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Abstract. In this paper, we investigate a class of predator–prey model with age structure and discuss whether the model can
undergo Bogdanov–Takens bifurcation. The analysis is based on the normal form theory and the center manifold theory
for semilinear equations with non-dense domain combined with integrated semigroup theory. Qualitative analysis indicates
that there exist some parameter values such that this predator–prey model has an unique positive equilibrium which is
Bogdanov–Takens singularity. Moreover, it is shown that under suitable small perturbation, the system undergoes the
Bogdanov–Takens bifurcation in a small neighborhood of this positive equilibrium.
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1. Introduction

In this article, we will analyze the following predator–prey system with an age structure

∂u(t, a)
∂t

+
∂u(t, a)

∂a
= −μu(t, a), for a ≥ 0,

u(t, 0) = η
V (t)

∫ +∞
0

β(a)u(t, a)da

h + V 2(t)
,

dV (t)
dt

= rV (t)
(

1 − V (t)
K

)

− V (t)
∫ +∞
0

u(t, a)da

h + V 2(t)
,

u(0, ·) = u0 ∈ L1
+ ((0,+∞) , R) and V (0) = V0 ≥ 0,

(1.1)

where the number μ denotes the death rate of the predator, t is time, and a is the chronological age
(i.e., the age of individuals since they were born). η denotes the maximal growth rate of predator. The
function u(t, a) is the density of population of predators with respect to the age at time t. This means
that the number of predator with age between a1 and a2 is

a2∫

a1

u(t, a)da.
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So in particular the total number of predator is

U(t) :=

+∞∫

0

u(t, a)da.

The number V (t) is the total number of prey at time t. The parameter r = b − d is the intrinsic growth
rate of the prey (where b and d denote the birth rate and death rate, respectively) and K > 0 is the
carrying capacity of the prey.

The function β ∈ L∞
+ ((0,+∞) , R) represents a fraction of predator which can produce new individuals

by eating the prey. In particular, when β(a) ≡ 1 system (1.1) becomes the ordinary differential equation

dU(t)
dt

= η
V (t)U(t)
h + V (t)2

− μU(t)

dV (t)
dt

= rV (t)
(

1 − V (t)
K

)

− V (t)U(t)
h + V (t)2

U(0) = U0 ≥ 0 and V (0) = V0 ≥ 0.

(1.2)

Note that the bifurcations of system (1.2) have been analyzed in Xiao and Ruan [52] and it has been
shown that system (1.2) can undergo Bogdanov–Takens bifurcation. Namely, they prove the existence of
a series of bifurcations including saddle-node bifurcation, Hopf bifurcation, and homoclinic bifurcation.
The functional response V (t)U(t)

h+V (t)2 is a so-called non-monotonic functional response. We refer to Ruan and
Xiao [38] for a detailed presentation of model (1.2) and an overview on this topic. We also refer to Cushing
and Saleem [13] for a presentation of prey–predator systems with an age structure.

Here it makes sense to assume that the function β(a) is not identically equal to 1 because the young
predator cannot reproduce even if they eat some preys. Therefore, in order to take care of this fact we
will assume that β is a step function of the form

β(a) =
{

β∗ if a > τ,
0 if a ≤ τ.

Moreover, it will be convenient for the computation to assume that
+∞∫

0

β(a)e−μada = 1.

One may observe that without loss of generality we can make this assumption. Because by replacing β(a)
by β(a)∫+∞

0 β(s)e−μsds
and replacing η by η

∫ +∞
0

β(s)e−μsds the system is unchanged.
Age-structured models, described by hyperbolic partial differential equations, have been studied by

many researchers (see the monographs of Cushing [12], Iannelli [24], Webb [49], and the references cited
therein). Various approaches have been developed to study these models. In order to analyze the qualita-
tive properties of such a system, it is usually convenient to combine (a) integration along the characteris-
tics combined with Volterra integral equations (Webb [49] , Iannelli [24]) and (b) integrated semigroups
method (Thieme [44,46,47], Magal [31], Magal and Ruan [32,34]). The classical study on age-structured
models focused on the existence, boundedness and stability of solutions. It has been shown that some
age-structured models exhibit non-trivial periodic solutions induced by Hopf bifurcation (see Prüss [37],
Cushing [12], Swart [40], Kostava and Li [26], and Bertoni [2]). Recently, there has been great interest
in bifurcation analysis on degenerate equilibria of age-structured models. Since age-structured models
can be rewritten as abstract semilinear equations with non-dense domain (Thieme [44,46,47], Magal and
Ruan [32,34]), Magal and Ruan [33] developed the center manifold theory for abstract semilinear Cauchy
problems with non-dense domain. Based on the center manifold theorem proved in Magal and Ruan [33],
a Hopf bifurcation theorem has been presented for abstract non-densely defined Cauchy problem in Liu
et al. [28]. These theorems have been successfully applied to study the existence of Hopf bifurcation for
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some age-/size-structured models (see [3,9–11,34,35,39,48]). Recently, much attention has been focused
on high-codimensional bifurcations, since they may reveal some complex dynamical behaviors.

Bogdanov–Takens bifurcation is one of the most important high-codimensional bifurcations in non-
linear dynamics. It is a well-studied example of a bifurcation with codimension two and named after
Bogdanov [4,5] and Takens [41,42], who independently and simultaneously described this bifurcation. For
more results about Bogdanov–Takens bifurcation, see, for example, Chow and Hale [6], Dumortier et al.
[16], Arnold [1], Chow et al. [7], Guckenheimer and Holmes [22], Kuznetsov [27], Xiao and Ruan ([38,51]),
and others. Bogdanov–Takens bifurcation occurs also in infinite dimensional differential equations asso-
ciated with functional differential equations and a few other partial differential equations. In the context
of functional differential equations, we refer to the book by Hale et al. [23] and papers [18,25,50,52,53].
In the context of partial differential equations with delays, we refer to [19–21,30]. But to the best of our
knowledge, there is no result on Bogdanov–Takens bifurcation for an age-structured model which is an
hyperbolic partial differential equations with nonlinear and non-local boundary conditions.

In this article, our aim is to study whether system (1.1) also undergoes the Bogdanov–Takens bifurca-
tion near a positive equilibrium. Hence, we first look for some conditions of parameters which guarantee
system (1.1) has a positive equilibrium who is Bogdanov–Takens singularity by applying the normal
form theory developed by Liu, Magal, and Ruan [29] for the non-densely defined abstract Cauchy prob-
lems, then we choose suitable small perturbation of parameters such that system (1.1) can undergo the
Bogdanov–Takens bifurcation. More precisely, we obtain that there exists a unique positive equilibrium
which is Bogdanov–Takens singularity of system (1.1) if η = 2

√
h and K = 2

√
h, and prove the following

small perturbation system
∂u(t, a)

∂t
+

∂u(t, a)
∂a

= −μu(t, a) for a ≥ 0

u(t, 0) = η
V (t)

∫ +∞
0

β(a)u(t, a)da

h + V (t)2
+ α̃1

(
V (t) −

√
h
)

+ α̃2

⎛

⎝
+∞∫

0

β(a)u(t, a)da − 2hrμ(1 −
√

h

K
)

⎞

⎠

dV (t)
dt

= rV (t)
(

1 − V (t)
K

)

− V (t)
∫ +∞
0

u(t, a)da

h + V (t)2
u(0, ·) = u0 ∈ L1 ((0,+∞) , R) and V (0) = V0 ≥ 0

(1.3)

is a versal unfolding of this Bogdanov–Takens singularity, where (α̃1, α̃2) is a very small parameter vector,
other parameters h, r, and μ are any fixed, and η = 2

√
h and K = 2

√
h.

Here we take the parameters α̃1, α̃2 as the bifurcation parameters. Of course, the original system (1.1)
corresponds to the case where α̃1 = 0 and α̃2 = 0. Here we will study the bifurcations of system (1.3)
near the unique positive equilibrium as parameters α̃1 and α̃2 change in the small neighborhood of the
origin. The aim of the present paper is to show how to apply the normal form theory in the context of
age-structured models. In this paper, we will prove that Bogdanov–Takens bifurcation occurs for system
(1.3). Some more biologically meaningful examples are left for further investigation.

The paper is organized as follows. In Sect. 2, we formulate an age-structured model based on system
(1.1) as a non-densely defined Cauchy problem. Then we consider the existence of the positive equilibrium,
linearize the system around the positive equilibrium, and study the spectral properties of the linearized
equation in Sect. 3. In Sect. 4, the eigenvalue problem for the linearized system of (1.1) around the
unique positive equilibrium is investigated and the normal form and center manifold theory for semilinear
equations with non-dense domain is used to carry out the analysis of the Bogdanov–Takens bifurcation.
A brief conclusion is provided in the last section.
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2. Preliminary

We first reformulate the model (1.1) as a semilinear Cauchy problem with non-dense domain. By setting

V (t) :=

+∞∫

0

v(t, a)da,

we can rewrite the second equation in system (1.1) as follows
⎧
⎪⎨

⎪⎩

∂v(t, a)
∂t

+
∂v(t, a)

∂a
= −dv(t, a),

v(t, 0) = G(v(t, a), u(t, a)),
v(0, a) = ρ0 ∈ L1((0,+∞), R),

where

G (v(t, .), u(t, .)) = b

+∞∫

0

v(t, a)da

(

1 −
∫ +∞
0

v(t, a)da

K

)

+
d
(∫ +∞

0
v(t, a)da

)2

K

−
∫ +∞
0

v(t, a)da
∫ +∞
0

u(t, a)da

h +
(∫ +∞

0
v(t, a)da

)2 .

Thus, by setting w(t, a) =
(

u(t, a)
v(t, a)

)

, we obtain the equivalent system of system (1.1)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂w(t, a)
∂t

+
∂w(t, a)

∂a
= −Qw(t, a),

w(t, 0) = B(w(t, ·)),
w(0, ·) = w0 =

(
u0

ρ0

)

∈ L1((0,+∞), R2),

where

Q =
(

μ 0
0 d

)

and B(w(t, ·)) =

⎛

⎝
η
∫+∞
0 v(t,a)da

∫+∞
0 β(a)u(t,a)da

h+(
∫+∞
0 v(t,a)da)2

G
(∫ +∞

0
v(t, a)da,

∫ +∞
0

u(t, a)da
)

⎞

⎠ .

Following the results developed in Thieme [44] and Magal [31], we consider the Banach space

X = R
2 × L1((0,+∞), R2)

with
∥
∥
∥
∥

(
δ
ϕ

)∥
∥
∥
∥ = ‖δ‖R2 + ‖ϕ‖L1((0,+∞),R2), define the linear operator

L : D(L) → X

by

L

(
0
ϕ

)

=
( −ϕ(0)

−ϕ′ − Qϕ

)

with D(L) = {0} × W 1,1((0,+∞), R2), and the operator F : D(L) → X by

F

((
0
ϕ

))

=
(

B(ϕ)
0

)

.

We observe that L is non-densely defined since

X0 := D(L) = {0} × L1((0,+∞), R2).
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Then setting

x(t) =
(

0
w(t, ·)

)

,

we can rewrite system (1.1) as the following non-densely defined abstract Cauchy problem
⎧
⎪⎨

⎪⎩

dx(t)
dt

= Lx(t) + F (x(t)), t ≥ 0,

x(0) =
(

0
w0

)

∈ D(L).
(2.1)

Set

X+ := R
2
+ × L1

+((0,+∞), R2)

and

X0+ := X0 ∩ X+ = {0} × L1
+((0,+∞), R2).

From the results of Magal [31] and Magal and Ruan [34], we obtain the global existence, uniqueness, and
positive of solutions for system (2.1).

Theorem 2.1. There exists a unique continuous semiflow {U(t)}t≥0 on X0+ such that for each x ∈ X0+,

the map t → U(t)x is the unique integrated solution of the Cauchy problem ( 2.1), that is, t → U(t)x
satisfies for each t ≥ 0 that

t∫

0

U(l)xdl ∈ D(L)

and

U(t)x = x + L

t∫

0

U(l)xdl +

t∫

0

F (U(l)x) dl, t ≥ 0.

3. Equilibria and linearized equation

The equilibrium solutions of Eq. (2.1) are obtained by solving the equation

L

⎛

⎝
0
u
ρ

⎞

⎠ + F

⎛

⎝
0
u
ρ

⎞

⎠ = 0,

⎛

⎝
0
u
ρ

⎞

⎠ ∈ D(L),

and we obtain the following lemma.

Lemma 3.1. The system (2.1) has always the equilibria

x1 =

⎛

⎝
0R2

0L1

0L1

⎞

⎠ and x2 =

⎛

⎝
0R2

0L1

dKe−da

⎞

⎠ .

Furthermore, there exists a unique positive equilibrium of system (2.1)

x(a) =

⎛

⎝
0R2

2hrμ(1 −
√

h
K )e−μa

d
√

he−da

⎞

⎠

if and only if

η = 2
√

h and K �=
√

h.



137 Page 6 of 29 Z. Liu et al. ZAMP

In the following, we assume that η = 2
√

h and K �= √
h. Now we make the following change of variable

y(t) := x(t) − x(a)

and obtain
⎧
⎪⎨

⎪⎩

dy(t)
dt

= Ly(t) + F (y(t) + x(a)) − F (x(a)), t ≥ 0,

y(0) =
(

0
w0 − w(a)

)

=: y0 ∈ D(L).
(3.1)

Therefore, the linearized equation of (3.1) around the equilibrium 0 is given by

dy(t)
dt

= Ly(t) + DF(x)y(t) for t ≥ 0, y(0) ∈ X0,

where

DF(x)
(

0R2

ϕ

)

=
(

DB(w)(ϕ)
0

)

, for all
(

0R2

ϕ

)

∈ D(L)

with

DB(ω)(ϕ) =
(

0R 0R
− 1

η b − ηr
K

) +∞∫

0

ϕ(a)da +
(

1 0R
0R 0R

) +∞∫

0

β(a)ϕ(a)da.

Then (3.1) can be written as

dy(t)
dt

= Ay(t) + H(y(t)), for t ≥ 0, (3.2)

where

A := L + DF(x)

is a linear operator and

H(y(t)) = F (y(t) + x) − F (x) − DF(x)y(t)

satisfying H(0) = 0 and DH(0) = 0.
Next we will study the spectral properties of the linearized equation of (3.1) in order to investigate

the dynamical behavior for system (3.1).
Define the part of L in D(L) by L0,

L0 : D(L0) ⊂ X → X

with L0x = Lx for x ∈ D(L0) = {x ∈ D(L) : Lx ∈ D(L)}. Then we get for
(

0
ϕ

)

∈ D(L0),

L0

(
0
ϕ

)

=
(

0
L̂0ϕ

)

,

where L̂0ϕ = −ϕ′ − Qϕ with

D(L̂0) = {ϕ ∈ W 1,1((0,+∞), R2) : ϕ(0) = 0}.

Denote

ξ := min{d, μ} > 0 and Ω := {λ ∈ C : Re(λ) > −ξ}.

By applying the results of Liu et al. [28], we obtain the following result.
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Lemma 3.2. If λ ∈ Ω, then λ ∈ ρ(L) and

(λI − L)−1

(
δ
ψ

)

=
(

0
ϕ

)

⇔ ϕ(a) = e
−

a∫

0
(λI+Q)dl

δ +

a∫

0

e
−

a∫

s

(λI+Q)dl
ψ(s)ds

with
(

δ
ψ

)

∈ X and
(

0
ϕ

)

∈ D(L). Moreover, L is a Hille–Yosida operator.

From the above we have the following result.

Lemma 3.3. The linear operator L0 is the infinitesimal generator of the strongly continuous semigroup
{TL0(t)}t≥0 of bounded linear operators on D(L), and for each t ≥ 0 the linear operator TL0(t) is defined
by

TL0(t)
(

0
ϕ

)

=
(

0
T̂L0(t)ϕ

)

,

where

T̂L0(t)(ϕ)(a) =

⎧
⎨

⎩
e

−
a∫

a−t

Qdl

ϕ(a − t), if a ≥ t,
0, otherwise.

Now it remains to precise the spectral properties of A = L + DF(x). For convenience, we set C :=
DF(x). Let λ ∈ Ω. Since λI − L is invertible, it follows that λI − A = λI − (L + C) is invertible if and
only if I − C (λI − L)−1 is invertible. Moreover, when I − C (λI − L)−1 is invertible we have

(λI − (L + C))−1 = (λI − L)−1 (
I − C(λI − L)−1

)−1
.

Consider

(I − C(λI − L)−1)
(

δ
ϕ

)

=
(

γ
ψ

)

or

(
δ
ϕ

)

− C

⎛

⎜
⎝

0

e
−

a∫

0
(λI+Q)dl

δ +
a∫

0

e
−

a∫

s

(λI+Q)dl
ϕ(s)ds

⎞

⎟
⎠ =

(
γ
ψ

)

.

Then we obtain the system
⎧
⎪⎨

⎪⎩

δ − DB(w)

(

e
−

a∫

0
(λI+Q)dl

δ +
a∫

0

e
−

a∫

s

(λI+Q)dl
ϕ(s)ds

)

= γ,

ϕ = ψ,

i.e.,
⎧
⎪⎨

⎪⎩

δ − DB(w)

(

e
−

a∫

0
(λI+Q)dl

δ

)

= γ + DB(w)

(
a∫

0

e
−

a∫

s

(λI+Q)dl
ϕ(s)ds

)

,

ϕ = ψ.
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From the formula of DB(w) we know that

δ − DB(w)

(

e
−

a∫

0
(λI+Q)dl

δ

)

=

⎡

⎢
⎢
⎢
⎣

I −
(

0 0
− 1

η b − ηr
K

)
+∞∫

0

e
−

a∫

0
(λI+Q)ddl

da

−
(

1 0
0 0

)
+∞∫

0

β(a)e
−

a∫

0
(λI+Q)dl

da

⎤

⎥
⎥
⎥
⎦

δ.

Denote

Δ(λ) := I −
(

0 0
− 1

η b − ηr
K

) +∞∫

0

e
−

a∫

0
(λI+Q)dl

da (3.3)

−
(

1 0
0 0

) +∞∫

0

β(a)e
−

a∫

0
(λI+Q)dl

da

and

K(λ, ψ) := DB(w)

⎛

⎝
a∫

0

e
−

a∫

s

(λI+Q)dl
ψ(s)ds

⎞

⎠ . (3.4)

Then Δ(λ)δ = γ + K(λ, ψ). Whenever Δ(λ) is invertible, we have

δ = (Δ(λ))−1(γ + K(λ, ψ)).

Lemma 3.4. The following results hold.
(i) σ(L + C) ∩ Ω = σP (L + C) ∩ Ω = {λ ∈ Ω : det Δ(λ) = 0}.
(ii) If λ ∈ ρ(L + C) ∩ Ω, we have the following formula for the resolvent

(λI − (L + C))−1

(
δ
ϕ

)

=
(

0
ψ

)

⇐⇒

ψ(a) = e
−

a∫

0
(λI+Q)dl

(Δ(λ))−1 (δ + K(λ, ϕ)) +

a∫

0

e
−

a∫

s

(λI+Q)dl
ϕ(s)ds,

(3.5)

where Δ(λ) and K(λ, ϕ) are defined in (3.3) and (3.4).

Proof. Assume that λ ∈ Ω and det(Δ(λ)) �= 0. From the above discussion, we have

(I − C(λI − L)−1)−1

(
δ
ϕ

)

=
(

(Δ(λ))−1(δ + K(λ, ϕ))
ϕ

)

.

By Lemma 3.2 we obtain (3.5) and (ii) follows. Therefore, we have {λ ∈ Ω : det(Δ(λ)) �= 0} ⊂ ρ(L+C)∩Ω,
and

σ(L + C) ∩ Ω ⊂ {λ ∈ Ω : det(Δ(λ)) = 0}. (3.6)

Conversely, assume that λ ∈ Ω and det(Δ(λ)) = 0. We claim that we can find
(

0
ψ

)

∈ D(L) \ {0} such

that

(L + C)
(

0
ψ

)

= λ

(
0
ψ

)

. (3.7)
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In fact, set
(

δ
ϕ

)

:= (λI − L)
(

0
ψ

)

⇔
(

0
ψ

)

= (λI − L)−1

(
δ
ϕ

)

.

We can find a nonzero solution of (3.7) if and only if we can find
(

δ
ϕ

)

∈ X \ {0} satisfying

[I − C(λI − L)−1]
(

δ
ϕ

)

= 0.

From the above arguments, we can obtain
(

δ
ϕ

)

�= 0 satisfying

{
Δ(λ)δ = 0,
ϕ = 0.

Since by assumption det(Δ(λ)) = 0, we can find δ �= 0 such that Δ(λ)δ = 0. So we can find
(

0
ψ

)

∈
D(L) \ {0} satisfying (3.7), and thus λ ∈ σP (L + C). Hence,

{λ ∈ Ω : det(Δ(λ)) = 0} ⊂ σP (L + C) ⊂ σ(L + C) (3.8)

From (3.6) and (3.8), (i) follows. �

From the explicit formula for the resolvent, we deduce the following lemma.

Lemma 3.5. For each λ0 ∈ σ (A) ∩ Ω, λ0 is a pole of the resolvent of order k0 if and only if λ0 is a root
of order k0 of Δ(λ).

Since L is a Hille–Yosida operator, and DF(x) is bounded, A is also a Hille–Yosida operator. Con-
sequently, A0 generates a strongly continuous semigroup {TA0(t)} on X0. In order to apply the center
manifold theorem and normal form theory, we need to study the essential growth bound of A. The
essential growth bound ω0,ess (A) ∈ [−∞,+∞) of A is defined by

ω0,ess (A) := lim
t→+∞

ln (‖TA(t)‖ess)
t

,

where ‖TA(t)‖ess is the essential norm of TA(t) defined by

‖TA(t)‖ess = κ (TA(t)BX (0, 1)) ,

here BX (0, 1) = {x ∈ X : ‖x‖X ≤ 1} , and for each bounded set B ⊂ X,

κ (B) = inf {ε > 0 : B can be covered by a finite number of balls of radius ≤ ε}
is the Kuratovsky measure of non-compactness. By using a perturbation result we obtain the following
estimation.

Proposition 3.6. The essential growth rate of the strongly continuous semigroup generated by A0 is strictly
negative, that is,

ω0,ess(A0) ≤ −ξ < 0.



137 Page 10 of 29 Z. Liu et al. ZAMP

Proof. From lemma 3.4, we obtain

‖TL0(t)‖ ≤ e−ξt, for all t ≥ 0.

Thus, we have

ω0,ess(L0) ≤ ω0(L0) ≤ −ξ.

Since DF(x) is a compact bounded linear operator, we can apply the perturbation results in Thieme [43]
or Ducrot et al. [14] to deduce that

ω0,ess(A0) ≤ −ξ < 0.

�

4. Bogdanov–Takens singularity

In this section, we apply the normal form theory in [32,34] to study equilibrium O(0, 0) of system (3.2)
and prove that the equilibrium O(0, 0) of (3.2) is a Bogdanov–Takens singularity under some assumptions.
Last we consider a small perturbation system of (3.2) which corresponds to system (1.3) and show the
perturbation system is a versal unfolding of the Bogdanov–Takens singularity. Hence, system (1.3) can
undergo Bogdanov–Takens bifurcation. For clearity, we rewrite system (3.2) as

dy(t)
dt

= Ay(t) + H(y(t)), for t ≥ 0, (4.1)

where A = L + DF(x), H(0) = 0, and DH(0) = 0.
Notice that σ(A) ∩ Ω = σP (A) ∩ Ω = {λ ∈ Ω : det Δ(λ) = 0}. By computation, we obtain that

Δ(λ) =

⎛

⎜
⎜
⎝

1 − β∗e−(λ+μ)τ

λ + μ
0

1
(λ+μ)η 1 − (bK − ηr)

K (λ + d)

⎞

⎟
⎟
⎠

and

det (Δ(λ))

=
[
(λ + μ) − β∗e−(λ+μ)τ

(λ + μ)

] [
K (λ + d) − (bK − ηr)

K (λ + d)

]

=

(
λ + μ − β∗e−(λ+μ)τ

)
[Kλ − rK + ηr]

K (λ + μ) (λ + d)

=
κ1λ

2 + κ2λ + κ3e
−λτλ + κ4e

−λτ + κ5

K (λ + μ) (λ + d)

=:
f(λ)
g(λ)

= 0, λ ∈ Ω

with

κ1 = K, κ2 = μK + r (η − K) , κ3 = −Kμ,

κ4 = −rμ (η − K) , κ5 = rμ(η − K).

It is obvious that {λ ∈ Ω : det Δ(λ) = 0} = {λ ∈ Ω : f(λ) = 0}.

Assumption 4.1. Assume that K = η = 2
√

h.
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Under Assumption 4.1,

f(λ) = κ1λ
2 + κ2λ + κ3e

−λτλ = 0, λ ∈ Ω (4.2)

with

κ1 = K > 0, κ2 = μK > 0, κ3 = −μK < 0.

Since f(0) = 0, f ′(0) = κ2+κ3 = 0, and f ′′(0) = 2(κ1−τκ3) �= 0, λ = 0 is a root of (4.2) with multiplicity
2. Next we claim that λ = 0 is the unique root of (4.2) with zero real parts.

In fact, let λ = iω (ω > 0) be a purely imaginary root of (4.2). Then we obtain

−κ1ω + iκ2 + κ3 (cos(ωτ) − i sin(ωτ)) i = 0.

Separating real and imaginary parts in the above equation, we obtain
{

κ2 = −κ3 cos(ωτ),
−κ1ω = −κ3 sin(ωτ). (4.3)

Thus, we have

κ2
2 + (κ1ω)2 = κ2

3

and since κ2 = −κ3 we obtain

κ2
1ω

2 = 0.

Thus, (4.2) has no purely imaginary root λ = iω (ω > 0) .
From Sect. 3, we know that under Assumption 4.1

σ (A) ∩ iR = {0} and ω0,ess (A0) < 0.

Now we compute the projectors on the generalized eigenspace associated to eigenvalue 0 of A. From the
above discussion, we already knew that 0 is a pole of (λI − A)−1of finite order 2. This means that 0 is
isolated in σ (A) ∩ Ω, and the Laurent’s expansion of the resolvent around 0 takes the following form

(λI − A)−1 =
+∞∑

n=−2

λnBA
n,0.

The bounded linear operator BA
−1,0 is the projector on the generalized eigenspace of A associated to 0.

We remark that

λ2 (λI − A)−1 =
+∞∑

m=0

λmBA
m−2,0.

So we have the following approximation formula

BA
−1,0 = lim

λ→0

d
dλ

(
λ2 (λI − A)−1

)
.

Lemma 4.2. Let Assumption 4.1 be satisfied. Then 0 is a pole of (λI − A)−1 of order 2, and the projector
on the generalized eigenspace of A associated to the eigenvalue 0 is given by

BA
−1,0

(
δ
ϕ

)

=
(

0
ψ

)

,
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where

ψ(a) =
(

e−μa 0
0 e−da

)( μ
1+τμ 0

− 2(1+τμ)+dτ2μ

2K(1+τμ)2
+ ad

(1+τμ)K d

)

[

δ + DB(w)
(

a∫

0

(
e−μ(a−s) 0

0 e−d(a−s)

)

ϕ(s)ds
)]

+
(

e−μa 0
0 e−da

)(
0 0

− d
(1+τμ)K 0

)

DB(w)
(

a∫

0

(
(s − a)e−μ(a−s) 0

0 (s − a)e−d(a−s)

)

ϕ(s)ds

)

.

(4.4)

Proof.

λ2(λI − A)−1

(
δ
ϕ

)

=
(

0
ψ

)

⇐⇒

ψ(a) = λ2e
−

a∫

0
(λI+Q)dl

(Δ(λ))−1 (δ + K(λ, ϕ)) + λ2

a∫

0

e
−

a∫

s

(λI+Q)dl
ϕ(s)ds,

where K(λ, ϕ) = DB(w)

(
a∫

0

e
−

a∫

s

(λI+Q)dl
ϕ(s)ds

)

. We need to differentiate with respect to λ the above

formula. We first have

(Δ(λ))−1 =

(
(λ+μ)

λ+μ−μe−λτ 0
− (λ+d)

(λ+μ−μe−λτ )λK
λ+d

λ

)

and

d (Δ(λ))−1

dλ
=

⎛

⎝
(λ+μ−μe−λτ)−(λ+μ)(1+τμe−λτ)

(λ+μ−μe−λτ )2
0

− (λ+μ−μe−λτ)λ−(λ+d)[(λ+μ−μe−λτ)+(1+τμe−λτ)λ]
K(λ+μ−μe−λτ )2λ2

−d
λ2

⎞

⎠ .

Then

lim
λ→0

[

2λ (Δ(λ))−1 + λ2 d (Δ(λ))−1

dλ

]

=

( μ
1+τμ 0

− 2(1+τμ)+dτ2μ

2K(1+τμ)2
d

)

,

and

lim
λ→0

(
λ2 (Δ(λ))−1

)
=

(
0 0

− d
(1+τμ)K 0

)

.

Furthermore,

d
dλ

{

e
−

a∫

0
(λI+D)dl

λ2 (Δ(λ))−1 (δ + K(λ, ϕ))

}

=
(−ae−(λ+μ)a 0

0 −ae−(λ+d)a

)

λ2 (Δ(λ))−1

⎡

⎣δ + DB(w)

⎛

⎝
a∫

0

(
e−(λ+μ)(a−s) 0

0 e−(λ+d)(a−s)

)

ϕ(s)ds

⎞

⎠

⎤

⎦

+
(

e−(λ+μ)a 0
0 e−(λ+d)a

)

λ2 (Δ(λ))−1
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DB(w)

⎛

⎝
a∫

0

(
(s − a)e−(λ+μ)(a−s) 0

0 (s − a)e−(λ+d)(a−s)

)

ϕ(s)ds

⎞

⎠

+
(

e−(λ+μ)a 0
0 e−(λ+d)a

)[

2λ (Δ(λ))−1 + λ2 d (Δ(λ))−1

dλ

]

×
⎡

⎣δ + DB(w)

⎛

⎝
a∫

0

(
e−(λ+μ)(a−s) 0

0 e−(λ+d)(a−s)

)

ϕ(s)ds

⎞

⎠

⎤

⎦ .

Then

lim
λ→0

d
dλ

{

e
−

a∫

0
(λI+D)dl

λ2 (Δ(λ))−1 (δ + K(λ, ϕ))

}

=
(

e−μa 0
0 e−da

)( μ
1+τμ 0

− 2(1+τμ)+dτ2μ

2K(1+τμ)2
+ ad

(1+τμ)K d

)

×
⎡

⎣δ + DB(w)

⎛

⎝
a∫

0

(
e−μ(a−s) 0

0 e−d(a−s)

)

ϕ(s)ds

⎞

⎠

⎤

⎦

+
(

e−μa 0
0 e−da

)(
0 0

− d
(1+τμ)K 0

)

DB(w)

⎛

⎝
a∫

0

(
(s − a)e−μ(a−s) 0

0 (s − a)e−d(a−s)

)

ϕ(s)ds

⎞

⎠ .

Thus, we obtain

BA
−1,0

(
δ
ϕ

)

= lim
λ→0

d
dλ

[
λ2 (λI − A)−1

]( δ
ϕ

)

=
(

0
ψ

)

,

where ψ is defined in (4.4). �

From the above results, we obtain a state space decomposition with respect to the spectral properties
of the linear operator A. More precisely, the projector on the linear center manifold is defined by

ΠA
c

(
δ
ϕ

)

= BA
−1,0

(
δ
ϕ

)

=
(

0
ψ

)

,

where ψ(a) is defined in (4.4). Set

ΠA
h := I − ΠA

c .

We denote by

Xc := ΠA
c (X) , Xh := ΠA

h (X) , Ac := A |
Xc

, Ah := A |
Xh

.

Now we have the decomposition

X = Xc ⊕ Xh.

Since

BA
−1,0

⎛

⎝

(
1
0

)

0L1

⎞

⎠ =
(

0
ψ1

)
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with

ψ1(a) =

⎛

⎝
μe−μa

1+τμ

e−da
(

ad
(1+τμ)K − 2(1+τμ)+dτ2μ

2K(1+τμ)2

)

⎞

⎠ , (4.5)

and

BA
−1,0

⎛

⎝

(
0
1

)

0L1

⎞

⎠ =
(

0
ψ2

)

with

ψ2(a) =
(

0
de−da

)

. (4.6)

we obtain the basis {χ1, χ2} of Xc defined by

χ1(a) =

⎛

⎝
0R2(
0L1

−de−da

)
⎞

⎠ , χ2(a) =

⎛

⎝
0R2(

Kμe−μa

dae−da

)
⎞

⎠ .

Note that

Aχ1(a) =
(

0R2

0L1

)

, Aχ2(a) = χ1(a).

The matrix of Ac in the basis {χ1, χ2} of Xc is given by

A [χ1, χ2] = [0, χ1]

or by using a usual symbolic matrix computation formula

A [χ1, χ2] = [χ1, χ2]
[

0 1
0 0

]

. (4.7)

We now consider the normal form of system (4.1) on the 2-dimensional center manifold of equilibrium
O(0, 0). Let Ls(X2

c ,D(A)) be the space of bounded 2-linear symmetric maps from X2
c = Xc × Xc into

D(A) and V 2(Xc,D(A)) be the linear space of homogeneous polynomials of degree 2. More precisely,
given the basis {χ1, χ2} of Xc, V 2(Xc,D(A)) is the space of finite linear combination of maps of the form

xc = x1χ1 + x2χ2 → xn1
1 xn2

2 V, xc ∈ Xc

with

n1 + n2 = 2, and V ∈ D(A).

Define a map G : Ls(X2
c ,D(A)) → V 2(Xc,D(A)) by G(L)(xc) = L(xc, xc), ∀L ∈ Ls(X2

c ,D(A)) and
define Θc

2 : V 2(Xc,Xc) → V 2(Xc,Xc) by

Θc
2 (Υc) := [Ac,Υc], ∀Υc ∈ V 2(Xc,Xc), (4.8)

where [, ] is the Lie bracket

[Ac,Υc] (xc) = DΥc (xc) (Acxc) − AcΥc (xc) , ∀xc ∈ Xc.

We decompose V 2(Xc,Xc) into the direct sum

V 2(Xc,Xc) = Rc
2 ⊕ Cc

2, (4.9)

where

Rc
2 := R(Θc

2)

is the range of Θc
2, and Cc

2 is some complementary space of Rc
2 into V 2(Xc,Xc).
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Let

G2 ∈ V 2(Xc,D(A)). (4.10)

By applying Theorem 4.4 in Liu, Magal, and Ruan [29], we obtain that after the following change of
variable locally around 0

y = y + G2(ΠA
c y), (4.11)

system (4.1) becomes

dy(t)
dt

= Ay(t) + Ĥ(y(t)), for t ≥ 0, (4.12)

and the reduced equation of system (4.12) has the following form which is in the normal form at the
order 2,

dyc(t)
dt

= Acyc(t) +
1
2!

ΠA
c D2Ĥ (0) (yc(t), yc(t)) + Rc (yc(t)) , (4.13)

where

G
(

1
2!

ΠA
c D2Ĥ (0) |Xc×Xc

)

∈ Cc
2,

1
2!

ΠA
c D2Ĥ (0) (yc(t), yc(t))

=
1
2!

ΠA
c D2H (0) (yc(t), yc(t)) − [

Ac,ΠA
c G2

]
(yc(t))

and the remainder term Rc ∈ C3(Xc,Xc) is a rest of order 3, that is to say that DjRc(0) = 0 for each
j = 1, 2.

In the following, we will compute

1
2!

ΠA
c D2H(0) (yc(t), yc(t)) .

Set

y :=
(

0
ϕ̂

)

∈ D(A) with ϕ̂ =
(

ϕ̂1

ϕ̂2

)

yc := ΠA
c y = ΠA

c

(
0
ϕ̂

)

= BA
−1,0

(
0
ϕ̂

)

=
(

0
ψ̃

)

with

ψ̃(a) =
(

e−μa 0
0 e−da

)( μ
1+τμ 0

− 2(1+τμ)+dτ2μ

2K(1+τμ)2
+ ad

(1+τμ)K d

)

[

DB(w)
(

a∫

0

(
e−μ(a−s) 0

0 e−d(a−s)

)

ϕ̂(s)ds

)]

+
(

e−μa 0
0 e−da

)(
0 0

− d
(1+τμ)K 0

)

DB(w)
(

a∫

0

(
(s − a)e−μ(a−s) 0

0 (s − a)e−d(a−s)

)

ϕ̂(s)ds

)

and

yh := ΠA
h y = (I − ΠA

c )
(

0
ϕ̂

)

=
(

0
ϕ̂ − ψ̃

)

.
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We observe that for each

y1 :=
(

0
ϕ1

)

, y2 :=
(

0
ϕ2

)

∈ D(A)

with

ϕ1 =
(

ϕ1
1

ϕ2
1

)

, ϕ2 =
(

ϕ1
2

ϕ2
2

)

,

D2H(0) (y1, y2) = D2F (x) (y1, y2) =

⎛

⎜
⎝

(
− 2hrμ(K−√

h)
∫+∞
0 ϕ2

1(a)da
∫+∞
0 ϕ2

2(a)da

Kh

− r
∫+∞
0 ϕ2

2(a)da
∫+∞
0 ϕ2

1(a)da

K

)

0

⎞

⎟
⎠ .

Then

1
2!

D2H (0) (y)2 =

⎛

⎜
⎜
⎝

⎛

⎝− (
∫+∞
0 ϕ̂2(a)da)22hrμ(K−√

h)

Kh

− r(
∫+∞
0 ϕ̂2(a)da)2

K

⎞

⎠

0

⎞

⎟
⎟
⎠ .

By projecting on Xc, we obtain

1
2!

ΠA
c D2H(0) (y)2 =

1
2!

(
0
ψ

)

,

where

ψ(a) =

⎛

⎝
−μe−μa(

∫+∞
0 ϕ̂2(a)da)22hrμ(K−√

h)

Kh(1+τμ)

− (
∫+∞
0 ϕ̂2(a)da)2

[
2hrμ(K−√

h)
(

ad
(1+τμ)K − 2(1+τμ)+dτ2μ

2K(1+τμ)2

)
+hrd

]
e−da

hK

⎞

⎠ . (4.14)

Set

yc = x1χ1 + x2χ2.

We shall compute (4.12) expressed in terms of the basis {χ1, χ2}. Consider V 2(R2, R2) which denotes the
linear space of the homogeneous polynomials of degree 2 in two real variables, x1, x2 with coefficients in
R

2. The operators Θc
2 considered in (4.8) now act in the spaces V 2(R2, R2) and satisfies

Θc
2(G2,c)

(
x1

x2

)

= [Ac, G2,c]
(

x1

x2

)

= DxG2,c

(
x1

x2

)

Ac

(
x1

x2

)

− AcG2,c

(
x1

x2

)

,

for all G2,c ∈ V 2(R2, R2)

with

Ac =
[

0 1
0 0

]

.

It is known [7,22,27,42] that a normal form for Bogdanov–Takens singularity which gives the flow on the
center manifold is

·
x1 = x2 + O(|(x1, x2)|3)
·
x2 = A1x

2
1 + A2x1x2 + O(|(x1, x2)|3).

In order to obtain from equation (4.13) the second-order terms in the above normal form for Bogdanov–
Takens singularity, we need to choose a complementary space for R(Θc

2) in V 2(R2, R2). The canonical
basis of V 2(R2, R2) has six elements:
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(
x1x2

0

)

,

(
x2
1

0

)

,

(
x2
2

0

)

,

(
0

x1x2

)

,

(
0
x2
1

)

,

(
0
x2
2

)

.

Their images under Θc
2 are, respectively,
(

x2
2

0

)

,

(
2x1x2

0

)

,

(
0
0

)

,

(−x1x2

x2
2

)

,

( −x2
1

2x1x2

)

,

(−x2
2

0

)

.

We choose the following complementary space of R(Θc
2) in V 2(R2, R2)

Cc
2 = span

{(
0
x2
1

)

,

(
0

x1x2

)}

.

Note that
1
2!

ΠA
c D2H(0) (x1χ1 + x2χ2)

2

= (χ1, χ2)
1
2!

⎛

⎝− 2rμ(K−√
h)(2(1+τμ)+dτ2μ)(x2−dx1)

2

2d2K2(1+τμ)2
+ r(x2−dx1)

2

d2K

− 2rμ(K−√
h)(x2−dx1)

2

d2K2(1+τμ)

⎞

⎠

in the above formula we are using a matrix symbolic computation.
Remember we assumed that K = 2

√
h; therefore, we obtain that (4.13) expressed in terms of the basis

{χ1, χ2} becomes
·
x1 = x2 + O(|(x1, x2)|3) (4.15)
·
x2 = A1x

2
1 + A2x1x2 + O(|(x1, x2)|3),

where

A1 = − rμ

2K (1 + τμ)
< 0,

A2 =
r

K

(

1 − τ2μ2

2(1 + τμ)2

)

> 0.

From the above analysis, we obtain the following theorem.

Theorem 4.3. Suppose that Assumption 4.1 holds. Then the unique positive equilibrium E∗ =
(hrμe−μa,

√
h) of (1.1) has a Bogdanov–Takens singularity, whose local dynamics on the center man-

ifold of E∗ are determined by (4.15).

5. Bogdanov–Takens bifurcation

To observe whether system (4.1) can undergo Bogdanov–Takens bifurcation under a small perturbation,
we rewrite the linear operator of system (4.1)

DB(ω)(ϕ) =
(

0R α1

− 1
η b − ηr

K

) +∞∫

0

ϕ(a)da +
(

β1 0R
0R 0R

) +∞∫

0

β(a)ϕ(a)da

with

α1 = 0, β1 = 1.

We introduce two small parameters α̃ = (α̃1, α̃2) by setting α̃1 = α1 , α̃2 = β1 − 1 to system (4.1). Then
the following system is a small perturbation system of system (4.1)

dy(t)
dt

= Ãy(t) + H(y(t)), for t ≥ 0, (5.1)
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which corresponds to the model (1.3), where Ã = L + S with

S

(
0
ϕ

)

=
(

S̃(ϕ)
0

)

(5.2)

and

S̃(ϕ) =
(

0 α̃1

− 1
η b − ηr

K

) +∞∫

0

ϕ(a)da (5.3)

+
(

1 + α̃2 0
0 0

) +∞∫

0

β(a)ϕ(a)da

with ‖α̃‖ � 1.
Note that O(0, 0) is an equilibrium of system (5.1) and

σ(Ã) ∩ Ω = σP (Ã) ∩ Ω = {λ ∈ Ω : det Δ∗(λ) = 0}
with

det (Δ∗(λ)) =
κ̃1λ

2 + κ̃2λ + κ̃3e
−λτλ + κ̃4e

−λτ + κ̃5

Kη (λ + μ) (λ + d)
, λ ∈ Ω

and

κ̃1 = Kη, κ̃2 = ηr(η − K) + ηKμ, κ̃3 = −ημK (1 + α̃2) ,

κ̃4 = −ηrμ (1 + α̃2) (η − K) , κ̃5 = ηrμ (η − K) − Kα̃1.

It is easy to check that when α̃1 = 0 and α̃2 = 0, λ = 0 is a root of det Δ∗(λ) = 0 with multiplicity 2.
From Theorem 4.3, we obtain that the equilibrium O(0, 0) of system (5.1) is a cusp of codimension 2.

To determine that system (5.1) is the versal unfolding of system (4.1) with Bogdanov–Takens singu-
larity, we consider the following suspension system

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dα̃(t)
dt

= 0, for t ≥ 0,

dy(t)
dt

= Ãy(t) + H(y(t)), for t ≥ 0,

α̃(0) = α̃ ∈ R
2,

y(0) = y0 ∈ D(Ã).

(5.4)

In order to rewrite (5.4) as an abstract Cauchy problem, we set

X = R
2 × X.

We consider the linear operator A : D (A) ⊂ X → X defined by

A
⎛

⎝
α̃(
0
ϕ

)
⎞

⎠ =

⎛

⎝
0R2

A

(
0
ϕ

)
⎞

⎠

with D (A) = R
2 × D(A). Then

D (A) = R
2 × D(A) := X0.

Since A is a Hille–Yosida operator, we can prove that A is also a Hille–Yosida operator.
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Consider F : D (A) → X the nonlinear map defined by

F
⎛

⎝
α̃(
0
ϕ

)
⎞

⎠ =

⎛

⎜
⎜
⎝

0R2

W

⎛

⎝
α̃(
0
ϕ

)
⎞

⎠

⎞

⎟
⎟
⎠ ,

where W : D(A) → X is defined by

W

⎛

⎝
α̃(
0
ϕ

)
⎞

⎠ = H

(
0
ϕ

)

+ H̃

(

α̃,

(
0
ϕ

))

with

H̃

(

α̃,

(
0
ϕ

))

=

(
˜̃
H (α̃, ϕ)

0

)

and

˜̃
H (α̃, ϕ) =

(
0 α̃1

0 0

) +∞∫

0

ϕ(a)da +
(

α̃2 0
0 0

) +∞∫

0

β(a)ϕ(a)da.

Then we have

F
(

0
0

)

= 0 and DF
(

0
0

)

= 0.

Now we can reformulate system (5.4) as the following system

dξ(t)
dt

= Aξ(t) + F (ξ(t)) , ξ(0) = ξ0 ∈ D(A). (5.5)

Note that

σ (A) ∩ iR = {0} and ω0,ess ((A)0) < 0.

Lemma 5.1. Let Assumption 4.1 be satisfied. Then

σ (A) = σ (A0) = σ (A0) = σ (A) ,

and for each λ ∈ ρ (A) ,

(λI − A)−1

⎛

⎝
β(
δ
ψ

)
⎞

⎠ =

⎛

⎝
λ−1β

(λI − A)−1

(
δ
ψ

)
⎞

⎠ .

Proof. Let λ ∈ C�σ (A) . Then

(λI − A)

⎛

⎝
β̂(
0
ϕ

)
⎞

⎠ =

⎛

⎝
β(
δ
ψ

)
⎞

⎠

⇔
⎛

⎝
λβ̂

λ

(
0
ϕ

)

− A

(
0
ϕ

)
⎞

⎠ =

⎛

⎝
β(
δ
ψ

)
⎞

⎠

⇔
⎧
⎨

⎩

β̂ = λ−1β,(
0
ϕ

)

= (λI − A)−1

(
δ
ψ

)

.
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It follows that

(λI − A)−1

⎛

⎝
β(
δ
ψ

)
⎞

⎠ =

⎛

⎝
λ−1β

(λI − A)−1

(
δ
ψ

)
⎞

⎠ .

Then

ρ (A) ⊃ C�σ (A) .

Moreover, if λ ∈ σ (A) , we have

(λI − A)

⎛

⎝
0(
0
ϕ

)
⎞

⎠ =

⎛

⎝
0(
δ
ψ

)
⎞

⎠

⇔ (λI − A)
(

0
ϕ

)

=
(

δ
ψ

)

.

So λ ∈ σ (A) . �

Lemma 5.2. Let Assumption 4.1 be satisfied. Then we have

TA0(t)
(

β
x

)

:=
(

β
TA0(t)x

)

(5.6)

and

SA(t)
(

β
x

)

:=
(

tβ
SA(t)x

)

. (5.7)

Furthermore,

ω0,ess (A0) = ω0,ess (A0) .

Proof. Recall that

(λI − A0)
−1

x =

+∞∫

0

e−λtTA0(t)xdt

and

(λI − A)−1
x = λ

+∞∫

0

e−λtSA(t)xdt.

Thus, for each λ > 0 large enough,
+∞∫

0

e−λt

(
β

TA0(t)x

)

dt =
(

λ−1β

(λI − A0)
−1

x

)

and

λ

+∞∫

0

e−λt

(
tβ

SA(t)x

)

dt =
(

λ−1β

(λI − A)−1
x

)

.

It follows that TA0(t) and SA(t) are defined, respectively, by (5.6) and (5.7).
By using formula (5.6), we deduce that

‖TA0(t)‖ess = ‖TA0(t)‖ess , for all t ≥ 0,
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and it follows that

ω0,ess (A0) = lim
t→+∞

ln (‖TA0(t)‖ess)
t

= lim
t→+∞

ln (‖TA0(t)‖ess)
t

= ω0,ess (A0) .

This completes the proof. �

Now we compute the projectors on the generalized eigenspace associated to eigenvalue 0 of A. Note
that

BA
−1,0 :=

1
2πi

∫

SC(0,ε)+

(λI − A)−1 dλ,

where SC(0, ε)+ is the counterclockwise oriented circumference |λ| = ε for sufficiently small ε > 0 such
that |λ| ≤ ε does not contain other point of the spectrum than 0. Since

(λI − A)−1

(
μ
x

)

=
(

λ−1μ

(λI − A)−1
x

)

=

(
λ−1μ∑

k=−2

λkBA
k,0x

)

,

it follows that

BA
−1,0

(
μ
x

)

=
(

μ
BA

−1,0x

)

.

We have

BA
−1,0

⎛

⎝

(
1
0

)

0

⎞

⎠ =

⎛

⎝

(
1
0

)

0

⎞

⎠ ,

BA
−1,0

⎛

⎝

(
0
1

)

0

⎞

⎠ =

⎛

⎝

(
0
1

)

0

⎞

⎠ ,

BA
−1,0

⎛

⎜
⎜
⎝

0R2(
1
0

)

0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0R2

BA
−1,0

⎛

⎝

(
1
0

)

0

⎞

⎠

⎞

⎟
⎟
⎠ =

⎛

⎝
0R2

0
ψ1

⎞

⎠

and

BA
−1,0

⎛

⎜
⎜
⎝

0R2(
0
1

)

0

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

0R2

BA
−1,0

⎛

⎝

(
0
1

)

0

⎞

⎠

⎞

⎟
⎟
⎠ =

⎛

⎝
0R2

0
ψ2

⎞

⎠ ,

where ψ1 and ψ2 are defined in (4.5) and (4.6). Set

e1(a) =

⎛

⎜
⎜
⎝

0R2

0R2(
0

−de−da

)

⎞

⎟
⎟
⎠ , e2(a) =

⎛

⎜
⎜
⎝

0R2

0R2(
Kμe−μa

dae−da

)

⎞

⎟
⎟
⎠ ,

e3(a) =

⎛

⎜
⎜
⎝

1
0(

0R2

0

)

⎞

⎟
⎟
⎠ , e4(a) =

⎛

⎜
⎜
⎝

0
1(

0R2

0

)

⎞

⎟
⎟
⎠ .

Then

Ae1(a) = 0, Ae2(a) = e1(a), Ae3(a) = Ae4(a) = 0.
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The projector on the generalized eigenspace of A associated to 0 is given in the following lemma.

Lemma 5.3. 0 is a pole of order 2 of the resolvent of A, and the projector on the generalized eigenspace
of A associated to 0 is given by

BA
−1,0

(
μ
x

)

=
(

μ
BA

−1,0x

)

.

From the above results, we obtain a state space decomposition with respect to the spectral properties
of the linear operator A. More precisely, the projector on the linear center manifold is defined by

ΠA
c

(
μ
x

)

= BA
−1,0

(
μ
x

)

=
(

μ
BA

−1,0x

)

.

Set

ΠA
h := I − ΠA

c .

We denote by

Xc := Πc (X ) , Xh := Πh (X ) , Ac := A |Xc
, Ah := A |Xh

.

Now we have the decomposition

X = Xc ⊕ Xh.

Define the basis of Xc by {e1, e2, e3, e4} and the matrix of Ac in the basis {e1, e2, e3, e4} of Xc is given by

A [e1, e2, e3, e4] = [e1, e2, e3, e4]

⎡

⎢
⎢
⎣

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ .

Set

ξ :=
(

α̃
w

)

=

⎛

⎝
α̃(
0
ϕ̂

)
⎞

⎠ ∈ D(A),

ξc := ΠA
c ξ =

(
α̃

BA
−1,0w

)

=

⎛

⎝
α̃(
0
ψ̃

)
⎞

⎠

with

ψ̃(a) =
(

e−μa 0
0 e−da

)( μ
1+τμ 0

− 2(1+τμ)+dτ2μ

2K(1+τμ)2
+ ad

(1+τμ)K d

)

[

DB(w)
(

a∫

0

(
e−μ(a−s) 0

0 e−d(a−s)

)

ϕ̂(s)ds

)]

+
(

e−μa 0
0 e−da

)(
0 0

− d
(1+τμ)K 0

)

DB(w)
(

a∫

0

(
(s − a)e−μ(a−s) 0

0 (s − a)e−d(a−s)

)

ϕ̂(s)ds

)

and

ξh := ΠA
h ξ = (I − ΠA

c )ξ =

⎛

⎝
0R2

0R2

ϕ̂ − ψ̃

⎞

⎠ .
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We observe that for each

ξ1 :=
(

α̂1

w1

)

, ξ2 :=
(

α̂2

w2

)

∈ D(A)

with wi =
(

0R
ϕi

)

, i = 1, 2,

D2F(0) (ξ1, ξ2)

=

⎛

⎝
0R2

D2H(0)(w1, w2) +
(α̂1

1

+∞∫

0
ϕ2

2da+α̂1
2

+∞∫

0
ϕ2

1da+α̂2
1

+∞∫

0
βϕ1

2da+α̂2
2

+∞∫

0
βϕ1

1da

0

)

⎞

⎠ .

Then

1
2!

D2F (0) (ξ)2 =

⎛

⎝
0R2

1
2!D

2H(0)(w)2 +
(α̃1

+∞∫

0
ϕ̂2da+α̃2

+∞∫

0
βϕ̂1da

0

)

⎞

⎠ .

By projecting on Xc, we obtain

1
2!

ΠA
c D2F(0)

⎛

⎝
α̃(
0
ϕ̂

)
⎞

⎠

2

=

⎛

⎜
⎜
⎝

0R2

BA
−1,0

⎛

⎝ 1
2!D

2H(0)(w)2 +

⎛

⎝
(α̃1

+∞∫

0
ϕ̂2da+α̃2

+∞∫

0
βϕ̂1da

0

)

0

⎞

⎠

⎞

⎠

⎞

⎟
⎟
⎠

=

⎛

⎝
0(
0

1
2ψ + ψ̂

)
⎞

⎠ ,

where ψ is defined in (4.14) and

ψ̂(a) =

⎛

⎜
⎜
⎝

μ
1+τμ

(

α̃1

+∞∫

0

ϕ̂2da + α̃2

+∞∫

0

βϕ̂1da

)

e−μa

(
− 2(1+τμ)+dτ2μ

2K(1+τμ)2
+ ad

(1+τμ)K

)(

α̃1

+∞∫

0

ϕ̂2da + α̃2

+∞∫

0

βϕ̂1da

)

e−da

⎞

⎟
⎟
⎠ .

Now we compute 1
2!Π

A
c D2F(0) (ξc)

2 expressed in terms of the basis {e1, e2, e3, e4}. Note that ξc =
⎛

⎝
α̃(
0
ψ̃

)
⎞

⎠ can be expressed by

ξc =

⎛

⎝
α̃(
0
ψ̃

)
⎞

⎠ = x1e1 + x2e2 + α̃1e3 + α̃2e4

=

⎛

⎜
⎜
⎜
⎜
⎝

α̃1

α̃2

0R2(
x2Kμe−μa

−x1de−da + x2dae−da

)

⎞

⎟
⎟
⎟
⎟
⎠

.
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We first obtain that

1
2!

ΠA
c D2F(0) (x1e1 + x2e2 + α̃1e3 + α̃2e4)

2

= (e1, e2, e3, e4)

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−
(2(1+τμ)+dτ2μ)( x2

d −x1)2
+∞∫

0
β(a)u(a)da

4dhK(1+τμ)2
+

r( x2
d −x1)2
2K + 2(1+τμ)+dτ2μ

2dK(1+τμ)2
ϑ

−
( x2

d −x1)2
+∞∫

0
β(a)u(a)da

2hK(1+τμ) + 1
(1+τμ)K ϑ

0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

in the above formula we are using a matrix symbolic computation with ϑ = −α̃1x1 + α̃1x2
d + α̃2x2Kμ. In

the following we will compute the normal form of system (5.5) by using the same procedure as for system
(4.1). As before the normal form up to second-order terms on the local center manifold is given by the
ordinary differential equation on Xc :

dξc(t)
dt

= Acξc(t) +
1
2!

ΠA
c D2F̂ (0) (ξc(t), ξc(t)) + Rc (ξc(t)) ,

where

1
2!

ΠA
c D2F̂ (0) (ξc, ξc)

=
1
2!

ΠA
c D2F (0) (ξc, ξc) − [Ac,ΠA

c G2](ξc).

Set

ξc = x1e1 + x2e2 + α̃1e3 + α̃2e4.

Now we compute the normal form expressed in terms of the basis {e1, e2, e3, e4}. Consider V 2(R4, R4)
which denote the linear space of the homogeneous polynomials of degree 2 in 4 real variables, x1, x2, α̃1, α̃2

with coefficients in R
4. The operators Θc

2 satisfies

Θc
2(G2,c)

⎛

⎜
⎜
⎝

x1

x2

α̃1

α̃2

⎞

⎟
⎟
⎠ = [Ac, G2,c]

⎛

⎜
⎜
⎝

x1

x2

α̃1

α̃2

⎞

⎟
⎟
⎠

= DxG2,c

⎛

⎜
⎜
⎝

x1

x2

α̃1

α̃2

⎞

⎟
⎟
⎠Ac

⎛

⎜
⎜
⎝

x1

x2

α̃1

α̃2

⎞

⎟
⎟
⎠ − AcG2,c

⎛

⎜
⎜
⎝

x1

x2

α̃1

α̃2

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

(

Dx

(
G1

2,c

G2
2,c

)

Mc

(
x1

x2

)

− Mc

(
G1

2,c

G2
2,c

))

Dx

(
G3

2,c

G4
2,c

)

Mc

(
x1

x2

)

⎞

⎟
⎟
⎠ ,

for all G2,c (·) =

⎛

⎜
⎜
⎜
⎝

G1
2,c (·)

G2
2,c (·)

G3
2,c (·)

G4
4,c (·)

⎞

⎟
⎟
⎟
⎠

∈ V 2(R4, R4)
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with

Ac =

⎡

⎢
⎢
⎣

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ , Mc =

[
0 1
0 0

]

.

We define Θ
c

2 : V 2(R4, R2) → V 2(R4, R2) by

Θ
c

2

(
G1

2,c

G2
2,c

)

= Dx

(
G1

2,c

G2
2,c

)

Mc

(
x1

x2

)

− Mc

(
G1

2,c

G2
2,c

)

,

for all
(

G1
2,c

G2
2,c

)

∈ V 2(R4, R2).

The canonical basis of V 2(R4, R2) has 20 elements:
(

x2
1

0

)

,

(
x1x2

0

)

,

(
x1α̃1

0

)

,

(
x1α̃2

0

)

,

(
x2
2

0

)

,

(
x2α̃1

0

)

,

(
x2α̃2

0

)

,

(
α̃2
1

0

)

,

(
α̃1α̃2

0

)

,

(
α̃2
2

0

)

(
0
x2
1

)

,

(
0

x1x2

)

,

(
0

x1α̃1

)

,

(
0

x1α̃2

)

,

(
0
x2
2

)

,

(
0

x2α̃1

)

,

(
0

x2α̃2

)

,

(
0
α̃2
1

)

,

(
0

α̃1α̃2

)

,

(
0
α̃2
2

)

Their images under Θ
c

2 are, respectively,
(

2x1x2

0

)

,

(
x2
2

0

)

,

(
x2α̃1

0

)

,

(
x2α̃2

0

)

,

(
0
0

)

,

( −x2
1

2x1x2

)

,

(−x1x2

x2
2

)

,

(−x1α̃1

x2α̃1

)

,

(−x1α̃2

x2α̃2

)

,

(−x2
2

0

)

,

(−x2α̃1

0

)

,

(−x2α̃2

0

)

,

(−α̃2
1

0

)

,

(−α̃1α̃2

0

)

,

(−α̃2
2

0

)

.

A complementary space of R(Θ
c

2) in V 2(R4, R2) is

R(Θ
c

2)
c = span

⎧
⎪⎪⎨

⎪⎪⎩

(
0

x2α̃1

)

,

(
0
x2
1

)

,

(
0

x1x2

)

,

(
0

x1α̃1

)

,
(

0
x1α̃2

)

,

(
0

x2α̃2

)

,

(
0
α̃2
1

)

,

(
0

α̃1α̃2

)

,

(
0
α̃2
2

)

⎫
⎪⎪⎬

⎪⎪⎭
.

Thus, we obtain the normal form up to second-order term as follows
·
x1 = x2 + O(|(x1, x2)|3) (5.8)
·
x2 = λ1x1 + λ2x2 + A1(α̃1, α̃2)x2

1 + A2(α̃1, α̃2)x1x2 + O(|(x1, x2)|3),
where A1(0, 0) and A2(0, 0) are defined in (4.15) and

λ1 = − 1
(1 + τμ)K

α̃1, λ2 =
(

− τ2μ

2K(1 + τμ)2

)

α̃1 +
μ

(1 + τμ)
α̃2.

Let

x1 → x1,

x2 → x2 + O(|(x1, x2)|3).
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α̃1

α̃2 SN+

SN−

I

II III

IV

IVTB

SN−

SN+

III

I

H

II

HL

TB

HL
H

Fig. 1. Bogdanov–Takens bifurcation diagram of system (5.9) in the small neighborhood of (α̃1, α̃2) = (0, 0)

Then
·
x1 = x2

·
x2 = λ1x1 + λ2x2 + A1(α̃1, α̃2)x2

1 + A2(α̃1, α̃2)x1x2 + O(|(x1, x2)|3).
After rescalings and reparameterizations (see [7, page 181] ), we can transform the above system into

·
x1 = x2 (5.9)

·
x2 = μ1 + μ2x2 + x2

1 − x1x2 + O(|(x1, x2)|3),
with μ1 = −A4

2λ2
1

4A4
1

, μ2 =
∣
∣
∣A2
A1

∣
∣
∣
(
λ2 − A2λ1

2A1

)
. From the above analysis, we obtain the following theorem.

Theorem 5.4. Assume that Assumption 4.1 holds. Then system (1.3) can undergo Bogdanov–Takens
bifurcation in a small neighborhood of the unique positive equilibrium as the bifurcating parameters (α̃1, α̃2)
vary in a small neighborhood of (0, 0). More precisely, there exist four bifurcation curves: saddle-node
bifurcation curves SN+ and SN−, Hopf bifurcation curve H, and homoclinic bifurcation curve HL, in
the small neighborhood of (0, 0) of parameter plane (α̃1, α̃2), such that system (5.1) has a unique stable
limit cycle as (α̃1, α̃2) lies between H and HL, and no limit cycle for system (5.1) outside this region.
The corresponding bifurcation diagram is shown in Fig. 1.

6. Conclusion

Codimension-two bifurcations are important phenomenon in nonlinear dynamics. However, compared
with codimension-one bifurcations in age-structured models, there has been little work done on the
codimension-two bifurcations which produce rich dynamics phenomenon. To the best of our knowledge,
we haven’t found works that have been published on the Bogdanov–Takens bifurcation for age-structured
models. In this paper, a predator–prey model with age structure in predator population is investigated.
By performing the bifurcation analysis, we prove that the model has a positive equilibrium which is
Bogdanov–Takens singularity, and we can choose two parameters as the bifurcation parameters such that
this model undergoes Bogdanov–Takens bifurcation in the small neighborhood of the positive equilibrium
as bifurcation parameters vary in a small neighborhood of the bifurcation values (see Theorem 5.4). More
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precisely, on the curve SN , the model has only a unique equilibrium which is a saddle-node; when the
parameters (α̃1, α̃2) lie between the curve SN and the curve H, the model has a saddle and a stable focus
and no periodic orbit; on the HL curve, the model has an unstable focus and a stable homoclinic loop;
the model has a saddle, an unstable focus, and no periodic orbits when the parameters lie between the
curve HL and the curve SN ; however, when the parameters lie between the curve H and the curve HL,
the model has a unique stable limit cycle (see Fig. 1).
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