our work is differentiated from the prior literature in two dimensions. First, we
emphasize the economics ofasymmetric grading error, wherein low-quality product may
receive a high-quality rating, but the converse cannot occur. We argue that this type of
error is the norm for size-based grading methods. For example, in systems used to grade
or sort fruit, vegetables, nuts, or grain by size, the product is conveyed across screens
or cylinders with holes ofincreasing size or diverging belts or rollers. Small product may
not fall into its designated category and may, instead, travel on to categories reserved
for larger product, but large product cannot physically fall into the categories designated
for smaller product. Thus, a portion of lower-quality goods receives a higher-quality
ranking, but the converse cannot occur.2

Second, we develop expressions that capture the effects ofgrading error on the prices
paid to growers by grade. Our approach is then implemented empirically for the Cali
fornia prune industry. The unique analytics of asymmetric grading error enable us to
provide an intuitive explanation ofhow prices are affected. To our knowledge, the study
is the first to quantify empirically the effects ofimperfect testing on prices and producer
behavior.

A Theoretical Model of Errors in Grading

Consider a farm product which is sorted and graded based on a single quality character
istic, i.e., size, and a grading system characterized by the one-way measurement errors
described above. One outcome of this type of error is that the measured quantity of
products in each grade is not the actual quantity of the product meeting the grade
standard. For a product sorted into n grades, with 1 being the highest-quality grade and
n being the lowest-quality grade, let the actual or true percentage of product in grade
i be Wi' The measured share of product classified as grade i (m) is equal to the portion
of the product that is correctly sorted and graded as grade i, plus the portion ofproduct
of a lower grade (j > i) that is incorrectly assigned grade i.

For simplicity, the subsequent analysis is set forth in the context of four grades.
However, the theory generalizes seamlessly to n grades (n = 5 in our subsequent
application), and can be presented compactly, if not intuitively, in matrix form. We
provide this development in the appendix, along with a discussion of symmetric meas
urement errors.

1 Hennessy argues that this market failure provides an incentive for vertical integration between the producing and
processing sectors.

2 See Henderson and Perry for a detailed discussion of the engineering processes used in grading food products by size.
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The following expressions relate measured to actual shares in each ofthe four grades,
where s} is the share of actual grade} product misclassified as grade i:

(1)

(2)

(3)

and

(4)

where

j-1

L s} s: 1, for} = 2, 3, 4.
i=1

For instance, the measured grade 1 share (m1) will consist ofactual grade 1 product plus
the actual shares in other grades multiplied by the probability ofthose grades masquer
ading as grade 1. Note that s} > 0 only for i <}, reflecting the asymmetry in grading
errors-the product can move up to a higher grade, but it cannot move down. The
condition that the s} values do not sum to more than one is a physical constraint, and
a strict inequality means that at least some product is graded correctly.

We assume that the distribution of the quality characteristic across all producers is
known, and that there exists perfect information concerning the probabilities ofgrading
errors. We define Vi as the farm price that would emerge for product of grade i in the
absence ofany grading error. We need make no assumptions about the manner in which
farm prices are set, or the competitive relationships involved in that price-setting
process. For example, the market for the farm product could be perfectly competitive,
in which case Vi would represent the per unit retail value of product of grade i less all
per unit marketing and processing costs. Alternatively, farm prices could be determined
under any ofthe various forms ofimperfect competition. For example, in our subsequent
application to prunes, farm prices are determined prior to harvest through negotiations
between a grower bargaining association and handlers, in which case the hypothetical
Vi would represent the outcome of the negotiation process in the absence of grading
error. For purposes of exposition, we often refer to Vi as the "value" of product correctly
classified into grade i.

Under these assumptions, it is straightforward to show that the producer price (P)
paid for all grades i < n will be discounted relative to the actual value (V), because
product measured as grade i is "contaminated" by product from the lower grades. This
is true for all grades except the lowest grade, which can contain only product of the
lowest grade by construction of the grading process. Hence, the producer price for the
lowest grade is equal to its true market value.

In our model with four grades, this means that

(5)
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However, measured grade 3 consists of product from both grade 4 and grade 3.
Therefore, under perfect information, the producer price for grade 3 must represent a
weighted average of the true market value of grade 3 and grade 4 products, with the
weights corresponding to the relative quantities of grade 3 and grade 4 products that
are classified as grade 3:

(6)

The numerator in (6) is the expected total value of product measured as grade 3, so
dividing by ms yields a willingness to pay for a unit of the product measured as grade
3. Because grade 3 products can also be classified as grades 1 or 2, the weight on the
true market value of actual grade 3 is the proportion of grade 3 products that was
correctly graded.

Similarly, measured grade 2 will consist of products from grades 2, 3, and 4. The
grower price for grade 2 is thus a weighted average of the true market values of these
grades. Grade 2 products can be classified erroneously as grade 1, so the weight on the
true market value of grade 2 in equation (7) is the proportion of grade 2 products that
remain in grade 2:

(7)
( 1) 2 2V2 1 - 82 W 2 + Vs8 sW s + V48 4W 4

m2

An analogous result holds for P1:

(8)

We wish to ascertain the error in valuation ofthe product due to mistakes in grading,
or the difference between the actual value (V) and the grower price (P) for each grade.
Ifbuyers and sellers all know the various parameters determining the size distribution
ofthe product and also the probabilities ofgrading errors, then it is a matter ofindiffer
ence whether P's or Vs are negotiated prior to production. There is a simple linear
relationship between them. However, in our application, only the P's are observable, and
from them we can infer the V's.

Given the above relationships, we can determine the V/s by proceeding recursively
from the lowest grade. Because there is no error in the lowest grade, the producer price
for grade 4 then equals the actual market value of that grade, as in (5).

Next, consider grade 3. Given (6), we can substitute for ms using (3), substitute (5),
and solve to obtain

(9)

Notice that only Vs is unknown in this expression. This relationship has the intuitive
interpretation that product in grade 3 sells for less than the true value of grade 3
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product, because grade 3 is contaminated by product from grade 4; Vs = Ps only if s:, the
probability of such pollution, is zero. The magnitude of the value-price difference is
determined by the difference in grower prices for grades 3 and 4 and the amount of
grade 4 product measured in grade 3, relative to the amount of actual grade 3 product
that remains in the grade.

Turning now to grade 2, we perform a similar set of operations to obtain

(10)

Only V2 is unknown because Vs is defined in (9). Equation (10) has a similar common
sense interpretation. The market price of grade 2 is discounted based on the relative
amounts of grade 3 and grade 4 product that receive a grade of 2, and the differences
in, grower prices between grade 2 and the lower grades. The final term adjusts for the
fact that grade 3 product is actually more valuable than the price paid for grade 3 to
growers, based on (9).

Finally, again relying on the recursive nature of the approach, we can form a similar
expression for grade 1:

which is interpreted identically to its predecessors. Alternatively, the error in the
valuation can be expressed in terms of the V;'s as follows:

(12)

(13)

and

These expressions indicate that the reduction in the market price for grade i from its
true market value depends on the difference in value between grade i and lower grades
and the share of lower-quality commodity classified as grade i.

Because the producer price for grade i is a weighted average ofthe true market values
of grade i product and lower-grade products which are incorrectly classified as grade i,
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the producer is paid less than market value for the portion of the farm product that is
correctly sorted and graded for all grades except the lowest. However, the producer is
paid more for product that truly meets a lower grade standard but ends up in a higher
grade.3

The net effects on revenues from each grade can be seen in equations (15)-(18). Let
Q denote the total number of units of the product produced, so that wiQ represents the
number of units of product of grade i. The farm revenue (R) obtained for the product
truly belonging to each grade i standard can then be expressed as

(15) R1 = P1W1Q,

(16) R2 = [PIS; + P2 (1 - si)]w2Q,

(17) Rs = [P1si + P2s; + P3 (1 - SSI - s;)]wsQ,

(18) R4 [1 2 S ( 1 2 3)]= P1S4 + P2S4 + PSS4 + P4 1 - S4 - S4 - S4 w4Q·

The per unit farm value (v) of grade i product is Ri divided by the actual quantity wiQ
in grade i:

(19) VI = Pl'

(20) v2 = P1S2
1

+ P2 (1 - s;),

(21) 1 2 ( 1 2)Vs = PISS + P2S3 + Ps 1 - Ss - Ss ,

(22) 1 2 3 ( 1 2 S)V4 = P1S4 + P2S4 + PSS4 + P4 1 - S4 - S4 - S4 .

In order to interpret equations (19)-(22), recall that the producer price for each grade
is lower than the true market value ofthe grade, Le., Pi < Vi' except for the lowest grade,
where P4= V4. Because PI < VI [from equation (11)] and VI = PI [as shownin equation
(19)], VI < VI' and the farm unit value ofthe highest grade is lower than the true market
value ofthe grade. Similarly, since P4= V4[from equation (5)] and V4> P4[from equ'ation
(22)], the farm unit value ofthe lowest grade is higher than the true market value ofthe
grade, i.e., v4 > V4, due to some product migrating into higher grades. For intermediate
grades, the relationship between the unit farm value and the true market value is
ambiguous. However, the comparison can be made using the relationships derived thus
far. Using (20), for instance, we can show that

(23)

3 Hennessy (l996b) refers to this problem as an externality, because producers ofhigh-quality product (large prunes in our
application) do not receive the full value of their production; instead, part of the value spills over into the lower grades, to
the benefit of producers whose product is concentrated in those grades. This positive externality accordingly results in
underproduction of high-quality product, relative to low-quality product. Similarly, the presence of low-quality product
masquerading as higher-quality product is a negative externality, lowering the price paid for all product ofthe highest g;rade.
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(24)

Whether product of intermediate grade i is under- or overvalued depends on which of
two opposite effects is larger: the gain in farm value obtained by a portion of grade i
product migrating into higher grades [the first term on the right-hand side of(23) or the
first two terms on the right-hand side of (24)], or the loss in farm value because Pi < Vi
due to the measurement error [the second term on the right-hand side of (23) or the
third term on the right-hand side of (24)]. Undervaluation is more likely to occur for
higher quality intermediate grades, because there are relatively few higher grades for
the product to migrate into and relatively more lower grades from which product can
migrate into that grade. A somewhat distinctive feature of this model is that we can
derive the classic adverse selection outcome, wherein low-quality product is overvalued
and overproduced, relative to high-quality product, even though all agents have sym
metric information and, indeed, perfect information as it pertains to the probabilities
of grading error.4

The appendix contains a general, n-grade version of the theoretical model above in
matrix form. We also discuss in the appendix a generalization to the case of symmetric
(or two-way) measurement errors. The only real consequence of this generalization is
that the comparisons ofprices and values are less definitive than for the case ofone-way
errors. The result that the top grade is undervalued (i.e., PI < VI) is unaffected by these
changes, while the condition that the lowest grade is correctly valued is replaced by the
proposition that it will be overvalued (i.e., P4 > V4) because of the presence of higher
grade product. Results for the intermediate grades become indeterminate, depending
on particular magnitudes of w;'s, V;'s, and s]'s. P2 , for instance, may exceed V2 when
errors are symmetric, if enough grade 1 product moved down to grade 2 relative to the
amounts of grades 3 and 4 moving up into grade 2.

Application to California Prunes

California produces nearly all U.S. prunes and about 70% of the world's supply. The
harvesting of prunes occurs in mid-August to mid-September, using a mechanical
shaker which is attached to the tree trunk. Once harvested, prunes are dried. The dried
prunes are then cured and aerated for a period of about 30 days. Mter drying and
curing, the fruit is delivered to a packer's warehouse. Packers process the dried prunes
by rehydrating, grading, sizing, packaging, and reinspecting to meet the particular
specification of the trade. Size is the main quality criterion for dried prunes and is the
crucial characteristic in determining prune value. The largest prunes can be sold in

4 The problem can be viewed within the classic asymmetric information context ofadverse selection problems, ifone wishes
to think of the graded product itself as a "player" in the underlying game. The prunes in our application can be thought to
know their type (size), but they may choose to masquerade as a different type and, accordingly, receive a higher payoff by
not falling through their designated screen. Actions to improve the accuracy ofthe grading process make masquerading more
difficult for the prunes, and thus have the same effect as do tests, warranties, and licenses in traditional adverse selection
problems. That is, improved gradinghelps to generate a separating outcome wherein types are distinguished, versus a pooling
outcome wherein types are not identified.
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gourmet retail packs at a premium price. Moderatelylarge prunes can be pitted and sold
as pitted prunes, while the smallest prunes are useful only for juice, paste, and other
industrial products.

Prunes in California are marketed under both a federal and a state marketing order.
The federal marketing order authorizes the industry to regulate and set standards for
the prune grading system. The Dried Fruit Association (DFA) ofCalifornia is the inspec
tion agent. Packers maintain their own screen graders and may set screen lengths and
sizes to suit their own needs. In particular, they may sort and sell prunes into various
size categories with various prices. However, official grading for the purpose of deter
mining payments to growers is done using a five-screen grader, and is based on a 40
pound sample collected at the time the prunes are graded by the processor. Prunes that
are smaller than the diameter of the screen openings may fall through the holes in the
screen and be classified accordingly. The first screen is designed to eliminate trash,
while the next four screens are for prune sizing. Prior to 1998, the Undersize screen had
23/32-inch diameter holes, the D screen had 24/32-inch diameter holes, the C screen had
26/32-inch diameter holes, and the B screen had 30/32-inch diameter holes. Prunes in
the A category, or "overs," do not fall through any screen and therefore go over the end
of the grader. Results from the grading process for each sample are summarized on a
grade sheet prepared by the DFA. Under current practices, payments to growers depend
on the percentage of prunes within each grade, but these payments are unaffected by
variations in the size or weight of prunes within each grade.

For several years, industry participants have complained ofan "oversupply" ofsmall
prunes. We interpret this concern to refer to the modest value of small prunes in the
market place, relative to larger prunes, and not literally to a market disequilibrium
condition. Prune size may be enhanced through cultural practices, such as pruning,
shaker thinning, and delaying harvest. Field sizing may also be used to eliminate the
smallest prunes and to avoid incurring the cost of handling them. Various industry
publications have encouraged growers to adopt these practices, although with limited
success to date. The adoption in 1996 of payments based upon the grading system
described here was an attempt to provide incentives to growers to increase prune size.
Rather than receiving one price for their entire crop, based on the average prune size
in the sample, growers were paid a separate price for the percentage of crop in each
screen grade, based on the sample.

Despite this change, the problem ofoversupply ofsmall prunes has persisted. In early
1998, the U.S. Department of Agriculture (USDA) approved an increase to 24/32-inch
holes for the Undersize screen as a way to remove more small prunes from the saleable
market. In addition, the diameters of the holes in the D and C screens were raised to
26/32-inch and 28/32-inch, respectively. These actions may help to address the imbal
ance in production, but they do not address the incentive and adverse selection problems
caused by asymmetric grading error.

The higher prices that are offered for larger prunes should induce practices that
increase prune size, but, as our theoretical model shows, the presence of asymmetric
grading error both reduces the premium for large prunes and increases the farm value
of smaller prunes, thereby attenuating the payoff from increasing prune size. In our
empirical work, we seek to measure how much grading error reduced price incentives
to produce larger prunes for the 1996 crop year. We used the formulas from the con
ceptual model to estimate the differences between the grower price and the actual value
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(Pi - V), and between the per unit farm value and actual value (Vi - V) for each grade
ofprunes for this crop year. These estimates were based on detailed information for two
40-pound samples of prunes provided by the Prune Bargaining Association (PBA), and
on the grade sheets completed for every sample graded bythe DFA in 1996. The latter
represent actual shipments and payments to growers, whereas the former were used to
estimate probability distributions for prune weights within each screen grade.

Data

The PBA sample data consist of the measured grade and the actual weight for each of
over 7,000 prunes contained in the two 40-pound samples. After each sample was run
through the DFA grader, the weight of each individual prune was recorded. Thus, for
each prune in the sample, we knew which screen it fell through and its actual weight.
In other words, the measured (based on screen size) and actual (based on weight) size
distributions are known for these two samples. We also know the distribution ofweights
within each screen.

Figure 1 shows these data for the first PBA sample. Each panel shows the sample
distribution of weights of prunes falling through a given screen. For instance, the first
panel represents all prunes measured as grade A. The vertical dividing lines indicate
break points between actual grades. These break points are not based on the marketing
order, but, rather, are based on industry rules-of-thumb concerning the weights that
separate the two classes. Of the measured A-screen prunes in the first PBA sample,
approximately 80% were actually ofgrade-Aweight. Among the rest, approximately 19%
were grade-B weight prunes. The remaining prunes were actually either of grade C or
grade D weight, the latter too few to show up on our histogram.

The second panel represents the actual size distribution for prunes receiving a grade
of B. In this case, 21% ofthe prunes measured in the B screen were actually grade C
weight prunes, and 3% were grade D-weight prunes. However, 11% of the B-screen
prunes weighed enough to be considered grade A. This apparent moving down of A
grade prunes into the B screen is not inconsistent with our theoretical model. It arises
because we are estimating true grades based on weight rather than size. Prunes that
fit through the B screen are, by definition, B-grade prunes or smaller based upon their
size. It does not make sense to say that a prune should have fallen through a higher
grade's screen when, in fact, it fit through the smaller hole in the screen where it was
found.

The appearance ofundergrading is due to the dichotomy ofactual grades determined
by weight (consistent with industry practices), and measured grades (for purposes of
paying producers) that are based on screens that discriminate according to size; There
is not a one-to-one relationship between prune weight and prune size. For example, a
prune that is long and narrow may fall through the B screen but weigh enough to be
considered grade A. Similarly, a B-screen prune with particularly high moisture content
may weigh enough to be considered grade A.

In the subsequent empirical work, we treat nominally undergraded prunes as ifthey
actually belonged to the lower grade where they were measured. In addition to the
reasons just provided, an economic justification for this choice is that a prune with the
physical characteristics that cause it to be undergraded, relative to its weight, on the
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Figure 1. Relative frequencies for each screen in sample 1
(by measured prune size)
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DFA grader would also tend to reduce its grade on a processor's grading system, because
both are based on size rather than weight. Because end use and wholesale value of a
prune are determined by the processors' grades, such prunes would be used and valued
as ifthey were in fact ofthe lower grade. Allowingfor undergrading-by defining grades
using weight and allowing for symmetric grading errors, rather than reclassifying the
prunes in question-did not materially affect the results of the empirical analysis.
Modified versions of tables 1-5 that allow prunes to be undergraded are available from
the authors upon request.5

The shipments data represent the grading sheets for 1,487 actual shipments from the
1996 crop year. Each sheet reports the total weight and the average size in each of the
measured grades A, B, C, D, and U, based on the 40-pound sample taken from each
shipment after drying. With only the total weight of prunes in each screen grade, we
cannot determine the extent to which grading error is present in any particular
shipment. We used the PBA samples to estimate theoretical size distributions for each
grade, which we then applied to the shipments data, as discussed below.

Estimation ofPrune Size Distributions

Because the actual and measured distributions ofthe two 40-pound samples are known,
this information was used to infer the actual size distributions for each of the 1,487
actual shipments. Based on analysis ofthe sample data, it appeared reasonable to model
the size distributions for the prunes, within each measured grade, using the Gamma
probability distribution, which allows for an asymmetry in the distribution of prune
sizes.6 A unique Gamma distribution for the weights ofindividual prunes was estimated
for each measured grade in each shipment. Because we had only summary information
on the weight within each grade, it was necessary to use prior information to identify
the two parameters of the distribution. We chose to assume that the coefficient of
variation within each measured grade was the same as for our two detailed samples
combined.

This coefficient ofvariation was used in conjunction with the reported average prune
size to estimate the two parameters for the Gamma distribution for each grade of each
1996 shipment. The Gamma probability density function is written as

(25) f(x) 1 -(xIP) ,,-1 0---e x, x ~ ,
r(a)p"

where r(a) denotes the usual Gamma function, and the mean and variance are ap and
ap2, respectively (e.g., Mittelhammer, p. 187). We can infer the value ofthe a parameter
based on the coefficient of variation (CV) observed in each grade: .

5 An alternative empirical approach would be to define true grade based on size rather than weight. For example, the
individual prunes in the PBA sample could, in principle, have been measured for size rather than for weight. "True" size
would then be the smallest screen size the prune could physically fit through. Deviations ofmeasured screen from true screen
would necessarily be one-way, or asymmetric, in this analysis. We must use weight as a proxy for true screen size because
we have no such data concerning the physical dimensions of individual prunes.

6 Goodness-of-fit tests supported the Gamma, relative to the log-normal or Beta distributions, which also have the desired
asymmetry.
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(26)

Hence, we set

(27) 1a =--
(CV)2

1

We then estimated the Pparameter by setting the average size in each grade-shipment
combination equal toits theoretical expected value, ap, and solving for p using the a
that was based on the CV.

Thus, for each shipment, we have a set ofestimated probability distributions from the
Gamma(a,p) family describing the probability distribution of weights of individual
prunes in each measured grade. By evaluating the estimated cumulative distribution
function at the break points between actual grades, we were able to estimate the propor
tions of prunes of an actual grade that were measured in each of the five grades. The
averages of these proportions over all 1996 shipments are reported in tables 1 and 2.

Table 1 contains m i and Wi' the measured and actual proportions ofprunes in a grade,
for each grade, averaged over all shipments of the 1996 crop. Differences between the
actual and measured proportions are readily apparent, but the degree ofmeasurement
error is further clarified in table 2. Each row of table 2 refers to the actual prune grade
and each column refers to the measuredprune grade. Cells contain s}, the proportion
of the prunes actually belonging to row j's grade that received column i's grade, so that
the diagonal elements represent proportions of correctly graded prunes. The numbers
below the diagonal represent the percentage of prunes of each actual grade migrating
to higher grades.

Table 2 shows that the probability of grading errors is greatest in the lower grades.
This result is not surprising, because products in these grades have the greatest
opportunity to migrate into higher grades, as shown in the conceptual model. All
A-quality prunes are graded correctly by construction of the grading process, and 85%
of B-quality prunes are graded correctly, with the remaining 15% masquerading as
A-quality prunes. However, only 56% ofC-quality prunes are graded correctly, with 42%
masquerading as B prunes and 2% masquerading as A prunes. Only 38% of true
D-quality prunes were graded as D, with 50% and 12% migrating into the C and B
screens, respectively.

Tables 1 and 2 contain the grading information necessary to specify equations (1)-(4).
The grower prices for each grade, based on the outcome of negotiations between the
handlers and the PBA, are presented in table 3. This information, along with the
grading information in tables 1 and 2, is sufficient for specifying equations (5)-(8) and
equations (19)-(22), and solving for the actual value of each grade (V) and average per
unit farm values (v). These values are included in table 3, as are the Pi - Vi differentials
and the average Vi - Vi differentials for each grade. All grades are undervalued, except
for the lowest grade U (undersized), i.e., the price spread is negative, meaning that the
grower price is lower than the actual value of prunes of grades A through D. The price
of grade A prunes is lower than its true value by 2.3¢/pound (or by 4%), while B-grade
prunes are undervalued by 3.4¢/pound (or 8%). By construction, the grower price for the
U grade exactly equals its true value, zero.
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Table 1. Proportions of Shipments (by Weight) Measured as and Actually
Belonging to Each Grade in the 1996 Crop

Prune
Proportions of Prune Shipments

Grade Measured (mi ) Actual (Wi)

A 0.36 0.29

B 0.44 0.42

C 0.13 0.18

D 0.04 0.06

U 0.03 0.05

Table 3. Grower Price, Actual Value, and Per Unit Farm Value for Each
Grade of the 1996 Crop

Price Farm Value
Prune Actual Farm minus minus
Grade Price Value Value Actual Value Actual Value

(i) (Pi) <V) (Vi) (Pi - V) (Vi - V)

< (cents per pound) >

A 54.25 56.53 54.25 -2.28 -2.28

B 41.00 44.43 42.96 -3.43 -1.47

C 21.75 26.09 30.45 -4.34 4.36

D 7.00 10.70 18.54 -3.70 7.84

U 0.00 0.00 6.21 0.00 6.21
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The average spread between the per unit farm value and the actual value of prunes
in each grade is shown in the last column of table 3. Since A-grade prunes cannot
masquerade as other grades, their per unit farm value equals their grower price, and
thus differs from their true value by the same amount as the price, 2.3¢/pound. For
B-grade prunes, the average per unit farm value is 3% lower than the actual value. This
negative spread indicates that the downward adjustment in grower prices due to
measurement error decreases the average revenue earned on B-grade prunes more than
the masquerading of B-grade prunes as A-grade prunes increases it. This relationship
is reversed for grades C, D, and U, for which per unit grower revenue is larger than the
actual value. Here, the increase in revenue from each grade masquerading as higher
grades outweighs the decrease in revenue resulting from lower grower prices. On
average, grade C and D prunes earn per unit farm values of 17% and 73%, respectively,
in excess of their true values. Furthermore, undersized prunes, which have no value,
earn over 6¢/pound solely due to measurement error.

Distribution Effects ofGrading Error

The preceding calculations describe the effects of grading error on different grades of
prunes. A different set ofcalculations concerns the distribution effects of grading error
across producers. The errors in valuation of the form Pi - Vi will be the same for every
grower, since the V/s are calculated based on industry averages for the w/s, m/s, and
s/'s. However, the per unit farm values will vary between shipments, to the extent that
any of these parameters depart from industry averages.

We calculated a measure of the value-price "spread" for every shipment, defined as
the difference between the total value per unit ofthe shipment across all grades and the
total revenue per unit received by the grower. A positive value for the spread represents
the rent captured by the processor for that shipment effectively or, alternatively, value
not captured by the grower. Conversely, a negative spread would indicate revenue
earned by the grower in excess ofthe true value ofthe shipment. Our analysis indicates
that a shipment with relatively large prunes should have a positive spread, while one
with predominately small prunes will have a negative spread due, for example, to the
relatively larger effect on payments of C-quality prunes receiving the price for B's.

Figure 2 shows the empirical distribution of the spreads calculated for all 1,487
shipments in our sample. This spread varies between - 6.6¢ and +2.5¢/pound. The distri
bution is slightly skewed, in that 753 shipments have negative spreads and 734 have
positive ones. To the extent that over- or undervaluation can be related to particular
characteristics of the shipments, it is reasonable to draw conclusions regarding the
effects of grading errors on grower incentives. For instance, to test our expectations
concerning the effects ofprune size on the spread, we sorted shipment records into three
sets, corresponding to average prune sizes for the entire shipment falling in the range
ofgrades A, B, and lower, respectively. The three panels in figure 3 show the empirical
distributions of the spread variable for these three groups. For shipments with an
overall average prune size corresponding to grade A, nearly all ofthe calculated spreads
were positive, indicating that growers were not paid the full value of these shipments.
For the shipments with overall average prune size corresponding to grade B, the spread
variable is nearly symmetric around zero, with a few large negative values contributing
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10% r---------------------------------.,
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2% - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --

cents per pound

Figure 2. Frequency distribution of price spreads for all
(1,487) observations

to an average spread of -0.18¢/ pound. Finally, for the shipments with the smallest
average size, the spread is nearly always negative, averaging -1.34¢/pound. For these
shipments, growers are paid, on average, more than the true value of the product.

A more formal analysis of the empirical importance of these effects is based on the
simple correlations between the spread and various shipment characteristics. By
regressing the spread for each shipment on various characteristics, we were able to
measure the importance ofthese effects. Confirming our observations from figure 3, we
found a statistically significant negative relationship between the average prune size
in the shipment (expressed as the number of prunes needed to make a pound) and the
price spread. This indicates that shipments with relatively smaller prunes gain (i.e.,
have a lower spread) at the expense ofgrowers oflarger prunes. The average prune size
variable alone explains half of the variation in spreads. Similarly, the spread had a
statistically significant positive relationship with the percentage of prunes measured
as A-quality (R2 =0.28), and statistically significant negative relationships with the
average count (the number ofprunes to make a pound) in each screen (R2 =0.76). A final
regression showed that as the share ofactual A- and B-quality prunes increases, so does
the spread (R2 =0.33).

Table 4 reports the results ofa regression that combines this share variable with the
variables measuring average size in each screen; the signs of the individual coefficients
reveal the same patterns as the separate regressions we have described, and this
regression explains nearly 79% ofthe variation in spread. These various regressions all
serve to reaffirm the fundamental observation that grading error causes growers who
produce relatively large prunes to cross-subsidize those who produce relatively small
ones-the adverse selection outcome.
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Figure 3. Frequency distribution of price spreads by average size
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Table 4. Regression Results for Computed Spread Variable

Estimated Standard
Explanatory Variable Coefficient Deviation t-Statistic

Intercept 14.0078 0.3053 45.876

Average Size:

A Screen -0.0437 0.0040 -11.029

B Screen -0.0684 0.0040 -16.464

C Screen -0.0749 0.0023 -33.169

DScreen -0.0021 0.0003 -6.138

wA + wB 1.4089 0.0980 14.379

The Effects ofGrading Error on the Returns
to Shaker Thinning

How important are these errors in influencing farmers' production practices, such as
shaker thinning, to increase prune size? To explore this question, we evaluated the
return to shaker thinning based on 1996 prices under current grading practices versus
a hypothetical regime of no grading error. Data on shaker thinning were from a trial
conducted by the PBA. A representative orchard was chosen; one row was mechanically
thinned, and a sample from the eventual harvest was graded on the DFA grader. An
adjacent row was treated as a control, and a sample from its (unthinned) harvest was
also submitted to the DFA grader. The measured proportions of the sample in each
grade (the m/s) from the thinned and unthinned rows are reported in table 5, as are the
actual proportions (the w/s) for each row, which we derived using the estimated Gamma
distributions as discussed previously. The relevant prices to evaluate the return to
thinning under current practices are the actual PBA prices, Pi' However, under the
hypothetical regime of perfect grading, the prices would be the actual values, Vi'

Thinning increases the proportion oflarge prunes harvested, but it also reduces the
yield-from 4.3 dry tons/acre on the control to 3.2 dry tons/acre in the PBA triaL Shaker
thinning costs about $60/acre. However, the smaller yield also reduced the grower's
harvesting, hauling, and drying charges from $1,166/acre to $783/acre based on the
PBA's estimates. Considering both the cost and revenue effect of shaker thinning, the
thinned crop yielded $365 more net profit per acre than the unthinned crop, given
current grading practices. The return to shaker thinning under no grading error was
estimated to be $499/acre, or an increase of 37% over the return with grading error.

Thus, thinning was profitable even in the presence of grading error, but would have
been considerably more profitable in its absence. Returns from thinning will depend
upon the particular characteristics ofan orchard. For example, the return from thinning
a tree with a very heavy fruit set and correspondingly small average prune size will
exceed the return from thinning a tree with only a moderate fruit set. Thus, it seems
certain that grading error is an important factor limiting the number of orchards that
are thinned.
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Table 5. The Impact of Shaker Thinning on Prune Size Distribution

CURRENT GRADING SYSTEM No GRADING ERROR

Description Unthinned Thinned Unthinned Thinned

Grades:
Share of Crop in Each

Measured Grade
Share of Crop in Each

Actual Grade

A

B

C

D

U

Yield (tons/acre)

Total Revenue/Acre ($)

Total Costs/Acre ($)

Net Profit/Acre ($)

Returns to Thinning

0.11 0.39 0.07 0.34

0.45 0.46 0.38 0.48

0.28 0.10 0.32 0.13

0.09 0.02 0.12 0.03

0.07 0.03 0.10 0.03

4.3 3.2 4.3 3.2

2,676 2,717 2,633 2,809

1,166 843 1,166 843

1,510 1,874 1,467 1,966

$365/acre (24%) $499/acre (34%)

Conclusions

This study examines an adverse selection problem caused by an asymmetric measure
ment error in grading, a characteristic of most grading systems where size is the main
quality criterion. The problem occurs when sizing systems such as screens are used
where products of small size, and therefore lower quality, can fall into larger size
categories, but the converse cannot occur.

We developed a theoretical model which shows that when this error in sorting is
present, the prices of all grades will be lower than their true values, except for the
lowest grade, whose price equals its true value, since no lower quality product exists.
Moreover, the revenue that prune growers receive for each grade depends on the trade
offbetween the gain obtained from product ofthat grade moving into higher grades and
the loss in revenue due to the grade's price being less than its value. The theoretical
model showed that the per unit farm value is lower than the true value of the highest
grade, but higher than actual value for the lowest grade. The net effect is indeterminate
for intermediate grades.

The empirical application to the California prune industry illustrates the potential
importance of these effects. The price of grade A prunes is lower than its true value by
4%, and the price of grade B prunes is lower by 8%. We translated these effects into
measures ofaverage revenue for each actual grade ofprunes, and found that farm value
fell below actual value for the highest two grades, while farm values of the lower three
grades exceeded their true values. The implication is that the incentives to produce
large prunes are reduced. These findings are consistent with the pattern of"oversupply"
of small prunes in recent years and illustrate that continuing to produce relatively
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greater numbers of small prunes, rather than undertaking shaker thinning or other
cultural practices to produce larger prunes, may well be a rational response to current
incentives. The industry can partially address the problem ofoversupply ofsmall prunes
by improving the accuracy of the grading process. Examples would include increasing
screen length or adding additional screens on the DFA grader. Alternatively, the
industry might consider a graduated payment system that offers premiums and
discounts based on average prune size in each measured grade, rather than a single
price per grade, as is the current practice.

[Received October 1998; final revision received April 1999.]
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Appendix:
Generalization of the Theoretical Model

in Matrix Form

Let w denote the vector of shares of product in each grade in the absence ofmeasurement error. Let m
denote the vector of shares 'of product measured in each grade, under a grading process with errors.
Define the matrix A as

1 0 0 0
1

(1- si) 0 0S2

A= 1 2 1 2
S3 S3 (1 - S3 - S3) 0

1 2 3 1 2 3
S4 S4 S4 (1- S4 - S4 - S4)

Generalization to It grades is straightforward:

1 0

1
(1- S2

1
) 0S2

1 2 1 2

A=
S3 s3 (1 - S3 - S3)

o

o

o

The matrix A can be thought of as the grading-error transformation matrix. It is a triangular matrix,
reflecting the one-way nature of grading errors. The rows must sum to one since they are probabilities
for events that exhaust the possibilities for product ofany given actual size. For a prune ofactual grade
i, the probabilities in row i thus define a multinomial process that characterizes the random variable
actual screen grade. Generalization to the case oftwo-way grading errors would simply involve moving
some of the probability to columns above the diagonal.

Define the total crop size as Q. We know from text equations (1)-(4) that

m = A'w = mQ = A'wQ.

These expressions give the mapping from actual to measured grades. Multiplying each vector by the
total number ofunits ofproduct Qconverts the probability distribution to a distribution ofcounts ofthe
product in each grade. Alternatively,

By premultiplying by a diagonal matrix of prices, the vector ofpayments 1t, based on measured grades
of the product, is given by

(AI) 1t = Q·diag(p)m = Q·diag(p)A'w.

We noted in the text that payments could be expressed in terms of either the observed prices for
measured grades or the underlying values of correctly measured product. Reflecting this observation,
the expressions in text equations (5)-(8) are
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or

(A2)

Adding-Up

Journal ofAgricultural and Resource Economics

diag(m)p ~ A'diag(w)V

p ~ [diag(mW1A'diag(w)V.

It is straightforward to show that payments for the crop can be expressed in terms of market prices or
the underlying values for each correctly measured grade. Working backwards from text equations
(19)-(22),

This lets us show the adding-up relationship. Take (AI) and premultiply by a unit vector t to obtain
total revenue:

(A3) t'1t ~ t'Q·diag(p)m ~ t'Q·diag(p)A'w.

Since the product oft' and diag(p) is just p', and since v = Ap, this implies that total revenue is

(A4) t'1t ~ Q'p'm ~ Q'p'A'w ~ Q·v'w.

Since Vi was defined in the text as R/(wiQ), we can also write

R = diag(w)v or v = [diag(wW1R.

The adding-up result is that

t'R = t'diag(w)v = t'1t.

From text equations (15)-(18),

R = Bp = BA-1v = diag(w)v,

where B = diag(w)A. Our other adding-up result is from (A2):

m'p = m'[diag(mW1A'diag(w)V

= t'A'diag(w>V

= t'diag(w)V

= w'V.

Comparing p and V

Finally, alternative expressions can be derived for comparing p and V:

(A5) p - V = ([diag(m)f1A'diag(w) - I)V,

generalizing equations (5) and (9)-(11) in the text, or

V - p = (I - [diag(m)f1A'diag(w) )p.
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Symmetric Errors
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We used the assumption that the A matrix is triangular, reflecting asymmetric grading errors, in
developing the results in the text in a recursive manner. However, the expressions in this appendix do
not require that particular structure for A. Each result holds for the case of the two-way or symmetric
grading errors. The key in either case is to think of the mapping from m to w as a simple linear
redefinition of the number ofunits of the product in various grades. As long as this is understood, it is
a matter of indifference how prices are expressed for a given crop.

Our interest is in the effect of grading errors on the share of revenues accruing to each measured
grade, and how grading error affects the differences between actual values and market prices for
measured grades. In equation (A5) above, since the A matrix has no zero elements in the first column,
the first row ofits transpose has no zero elements, and the equation for PI - VI is unaffected by making
errors symmetric (except that the Ion the diagonal will be reduced, to the extent that grade 1 product
moves down in grade). For each comparison between P and V for other grades, additional terms will
appear in the generalizations of equations (5) and (12)-(14) from the text. For instance, for grade 2,
there now will be a term involving VI' since the 0 appearing in the first row and second column ofA is
replaced by a positive fraction. This reflects the possible appearance of grade 1 product in measured
grade 2, which raises the average value of that grade-making the comparison between P2 and V2

ambiguous, whereas it was clear that P2 < V2 for the asymmetric case. Similar results apply for the
other intermediate grades. For the lowest grade, which can now include higher-grade product, equation
(5) in the text is replaced with the result that P4 > V4•


