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Abstract We discuss a Cheeger constant as a mixture of the frustration index and the expan-
sion rate, and prove the related Cheeger inequalities and higher order Cheeger inequalities for
graph Laplacians with cyclic signatures, discrete magnetic Laplacians on finite graphs and
magnetic Laplacians on closed Riemannian manifolds. In this process, we develop spectral
clustering algorithms for partially oriented graphs and multi-way spectral clustering algo-
rithms via metrics in lens spaces and complex projective spaces. As a byproduct, we give
a unified viewpoint of Harary’s structural balance theory of signed graphs and the gauge
invariance of magnetic potentials.

Mathematics Subject Classification 05C50 (35P15, 58J50)

Communicated by J. Jost.

B Carsten Lange
clange@math.fu-berlin.de

Shiping Liu
shiping.liu@durham.ac.uk

Norbert Peyerimhoff
norbert.peyerimhoff@durham.ac.uk

Olaf Post
olaf.post@uni-trier.de

1 Fachbereich für Mathematik und Informatik, Freie Universität Berlin, 14195 Berlin, Germany

2 Zentrum Mathematik, Technische Universität München, 85748 Garching, Germany

3 Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK

4 Fachbereich IV-Mathematik, Universität Trier, 54286 Trier, Germany

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191380638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-015-0935-x&domain=pdf


4166 C. Lange et al.

1 Introduction

Cheeger’s inequality is one of the most fundamental and important estimates in spectral
geometry. It was first proved by Cheeger for the Laplace-Beltrami operator on a Riemannian
manifold [7] and later extended to the setting of discrete graphs, see e.g., [1,2,6,11], demon-
strating the close relationship between the spectrum and the geometry of the underlying
space. This inequality has a tremendous impact in discrete and continuous theories and is
an important intersection point for interactions between both communities. For example, it
stimulated research in discrete mathematics such as spectral clustering algorithms for data
mining [36], or the construction of expander graphs [25]. Cheeger inequalities have also been
considered on metric graphs, see, e.g., [42] and, using a coarea formula in the proof [44]. We
recently witness several fruitful interactions in the other direction: Lee, Oveis Gharan and
Trevisan’s higher order Cheeger inequalities [28,29] on finite graphs were used by Miclo
[40] to prove that hyperbounded, ergodic, and self-adjoint Markov operators admit a spectral
gap, solving a 40-year-old conjecture of Simon and Høegh–Krohn [50]. For further develop-
ments, see [32,57]. Another example is an improved Cheeger’s inequality for finite graphs
by Kwok et al. [27], which was subsequently used to establish an optimal dimension-free
upper bound of eigenvalue ratios for weighted closed Riemannian manifolds with nonnega-
tive Ricci curvature [33] (see also [34]). This answers open questions of Funano and Shioya
[15,16].

Spectral theory of discrete and continuous magnetic Laplacians attracted a lot of attention
and literature on this subject developed rapidly, see, e.g., [9,13,14,17,24,31,41,43,47–49,
53]. Shigekawa proved the following comparison result in [47]: the least eigenvalue of the
magnetic Laplacian on a closed Riemannian manifold is bounded from above by the least
eigenvalue of a related Schrödinger operator. He also proved Weyl’s asymptotic formula for
magnetic Laplacians. Paternain [43] obtained an upper bound of the least eigenvalue in terms
of the so-called harmonic value and Mañé’s critical value of the corresponding Lagrangian.
On finite planar graphs, Lieb and Loss [31] solved physicallymotivated extremality problems
for eigenvalue expressions of the discrete magnetic Laplacian.

In this paper, we discuss a definition of Cheeger constants (Definitions 3.5, 3.6 and 7.3)
reflecting the nontriviality of the magnetic potentials in terms of the frustration index (see
Definitions 3.4 and 7.2) and the global connectivity of the underlying space. This definition
works for both discrete and continuous magnetic Laplacians, and graph Laplacians with
k-cyclic signatures (k ∈ N). Recall that discrete magnetic Laplacians can be considered as
graph Laplacians with a U (1)-signature. We would like to point out that our definition of
Cheeger constants provides invariances under switching operations (Definition 2.3) or gauge
transformations (Eq. 7.8). Furthermore, we prove the corresponding Cheeger inequalities
and higher order Cheeger inequalities (Theorems 4.1, 4.6, 5.1, 7.4, and 7.7). We notice that
our Theorem 4.6, the Cheeger inequality for discrete magnetic Laplacian, overlaps with a
Cheeger inequality of Bandeira, Singer and Spielman [4, Theorem 4.1] in the framework
of graph connection Laplacians [51]. See Remark 4.9 for a more detailed explanation. It
is known in physics that “a magnetic field raises the energy” [31]. Roughly speaking, our
estimates tell us that a magnetic field raises the energy via raising the frustration index. We
focus on finite graphs and compact Riemannian manifolds in this paper.

Cheeger inequalities are essentially coarea inequalities. In the proof, we obtain in partic-
ular coarea inequalities related to the frustration index on graphs as well as on manifolds
(Lemmas 4.3 and 7.5).
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In fact, we were led to our Cheeger constant definition by an investigation of graph
Laplacians with k-cyclic signatures, aiming at extending a previous spectral interpretation
[3] of Harary’s structural balance theory [21,22] for graphs with (±1)-signatures. It turns out
that the Cheeger inequalities for graph Laplacians with k-cyclic signatures and their proofs
provide spectral clustering algorithms for partially oriented graphs (alternatively calledmixed
graphs without loops and multiple edges [23,45,46,60]), aiming at detecting interesting
substructures. A partially oriented graph may contain both oriented and unoriented edges. In
the proof of such inequalities,wedevelop a random k-partition argument,which is algorithmic
(see Lemma 4.2 and Proposition 6.6). Recall that, in the setting of (±1)-signed graphs (i.e.,
k = 2), the eigenfunctions are real valued and a bipartition of the underlying graph can
be given naturally according to the sign of the eigenfunction. But here we have complex
valued eigenfunctions. Hence we do not have any natural k-partitions. That is why new ideas
are needed. The generally non-symmetric graph Laplacians of partially oriented graphs are
hardly useful for the purpose of spectral clustering. Our idea is to associate to a partially
oriented graph and a natural number k ∈ N an unoriented graph with a special k-cyclic
signature. We then perform spectral clustering algorithms employing eigenfunctions of the
graph Laplacian with the associated signature. According to our Cheeger constant definition,
we can obtain interesting k-cyclic substructures. See Sect. 6 for details.

To prove higher order Cheeger inequalities, we develop newmulti-way spectral clustering
algorithmsusingmetrics on lens spaces and complex projective spaces. This provides a deeper
understanding of earlier spectral clustering algorithms via metrics on real projective spaces
presented in [32] and [3]. These clustering algorithms were initially designed to find almost
bipartite subgraphs of a given graph [32], and then extended to find almost balanced subgraphs
of a signed graph [3]. While all operators studied in [3,32] are bounded, we show that finding
proper metrics for clustering is also useful for unbounded operators: the spectral clustering
algorithms via metrics on complex projective spaces are crucial to prove the higher order
Cheeger inequalities of the magnetic Laplacian on a closed Riemannian manifold (Lemma
7.8).

The paper is organized as follows. In Sect. 2, we set up notation for the discrete setting
and recall basic spectral theory of related graph operators. In Sect. 3, we define the frustra-
tion index and the (multi-way) Cheeger constants. We prove the corresponding Cheeger’s
inequality in Sect. 4 and higher order Cheeger inequalities in Sect. 5. In Sect. 6, we discuss
applications of Cheeger inequalities for spectral clustering on partially oriented graphs. In
Sect. 7, we extend the results developed on discrete graphs to magnetic Laplacians on closed
Riemannian manifolds.

2 Notations and basic spectral theory

Throughout the paper, G = (V, E) denotes an undirected simple finite graph on N vertices
with vertex set V and edge set E . We denote edges of G by {u, v}, and u ∼ v means that
u ∈ V and v ∈ V are connected by an edge. For any subset ˜V ⊆ V , let ˜G = (˜V , ˜E) be the
subgraph of G induced by ˜V , that is, an edge {u, v} of ˜G is an edge of G with u, v ∈ ˜V . We
tacitly associate to every edge e = {u, v} ∈ E a positive symmetric weightwuv = wvu = we

and define the weighted degree du of a vertex u ∈ V by du := ∑

v,v∼u wuv . For a positive
measure μ : V → R

+ on V , we define the maximal μ-degree of the graph G as

dμ := max
u∈V

{
∑

v,v∼u wuv

μ(u)

}

= max
u∈V

{

du
μ(u)

}

. (2.1)
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4168 C. Lange et al.

Henceforth we always consider weighted graphs, unless stated otherwise, but refer to
them simply as graphs. We denote by e = (u, v) the oriented edge starting at u and
terminating at v, and by ē = (v, u) the oriented edge with the reversed orientation.
Let Eor := {(u, v), (v, u) | {u, v} ∈ E} be the set of all oriented edges.

Definition 2.1 Let G be a graph and � be a group. A signature of G is a map s : Eor → �

such that
s(ē) = s(e)−1, (2.2)

where s(e)−1 is the inverse of s(e) in �. The trivial signature s ≡ 1, where 1 stands for the
identity element of �, is denoted by s1. For an oriented edge e = (u, v) ∈ Eor , we will also
write suv := s(e) for convenience.

For k ∈ N, we use the standard combinatorial notation [k] = {1, 2, . . . , k}. In this paper,
we will restrict ourselves to the case that the signature group � is the cyclic group S1k :=
{ξ j | j ∈ [k]} of order k, generated by the primitive k-th root of unity ξ := e2π i/k ∈ C, and
the case that � is the unitary group U (1) = {z ∈ C | |z| = 1}. The notation S1k emphasizes
the fact that the elements in S1k lie on the unit circle.

We consider the following Laplacian �s
μ associated to the weighted graph (G, w) with

signature s : Eor → � and vertex measure μ : V → R
+. For any function f : V → C, and

any vertex u ∈ V , we have

�s
μ f (u) := 1

μ(u)

∑

v,v∼u

wuv( f (u) − suv f (v)). (2.3)

Note that the summation in (2.3) over the vertices v adjacent to u can also be understood
as a summation over the oriented edges e = (u, v) ∈ Eor , and the signature is evaluated at
(u, v).

The Laplacian �s
μ has the following decomposition

�s
μ = (Dμ)−1(D − As)

where D and Dμ are the diagonal matrices with Duu = du and (Dμ)uu = μ(u) for all u ∈ V
while As is the (weighted) signed adjacency matrix with

As
uv :=

{

0, u = v or {u, v} /∈ E,

wuvsuv, {u, v} ∈ E.

When � = S1k , we call this operator the graph Laplacian with the k-cyclic signature. When
� = U (1), this is the discrete magnetic Laplacian studied in Sunada [53] (see also Shubin
[48]). By (2.2), the matrix �s

μ is Hermitian, and hence all its eigenvalues are real which can
be listed with multiplicity as follows:

0 ≤ λ1(�
s
μ) ≤ λ2(�

s
μ) ≤ · · · ≤ λN (�s

μ) ≤ 2dμ. (2.4)

For any two functions f, g : V → C, we define their inner product as

〈 f, g〉μ :=
∑

u∈V
f (u)g(u)μ(u). (2.5)

It is easy to check that

〈�s
μ f, g〉μ =

∑

{u,v}∈E
wuv( f (u) − suv f (v))(g(u) − suvg(v)). (2.6)
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Note that the right hand side of the above equality is well-defined since � ⊆ U (1). The
corresponding Rayleigh quotient Rs

μ( f ) of a function f : V → C is

Rs
μ( f ) :=

∑

{u,v}∈E wuv| f (u) − suv f (v)|2
∑

u∈V | f (u)|2μ(u)
. (2.7)

The Courant–Fisher–Weyl min–max principle tells that, for any n ∈ [N ],
λn(�

s
μ) = min〈 f p, fq 〉μ=0,

p,q∈[n],p 
=q

max
f ∈span{ f1,..., fn}

Rs
μ( f ), (2.8)

where f1, . . . , fn, f 
≡ 0.

Remark 2.2 In the case of a graph G with measure μd(u) := du for all u ∈ V and signature
group � = U (1) or � = S1k , k even, Eq. (2.8) implies the following relations between
eigenvalues

2 − λN−k+1(�
−s
μd

) = λk(�
s
μd

). (2.9)

Here −s is the signature obtained by taking the negative values of s (as complex numbers).
This generalizes [3, Lemma 1] where � = S12 = {±1}.

There is a natural operation, called switching, acting on the signatures [58,59].

Definition 2.3 LetG be a graph with signature s. For any function τ : V → � we can define
a new signature sτ : Eor → � as follows:

sτ (e) = τ(u)s(e)τ (v)−1 ∀ e = (u, v) ∈ Eor . (2.10)

We call the function τ a switching function. The signature s and s′ are said to be switching
equivalent if there exists a switching function τ such that s′ = sτ .

One can check that switching is indeed an equivalence relation on the set of signatures.
An important invariant of the switching operation is the spectrum of �s

μ. In fact, it holds that
(see e.g. [59])

�sτ
μ = D(τ )�s

μD(τ )−1, (2.11)

where D(τ ) is the diagonal matrix with entries D(τ )uu = τ(u). This means that �sτ
μ and

�s
μ are unitarily equivalent and have the same spectrum. If the signature s : Eor → � is

switching equivalent to the trivial signature s1, the operator �s
μ is unitarily equivalent to the

classical graph Laplacian. In this case we have λ1(�
s
μ) = 0. We will show in Sect. 4 that this

is the only case where the first eigenvalue vanishes. Observe that on a tree, any signature is
switching equivalent to the trivial signature.

Remark 2.4 The concept of switching is developed in the study of Harary’s balance theory
for signed graphs [21], i.e. graphs with signatures s : Eor → S12 = {+1,−1}, which we
briefly review in the next section. The corresponding terminology in the magnetic theory
is the gauge transformation, see, e.g., [9,47]. Note that switching is an operation acting
on the signatures suv := eiαuv , while the gauge transformation is acting on the magnetic
potentials αuv , where (u, v) ∈ Eor . We will only use the terminology of the magnetic theory
in the manifold case, see Sect. 7. Switching equivalent signatures are called cohomologous
weight functions in [53].
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4170 C. Lange et al.

3 Frustration index and Cheeger constants

One of our motivations for introducing the Cheeger constants is Harary’s structural bal-
ance theory [21]. Let G be a finite graph with (possibly non-abelian) signature group �

and signature s : Eor → �, and C be a cycle, which is a graph of the sequence
(u1, u2), (u2, u3), . . . , (ul−1, ul), (ul , u1) of distinct edges. Then the signature of C is the
conjugacy class of the element

su1u2su2,u3 · · · sul−1ul sulu1 ∈ �.

Note that the signature of a cycle is switching invariant.

Definition 3.1 A signature s : Eor → � is said to be balanced if the signature of every
cycle of G is (the conjugacy class of the) identity element 1 ∈ �.

For convenience, we will also say that the graph G or a subgraph of G is balanced if the
signature restricted on it is balanced. Since the signature of a cycle is switching invariant, the
property of being balanced is also switching invariant.We have the following characterization
of being balanced using switching operations.

Proposition 3.2 ([[58], Corollary 3.3]) A signature s : Eor → � is balanced if and only if
it is switching equivalent to the trivial signature s1.

Remark 3.3 The concept of balance has been studied in the literature under various termi-
nologies. For example, a balanced cycle is said to be satisfying Kirchhoff’s Voltage Law in
[19]. In [9], the related concept to the signature of a cycle is the holonomy map. In magnetic
theory, it is related to the magnetic flux [31].

We define the following frustration index to quantify how far a signature on a subset is
from being balanced.

Definition 3.4 Let G be a finite graph with signature s and V1 ⊆ V nonempty with induced
subgraph (V1, E1). The frustration index ιs(V1) of V1 is defined as

ιs(V1) := min
τ :V1→�

∑

{u,v}∈E1

wuv|τ(u) − suvτ (v)| (3.1)

= min
τ :V1→�

∑

{u,v}∈E1

wuv|1 − τ(u)−1suvτ (v)|. (3.2)

A direct computation shows that the frustration index of a set is switching invariant and,
according to Proposition 3.2, we have

ιs(V1) = 0 ⇔ the subgraph induced by V1 is balanced. (3.3)

If G is unweighted and � = {+1,−1}, then
ιs(V ) = 2esmin(V ), (3.4)

where esmin(V ) is the minimal number of edges that need to be removed from E in order to
make G = (V, E) balanced. The quantity esmin(V ) is exactly the line index of balance of
Harary [22]. Having thework ofVannimenus andToulouse [56] inmind, Zaslavsky suggested
later the term “frustration index” to Harary (T. Zaslavsky 2014, private communication).
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We denote the boundary measure of V1 by

|E(V1, V
c
1 )| :=

∑

u∈V1

∑

v∈V c
1

wuv, (3.5)

where V c
1 is the complement of V1 in V . The μ-volume of V1 is given by

volμ(V1) :=
∑

u∈V1
μ(u). (3.6)

Definition 3.5 Let G be a finite graph with a signature s. The Cheeger constant hs1(μ) is
defined as

hs1(μ) := min
∅
=V1⊆V

φs
μ(V1), (3.7)

where

φs
μ(V1) := ιs(V1) + |E(V1, V c

1 )|
volμ(V1)

. (3.8)

The choice of V1 achieving the minimum in (3.7) can be viewed as a subset of vertices
which balances the two complementary goals of minimizing its frustration index and its
expansion, measured by the edges E(V1, V c

1 ) connecting V1 with its complement.
A nontrivial n-subpartition of V is given by n pairwise disjoint nonempty subsets

V1, . . . , Vn ⊂ V and a nontrivial n-partition additionally satisfies
⋃

p∈[n] Vp = V . We
abbreviate a nontrivial n-(sub)partition {V1, . . . , Vn} by {Vp}[n]. In the spirit of Miclo [39],
we define the multi-way Cheeger constants as follows.

Definition 3.6 LetG be a finite graph with a signature s. The n-way Cheeger constant hsn(μ)

of G is defined as
hsn(μ) := min{Vp}[n]

max
p∈[n] φ

s
μ(Vp), (3.9)

where the minimum is taken over all nontrivial n-subpartitions {Vp}[n] of V .

Observe that the n-way Cheeger constant of a graph G is monotone with respect to n, that
is, hsn(μ) ≤ hsn+1(μ).

Using (3.3) and the fact that the frustration index is switching invariant, we obtain the
following properties of the Cheeger constants.

Proposition 3.7 The n-way Cheeger constants hsn(μ) of a graph G are switching invariant.
Moreover, hsn(μ) = 0 if and only if G consists of at least n connected components and at
least n of them are balanced.

If sb : Eor → � denotes a balanced signature, then hsb1 (μ) = 0 becomes trivial and

hsb2 (μ) = min{V1,V2}
max
p∈[2] φsb

μ (Vp) = min
∅
=V1⊆V

volμ(V1)≤ 1
2 volμ(V )

|E(V1, V c
1 )|

volμ(V1)
, (3.10)

that is, hsb2 (μ) reduces to the classical Cheeger constant.

Remark 3.8 Due to equation (3.4), the n-way Cheeger constant in (3.9) reduces to the signed
Cheeger constant introduced on signed graphs [3] with signature group � = {+1,−1}. We
mention that the signed Cheeger constant in [3] is a unification of the classical Cheeger
constant, the non-bipartiteness parameter in [10], the bipartiteness ratio in [54,55], and the
dual Cheeger constant in [5].
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4172 C. Lange et al.

For n ∈ [N ] and any signature s : Eor → �, we observe

hsbn (μ) ≤ hsn(μ). (3.11)

In fact, if hsn(μ) = maxp∈[n] φs
μ(˜Vp), i.e.

{

˜Vp
}

[n] is the nontrivial n subpartition of V that

achieves hsn(μ), we have φ
sb
μ (˜Vp) ≤ φs

μ(˜Vp) since ιsb (˜Vp) = 0 ≤ ιsb (˜Vp). Hence, (3.11)
follows by Definition 3.6. The inequality (3.11) is similar, in spirit, with Kato’s inequality for
noncompact spaces [12, Lemma 1.2, Corollary 1.3] (alternatively, also called the diamagnetic
inequality for both compact and noncompact spaces in [31])where the bottomof the spectrum
increases when a balanced signature is replaced by an unbalanced signature.

For n = 1 we have the following result. Recalling hsb1 (μ) = 0, Proposition 3.9 tells us
that this change of the first Cheeger constant (by choosing an unbalanced signature) can be
quite large.

Proposition 3.9 Let G be an unweighted connected finite d-regular graph and M =
maxv∈V μ(v). Then, for every k ≥ 2, there exists a k-cyclic signature s0 : Eor → S1k
such that

hs01 (μ) ≥ d − 2
√
d − 1

2M
. (3.12)

Proof Extending a result of [37,38], it is shown in [35, Theorem 2] that there exists a
k-cyclic signature s0 such that the maximal eigenvalue of the matrix As0 is no greater than
2
√
d − 1. The estimate (3.12) is then an immediate consequence of this result, combined

with Cheeger’s inequality (4.1), given at the beginning of the next section. ��

4 Cheeger’s inequality

In this section, we prove Cheeger’s inequality relating λ1(�
s
μ) to the first Cheeger constant

hs1(μ) for graph Laplacians with cyclic signatures (Theorem 4.1) and for discrete magnetic
Laplacians (Theorem 4.6).

Theorem 4.1 Let G be a finite graph with signature s : Eor → S1k . Then we have

1

2
λ1(�

s
μ) ≤ hs1(μ) ≤ 2

√

2dμλ1(�s
μ). (4.1)

We start with preparations for the proof of Theorem 4.1. Let Br (0) := {z ∈ C | |z| < r}
be the open disk in C with center 0 and radius r . For θ ∈ [0, 2π) and k ∈ N, we define the
following k disjoint sectorial regions

Qθ
j :=

{

reiα ∈ B1(0)

∣

∣

∣

∣

r ∈ (0, 1], α ∈
[

θ + 2π j

k
, θ + 2π( j + 1)

k

)}

, (4.2)

where j = 0, 1, . . . , k − 1. Then for any t ∈ (0, 1], we define the function Yt,θ : B1(0) → C

as

Yt,θ (z) :=
{

ξ j , if z ∈ Qθ
j\Bt (0),

0, if z ∈ Bt (0),
(4.3)

where ξ denotes the k-th primitve root of unity.
The following lemma plays a key role.
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Lemma 4.2 For any two points z1, z2 ∈ B1(0), we have

1

2π

∫ 2π

0

∫ 1

0

∣

∣

∣Y√
t,θ (z1) − Y√

t,θ (z2)
∣

∣

∣ dt dθ ≤ 2 |z1 − z2| (|z1| + |z2|). (4.4)

Proof W.l.o.g., we can assume that |z1| ≥ |z2| with z1 ∈ Qθ
j1
and z2 ∈ Qθ

j2
. Then we have

|Y√
t,θ (z1) − Y√

t,θ (z2)| =
⎧

⎨

⎩

|ξ j1 − ξ j2 |, if
√
t ≤ |z2|,

1, if |z2| <
√
t ≤ |z1|,

0, if |z1| <
√
t .

(4.5)

Hence,
∫ 1

0

∣

∣

∣Y√
t,θ (z1) − Y√

t,θ (z2)
∣

∣

∣ dt = |ξ j1 − ξ j2 | · |z2|2 + (|z1|2 − |z2|2). (4.6)

Let αz1z2 ∈ [0, π] be the angle between the two rays joining z1, z2 to the origin.
If 2πl/k ≤ αz1z2 < 2π(l + 1)/k for some integer 0 ≤ l < k/2, the term |ξ j1 − ξ j2 |
is equal to either |1 − ξ l | or |1 − ξ l+1|, hence we calculate
1

2π

∫ 2π

0

∫ 1

0

∣

∣

∣Y√
t,θ (z1) − Y√

t,θ (z2)
∣

∣

∣ dt dθ

=
(

kαz1z2

2π
− l

)

(

|1 − ξ l+1| · |z2|2 + |z1|2 − |z2|2
)

+
(

l + 1 − kαz1z2

2π

)

(

|1 − ξ l | · |z2|2 + |z1|2 − |z2|2
)

≤ 2|1 − ξ l | · |z2|2 + (|z1|2 − |z2|2
)

,

where we used |1 − ξ l+1| ≤ |1 − ξ | + |1 − ξ l | ≤ 2|1 − ξ l |. Observe that we have

|z1 − z2| ≥
∣

∣

∣

∣

z1
|z1| |z2| − z2

∣

∣

∣

∣

≥ |z2| · |1 − ξ l | (4.7)

and
|z1|2 − |z2|2 = (|z1| − |z2|) · (|z1| + |z2|) ≤ |z1 − z2| · (|z1| + |z2|). (4.8)

Therefore, we obtain

1

2π

∫ 2π

0

∫ 1

0

∣

∣

∣Y√
t,θ (z1) − Y√

t,θ (z2)
∣

∣

∣ dt dθ ≤ 2|z1 − z2| · |z2| + |z1 − z2| · (|z1| + |z2|),
(4.9)

which implies (4.4). ��
Lemma 4.2 can be considered as an extension of [3, Lemma 5] and [54,55, Section 3.2].

The novel point here is that we introduce an extra degree of randomness in the argument
of z in order to handle the difficulty caused by cyclic signatures. Actually, this provides a
random k-partition parametrized by an angle θ , which will be discussed further in Sect. 6.
This lemma is a version of a coarea inequality, which becomes transparent from the following
direct consequence.

For any non-zero function f : V → C defined on the vertices of a graph G and any
t ∈ [0,maxu∈V | f (u)|], we define the following non-empty subset of V :

V f (t) := {u ∈ V | t ≤ | f (u)|}. (4.10)
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Lemma 4.3 (Coarea inequality) Let s : Eor → S1k be a signature of G. For any function
f : V → C with maxu∈V | f (u)| = 1, we have

∫ 1

0
ιs

(

V f (
√
t)
)

+
∣

∣

∣E
(

V f (
√
t), (V f (

√
t))c

)∣

∣

∣ dt

≤ 2
∑

{u,v}∈E
wuv | f (u) − suv f (v)| · (| f (u)| + | f (v)|) . (4.11)

Proof First observe that

1

2π

∫ 2π

0

∫ 1

0

∑

{u,v}∈E
wuv

∣

∣

∣Y√
t,θ ( f (u)) − suvY√

t,θ ( f (v))

∣

∣

∣ dt dθ

≥
∫ 1

0
ιs

(

V f (
√
t)
)

+
∣

∣

∣E(V f (
√
t), (V f (

√
t))c)

∣

∣

∣ dt. (4.12)

In fact, the summation in the integrand of the LHS of the above inequality can be split into two
parts: (i) The summation over edges connecting two vertices from V f (

√
t) and V f (

√
t)c,

respectively. This part equals to
∣

∣E(V f (
√
t), (V f (

√
t))c)

∣

∣; (ii) The summation over edges
connecting two vertices from V f (

√
t). This part is bounded from below by ιs

(

V f (
√
t)
)

by
Definition 3.4.

Notice further that
suvY√

t,θ ( f (v)) = Y√
t,θ (suv f (v)), (4.13)

the inequality (4.11) follows directly from Lemma 4.2. ��
The coarea inequality is particularly useful to prove Lemma 4.4.

Lemma 4.4 Let s : Eor → S1k be a signature of G and f : V → C be a nonzero function.
Then there exists t ′ ∈ [0,maxu∈V | f (u)|2] such that

φs
μ(V f (

√
t ′)) ≤ 2

√

2dμRs
μ( f ), (4.14)

where Rs
μ( f ) was defined in (2.7).

Proof Since f is non-zero, we may assume (after rescaling) that maxu∈V | f (u)| = 1. More-
over,

|Y√
t,θ ( f (u))| =

{

1, if | f (u)| ≥ √
t,

0, otherwise,
(4.15)

implies
∫ 1

0
volμ(V f (

√
t)) dt =

∫ 1

0

∑

u∈V

∣

∣

∣Y√
t,θ ( f (u))

∣

∣

∣ μ(u) dt =
∑

u∈V
| f (u)|2μ(u). (4.16)

Now we consider the quotient

I :=
∫ 1
0 ιs(V f (

√
t)) + ∣

∣E(V f (
√
t), (V f (

√
t))c)

∣

∣ dt
∫ 1
0 volμ(V f (

√
t))dt

. (4.17)

Therefore, there exists t ′ ∈ [0, 1] such that

I ≥ φs
μ(V f (

√
t ′)). (4.18)
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On the other hand, Lemma 4.3, (4.16), and the Cauchy–Schwarz inequality imply

I ≤ 2
∑

{u,v}∈E wuv| f (u) − suv f (v)| · (| f (u)| + | f (v)|)
∑

u∈V | f (u)|2μ(u)

≤
2
√

∑

{u,v}∈E wuv| f (u) − suv f (v)|2
√

∑

{u,v}∈E wuv(| f (u)| + | f (v)|)2
∑

u∈V | f (u)|2μ(u)
.

Since
∑

{u,v}∈E
wuv (| f (u)| + | f (v)|)2 ≤ 2

∑

{u,v}∈E
wuv(| f (u)|2 + | f (v)|2)

= 2
∑

u∈V

∑

v,v∼u

wuv| f (u)|2,

we conclude that
I ≤ 2

√

2dμRs
μ( f ). (4.19)

Combining the estimates (4.18) and (4.19) proves the lemma. ��

Proof of Theorem 4.1 The upper estimate in (4.1) follows from Lemma 4.4 by setting f to
be the eigenfunction corresponding to the eigenvalue λ1(�

s
μ).

It remains to prove the lower estimate of hs1(μ) in (4.1). Let ˜V be the subset of V that
achieves the Cheeger constant hs1(μ) in (3.7) with induced subgraph (˜V , ˜E) and τ̃ : ˜V → S1k
be the switching function that achieves the frustration index ιs(˜V ) in (3.1). Define the function
˜f : V → C via:

˜f (u) :=
{

τ̃ (u), if u ∈ ˜V ,

0, otherwise.
(4.20)

Using (2.8) and the estimate |̃τ(u) − suvτ̃ (v)| ≤ 2, we obtain

λ1(�
s
μ) ≤ Rs

μ(˜f )

=
∑

{u,v}∈˜E wuv |̃τ(u) − suvτ̃ (v)|2 + |E(˜V , ˜V c)|
volμ(˜V )

≤ 2ιs(˜V ) + |E(˜V , ˜V c)|
volμ(˜V )

≤ 2hs1(μ). (4.21)

��

Remark 4.5 Since the signature is S1k -valued, the constant 2 in (4.21) can be slightly improved
to be |1 − ξ (k−1)/2| when k is odd.

For � = U (1) we have the following Cheeger’s inequality.

Theorem 4.6 Let G be a finite graph with signature s : Eor → U (1). Then

1

2
λ1(�

s
μ) ≤ hs1(μ) ≤ 3

2

√

2dμλ1(�s
μ). (4.22)
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The constant in the upper bound of (4.22) is slightly better than the constant in (4.1). This
is due to Lemma 4.7 below.

For any t ∈ (0, 1], we define Xt : B1(0) → C as

Xt (z) :=
{

z/|z|, if z ∈ B1(0) \ Bt (0),
0, if z ∈ Bt (0).

(4.23)

Lemma 4.7 For any two points z1, z2 ∈ B1(0), we have
∫ 1

0

∣

∣

∣X√
t (z1) − X√

t (z2)
∣

∣

∣ dt ≤ 3

2
|z1 − z2|(|z1| + |z2|). (4.24)

Proof W.l.o.g., we assume that |z1| ≥ |z2| > 0. Observe that
∫ 1

0

∣

∣

∣X√
t (z1) − X√

t (z2)
∣

∣

∣ dt ≤
∣

∣

∣

∣

z1
|z1| − z2

|z2|
∣

∣

∣

∣

|z2|2 + (|z1|2 − |z2|2). (4.25)

Recalling (4.7), we have
∣

∣

∣

∣

z1
|z1| − z2

|z2|
∣

∣

∣

∣

|z2|2 ≤ |z1 − z2||z2| ≤ 1

2
|z1 − z2|(|z1| + |z2|). (4.26)

Combining this with (4.8) proves the lemma. ��
With this lemma at hand, the proofs of Theorems 4.1 and 4.6 are very similar. We omit

the details but mention the following analogue of Lemma 4.4.

Lemma 4.8 Let s : Eor → U (1) be a signature of G and f : V → C be a nonzero function.
Then there exists t ′ ∈ [0,maxu∈V | f (u)|2] such that

φs
μ(V f (

√
t ′)) ≤ 3

2

√

2dμRs
μ( f ). (4.27)

Remark 4.9 We notice that the inequality (4.22) for � = U (1) overlaps with a Cheeger
inequality for a connection Laplacian of G discussed by Bandeira, Singer and Spielman
[4] to solve a partial synchronization problem. The connection Laplacian L is defined for
a simple graph G where a matrix Ouv ∈ O(l) is assigned to each (u, v) ∈ Eor such that
Ovu = (Ouv)

−1. For any vector-valued function f : V → R
l and any vertex u ∈ V , we then

have

L f (u) := 1

du

∑

v,v∼u

wuv( f (u) − Ouv f (v)) ∈ R
l . (4.28)

For a graph G with signature s : Eor → U (1) we consider the particular positive measure μ

on V defined as μ(u) := du and rewrite the value suv := auv + ibuv ∈ U (1) for each
(u, v) ∈ Eor as

(

auv −buv

buv auv

)

∈ SO(2). (4.29)

If we also rewrite a complex valued function f := f1 + i f2 as an R
2-valued function

f := ( f1, f2)T , the discretemagnetic Laplacian�s
μ translates into a connection LaplacianLs

with eigenvalues

0 ≤ λ1(�
s
μ) = λ1(�

s
μ) ≤ · · · ≤ λN (�s

μ) = λN (�s
μ). (4.30)

123



Frustration index and Cheeger inequalities for discrete… 4177

Thus, each eigenvalue λi (�
s
μ) of �s

μ is an eigenvalue of Ls with doubled multiplicity. If we
denote the Euclidean norm in R

l by ‖ · ‖, Bandeira, Singer and Spielman define a (partial)
�1-frustration constant as

η∗
G,1 := min

τ :V→Sl−1∪{0}

∑

u,v∈V wuv‖τ(u) − Ouvτ (v)‖
∑

u∈V du‖τ(u)‖ , (4.31)

and prove that
λ1(L) ≤ η∗

G,1 ≤ √

10λ1(L). (4.32)

If we assign elements of SO(2) to edges of G (instead of O(2)), we observe that

η∗
G,1 = 2hs1(μ), and λ1(Ls) = λ1(�

s
μ). (4.33)

Hence, inequality (4.32) leads to inequality (4.22). Finally, Bandeira, Singer and Spielman
have a refined analysis for (4.24) that improves the constant 3/2 in (4.24) and (4.22) to

√
5/2,

[4, Appendix A].

A direct corollary of Theorems 4.1 and 4.6 as well as Proposition 3.7 is the following
characterization of the case that the first eigenvalue vanishes.

Corollary 4.10 λ1(�
s
μ) = 0 if and only if the underlying graph has a balanced connected

component.

We remark that Corollary 4.10 can also be easily derived by the min–max principle (2.8).

5 Spectral clustering via lens spaces and complex projective spaces

In this section, we prove the following higher order Cheeger inequalities.

Theorem 5.1 There exists an absolute constant C > 0 such that for any finite graph G with
signature s and all n ∈ [N ], we have

1

2
λn(�

s
μ) ≤ hsn(μ) ≤ Cn3

√

dμλn(�s
μ). (5.1)

Note that in Theorem 5.1 the signature group � can be either S1k or U (1).
The upper bound of hsn(μ) in (5.1) is the essential part of Theorem 5.1 and its proof relies

on the development of a proper spectral clustering algorithm for the operator �s
μ. In other

words, we aim to find an n-subpartition {Vp}[n] with small constants φs
μ(Vp), based on the

information contained in the eigenfunctions of the operator �s
μ.

Let fi be an orthonormal family of eigenfunctions corresponding to λi (�
s
μ) for i ∈ [n].

We consider the following map:

F : V → C
n, F(u) = ( f1(u), f2(u), . . . , fn(u)). (5.2)

Since λn(�
s
μ) = Rs

μ( fn), the Rayleigh quotient of F is also bounded by λn(�
s
μ):

Rs
μ(F) :=

∑

{u,v}∈E wuv‖F(u) − suvF(v)‖2
∑

u∈V μ(u)‖F(u)‖2

=
∑

p∈[n]
∑

{u,v}∈E wuv| f p(u) − suv f p(v)|2
∑

p∈[n]
∑

u∈V μ(u)| f p(u)|2
≤ λn(�

s
μ), (5.3)
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where ‖ · ‖ stands for the standard Hermitian norm in C
n . Our goal is to construct n maps

�p : V → C
n , p ∈ [n], with pairwise disjoint supports such that

(1) each �p can be viewed as a localization of F , i.e., �p is the product of F and a cut-off
function η : V → R (see 5.13 below),

(2) each Rayleigh quotient satisfiesRs
μ(�p) ≤ C(n)Rs

μ(F), where C(n) is a constant only
depending on n.

Then, applying Lemmas 4.4 and 4.8 will finish the proof.
This strategy is adapted from the proof of the higher order Cheeger inequalities for

unsigned graphs due to Lee et al. [28,29]. A critical new point here is to find a proper
metric on the space of points {F(u)|u ∈ V } ⊂ C

n for the spectral clustering algorithm. In
other words, we need a proper metric to localize the map F . The original algorithm in [28,29]
used a spherical metric. The second author [32] studied a spectral clustering via metrics on
real projective spaces to prove higher order dual Cheeger inequalities for unsigned graphs.
Later in [3], the above two algorithms and, hence, the corresponding two kinds of inequal-
ities, were unified in the framework of Harary’s signed graphs, i.e., graphs with signatures
s : Eor → {+1,−1}. In particular, the metrics on real projective spaces were shown to be the
proper metrics for clustering in the framework of signed graphs. In our current more general
setting of graphs with signatures s : Eor → �, where � = S1k or � = U (1), the new metrics
will be defined on lens spaces and complex projective spaces.

5.1 Lens spaces and complex projective spaces

In this subsection, we provide metrics of lens spaces and complex projective spaces for the
spectral clustering algorithms in the case of � = S1k and � = U (1), respectively. Both lens
spaces and complex projective spaces are important objects in geometry and topology. See,
e.g., [26, Chapter 5] for details about these spaces.

Let S2n−1 := {z ∈ C
n | ‖z‖ = 1} be the unit sphere in the space C

n . Then � ⊂ C acts
on S

2n−1 by scalar multiplication. For any two points z1, z2 ∈ S
2n−1 ⊂ C

n , we define the
following equivalence relation:

z1 ∼ z2 ⇔ ∃ γ ∈ � such that z1 = γ z2. (5.4)

For � = S1k , the corresponding quotient space S
2n−1/� is the lens space L(k; 1, . . . , 1),

while for � = U (1), the quotient space S
2n−1/� is the complex projective space CPn−1.

Let [z] denote the equivalence class of z ∈ S
2n−1. We consider the following metric on

S
2n−1/�:

d([z1], [z2]) := min
γ∈�

‖z1 − γ z2‖. (5.5)

The space S
2n−1/� can also be endowed with a distance dquot which is induced from

the standard Riemannian metric on S
2n−1 ⊂ R

2n . This induced metric has positive Ricci
curvature. If � = S1k , the sectional curvature of this metric is constant equal to 1, and
if � = U (1), this metric is the well-known Fubini-Study metric. The two metrics d and
dquot on S

2n−1/� are equivalent, i.e., there exist two constants c1, c2 > 0 such that for all
[z1], [z2] ∈ S2n−1/�,

c1dquot ([z1], [z2]) ≤ d([z1], [z2]) ≤ c2dquot ([z1], [z2]). (5.6)

Recall the concept of the metric doubling constant ρX of a metric space (X, dX). This
constant is the infimum of all numbers ρ such that every ball B in X can be covered by ρ

balls of half the radius of B.
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Proposition 5.2 The metric doubling constant ρ� of (S2n−1/�, d) satisfies

log2 ρ� ≤ Cn, (5.7)

where C is an absolute constant.

Proof By equivalence (5.6), we only need to consider the metric space (S2n−1/�,

dquot ). Since S2n−1/� with its standard metric has nonnegative Ricci curvature, the Bishop–
Gromov comparison theorem guarantees

vol(Br ([z1]))
vol(Br/2([z1])) ≤ C̄n, (5.8)

for some absolute constant C̄ . (Note that the real dimension of the lens space is 2n − 1 and
of the complex projective space is 2n − 2.) A standard argument implies now the claim of
the proposition. For details see, e.g., [8, p. 67] or [32, Section 2.2]. ��

Themetric d on S2n−1/� induces a pseudometric on the spaceCn \{0}, which—by abuse
of notation—will again be denoted by d:

d(z1, z2) := d

([

z1
‖z1‖

]

,

[

z2
‖z2‖

])

. (5.9)

The following obvious property is the reason why we use the metric d on S2n−1/� from
(5.5). This reason will become clear in the next Sect. 5.2.

Proposition 5.3 For every pair z1, z2 ∈ C
n \ {0} and every γ ∈ �, we have

d(z1, z2) = d(z1, γ z2). (5.10)

The considerations of the next two subsections prepare the ground for the study of the
Rayleigh quotient Rs

μ(F) of the map F : V → C
n defined in (5.2).

5.2 Localization of the map F

We endow the support VF := {u ∈ V |F(u) 
= 0} with the pseudo metric dF induced by d
via

dF (u, v) := d(F(u), F(v)). (5.11)

Given a subset S ⊆ V and ε > 0, we first define a cut-off function η : V → R by

η(u) :=
{

0, if F(u) = 0,

max{0, 1 − 1
ε
dF (u, S ∩ VF )}, otherwise

(5.12)

and then localize F via η as
� := ηF : V → C

n . (5.13)

Note that the ε-neighborhood Nε(S ∩ VF , dF ) := {u ∈ V |dF (u, S ∩ VF ) < ε} of S ∩ VF

contains the support of the map �.
In the next lemma, GF = (VF , EF ) denotes the induced subgraph on VF of G.

Lemma 5.4 If {u, v} ∈ EF and ‖F(v)‖ ≤ ‖F(u)‖ then

d(F(u), F(v))‖F(v)‖ ≤ ‖F(u) − suvF(v)‖. (5.14)

123



4180 C. Lange et al.

Proof Observe that we only need to prove

d(F(u), F(v))‖F(v)‖ ≤ ‖F(u) − F(v)‖ (5.15)

for any pair of points F(u), F(v) ∈ C
n \{0}with ‖F(v)‖ ≤ ‖F(u)‖: we can replace F(v) in

(5.15) by suvF(v) and use Proposition 5.3 to obtain (5.14). By the definition of the metric d ,
we obtain (5.15) as follows:

d(F(u), F(v))‖F(v)‖ ≤
∥

∥

∥

∥

F(u)

‖F(u)‖ − F(v)

‖F(v)‖
∥

∥

∥

∥

‖F(v)‖ ≤ ‖F(u) − F(v)‖,

where we used the estimate (4.7) for the latter inequality. ��
Lemma 5.4 enables us to prove the following result.

Lemma 5.5 For any {u, v} ∈ E, we have

‖�(u) − suv�(v)‖ ≤
(

1 + 1

ε

)

‖F(u) − suvF(v)‖. (5.16)

Proof If at least one of F(u) and F(v) is equal to zero, then the estimate (5.16) holds
trivially. Hence, we suppose that u, v ∈ VF . W.l.o.g., we can assume that ‖F(u)‖ ≤ ‖F(v)‖
and calculate

‖�(u) − suv�(v)‖ = ‖η(u)F(u) − suvη(v)F(v)‖
≤ |η(u)| · ‖F(u) − suvF(v)‖ + |η(u) − η(v)| · ‖F(v)‖
≤ ‖F(u) − suvF(v)‖ + dF (u, v)‖F(v)‖

ε
.

Applying Lemma 5.4 completes the proof. ��
Note that the inequality (5.16) is useful for the estimate of the numerator of the Rayleigh

quotient of �.

5.3 Decomposition of the underlying space via orthonormal functions

For later purposes, we work on a general measure space (V, μ) in this subsection, where V
is a topological space and μ is a Borel measure. Two particular cases we have in mind are
a vertex set V of a finite graph with a measure μ : V → R

+, and a closed Riemannian
manifold with its Riemannian volume measure. We will apply the results in this subsection
to the latter case in Sect. 7.

On (V, μ), we further assume that there exist n measurable functions

f1, f2, . . . , fn : V → C,

which are orthonormal, i.e., for any i, j ∈ [n],

〈 fi , f j 〉 :=
∫

V
fi f j dμ = δi j .

Then the map F : V → C
n is given accordingly as in (5.2).

We consider the measure μF on V given by

dμF = ‖F‖2dμ.
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For any two points x, y in VF := {x ∈ V : F(x) 
= 0}, we have the distance between them

dF (x, y) := min
γ∈�

∥

∥

∥

∥

F(x)

‖F(x)‖ − γ
F(y)

‖F(y)‖
∥

∥

∥

∥

. (5.17)

The main result of this subsection is the following theorem.

Theorem 5.6 Let (VF , dF , μF ) be as above. There exist an absolute constant C0 and a
nontrivial n-subpartition {Ti }[n] of VF such that

(i) dF (Tp, Tq) ≥ 2
C0n5/2

, for all p, q ∈ [n], p 
= q,

(ii) μF (Tp) ≥ 1
2nμF (VF ), for all p ∈ [n].

The difficulty for the construction of the above n-subpartition is to achieve the prop-
erty (i i). That is, we have to find a subpartition which possesses large enoughmeasure.When

dF (x, y) is given by the spherical distance
∥

∥

∥

F(x)
‖F(x)‖ − F(y)

‖F(y)‖
∥

∥

∥, Theorem 5.6 was proved in

[28,29, Lemma 3.5]. In our situation, we have to deal with the metrics, given in (5.17), of
lens spaces or complex projective spaces. We refer the reader to [18] for another interesting
decomposition result.

An important ingredient of the proof is the following lemma derived from the random
partition theory [20,30]. Note that a partition of a set A can also be considered as a map
P : A → 2A, where x ∈ A is mapped to the unique set P(x) of the partition that contains x .
A random partition P of A is a probability measure ν on a set of partitions of A. Then P(x)
is understood as a random variable from the probability space to subsets of A containing x .

Lemma 5.7 Let A be a subset of the metric space (S2n−1/�, d) (for d recall 5.5). Then for
every r > 0 and δ ∈ (0, 1), there exists a random partition P of A, i.e., a distribution ν over
partitions of A such that

(i) diam(S) ≤ r for any S in every partition P in the support of ν,
(ii) Pν

[

Br/α(x) ⊆ P(x)
] ≥ 1 − δ for all x ∈ A, where α = 32 log2(ρ�)/δ.

We refer to [20, Theorem 3.2] and [30, Lemma 3.11] for the proof, see also [32, Theorem
2.4]. For convenience, we describe briefly the construction of the random partition claimed
in Lemma 5.7. Let {xi }[m] be a r/4-net of S2n−1/�, that is, d(xi , x j ) ≥ r/4, for any i 
= j ,
and S

2n−1/� = ⋃

i∈[m] Br/4(xi ). Since (S2n−1/�, d) is compact, m is a finite number. For
R ∈ [r/4, r/2], we construct a partition of (S2n−1/�, d) as follows. A permutation σ of the
set [m] provides an order for all points in the net which is used to define, for every i ∈ [m],
SR,σ
i := {

x ∈ S
2n−1/� | x ∈ BR(xi ) and σ(i) < σ( j) for all j ∈ [m] with x ∈ BR(x j )

}

.

That is, we have x ∈ SR,σ
i if σ(i) is the smallest number for which x is contained in BR(xi ).

Then PR,σ = {SR,σ
i }[m] constitutes a partition of S

2n−1/�. Now let σ be a uniformly
random permutation of [m], and R be chosen uniformly random from the interval [r/4, r/2].
These choices define a random partition P . If we choose R uniformly from a fine enough
discretization of the interval [r/4, r/2], we can make P to be finitely supported. In fact, this
random partition fulfills the two properties in Lemma 5.7.

Remark 5.8 Lemma 5.7 holds true for any metric space. In particular, the finiteness of the
r/4-net is not necessary. This is shown in [30, Lemma 3.11].

Lemma 5.7 leads to the following result. Note that, the property (i i) in Lemma 5.7 ensures
the existence of at least one subpartitionwhich captures a large fraction of the wholemeasure.
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Lemma 5.9 On (VF , dF , μF ), for any r > 0 and δ ∈ (0, 1), there exists a nontrivial
subpartition {̂Si }[m] such that

(i) diam(̂Si , dF ) ≤ r for any i ∈ [m],
(ii) dF (̂Si ,̂S j ) ≥ 2r/α, where α = 32 log2(ρ�)/δ,
(iii)

∑

i∈[m] μF (̂Si ) ≥ (1 − δ)μF (VF ).

Proof Let P be the random partition on VF induced from the one constructed in Lemma 5.7
via the map F . Let IBr/α(x)⊆P(x) be the indicator function for the event that Br/α(x) ⊆ P(x)
happens. Then we obtain from Lemma 5.7 (i i)

EP
(∫

V
IBr/α(x)⊆P(x)dμF (x)

)

≥ (1 − δ)μF (V) (5.18)

by interchanging the expectation and the integral. On the other hand, we have

EP
(∫

V
IBr/α(x)⊆P(x)dμF (x)

)

=
∑

P∈P

∑

S∈P

∫

S
IBr/α(x)⊆P(x)dμF (x)Pν(P)

=
∑

P∈P

∑

S∈P

∫

̂S
dμF (x)Pν(P), (5.19)

where ̂S := {x ∈ S : Br/α(x) ⊆ S}. Hence, there exists a partition P = {Si }[m] of VF for
some natural number m such that

∑

i∈[m]
μF (̂Si ) ≥ (1 − δ)μF (V). (5.20)

This completes the proof. ��
In order to prove Theorem 5.6, we also need the following result.

Lemma 5.10 If a subset S ⊆ V satisfies diam(S ∩ VF , dF ) ≤ r for some r ∈ (0, 1), then

μF (S) ≤ 1

n(1 − r2)
μF (V). (5.21)

Proof W.l.o.g., we can assume that S ⊆ VF . Using the fact that f1, . . . , fn are orthonormal,
we obtain the following two properties. First, we have

μF (V) =
∫

V

∑

p∈[n]
| f p|2dμ = n. (5.22)

Second, we have for any z := (z1, z2, . . . , zn) ∈ C
n with ‖z‖ = 1,

∫

V
|〈z, F(x)〉|2 dμ(x) =

∫

V

∑

p,q∈[n]
z pzq f p(x) fq(x)dμ(x) = 1. (5.23)

Combining (5.22) and (5.23), we conclude for any y ∈ S,

μF (V)

n
=

∫

V

∣

∣

∣

∣

〈

F(y)

‖F(y)‖ , F(x)

〉∣

∣

∣

∣

2

dμ(x)

=
∫

V

∣

∣

∣

∣

〈

F(y)

‖F(y)‖ ,
F(x)

‖F(x)‖
〉∣

∣

∣

∣

2

dμF (x). (5.24)
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Since |z|2 ≥ (z + z)2 /4 for each z ∈ C, we obtain that for any γ ∈ �:
∣

∣

∣

∣

〈

F(y)

‖F(y)‖ ,
F(x)

‖F(x)‖
〉∣

∣

∣

∣

2

=
∣

∣

∣

∣

〈

F(y)

‖F(y)‖ , γ
F(x)

‖F(x)‖
〉∣

∣

∣

∣

2

≥ 1

4

(

2 −
∥

∥

∥

∥

F(y)

‖F(y)‖ − γ
F(x)

‖F(x)‖
∥

∥

∥

∥

2
)2

. (5.25)

Recalling (5.17), the definition of dF , we arrive at

μF (V)

n
≥

∫

S

(

1 − 1

2
dF (y, x)2

)2

dμF (x) ≥ (1 − r2)μF (S). (5.26)

��
Proof of Theorem 5.6 With Lemma 5.9 and 5.10 at hand, Theorem 5.6 can be proved simi-
larly as [28,29, Lemma 3.5], see also [32, Lemma 6.2]. For convenience, we recall it here.
Let {̂Si }[m] be the subpartition constructed in Lemma 5.9. Then by Lemma 5.10, we have for
each i ∈ [m],

μF (̂Si ) ≤ 1

n(1 − r2)
μF (V). (5.27)

We apply the following procedure to {̂Si }[m]. If we can find two sets of the subpartition, say
̂Si and ̂S j , such that

μF (̂Si ) ≤ 1

2n
μF (V), μF (̂S j ) ≤ 1

2n
μF (V),

then replace them bŷSi ∪̂S j . Thus, when we stop, we obtain the sets T1, T2, . . . , Tl for some
number l, such that

μF (Ti ) ≤ 1

n(1 − r2)
μF (V), ∀ i ∈ [l],

and

μF (Ti ) ≥ 1

2n
μF (V), ∀ i ∈ [l − 1].

Setting r = 1
3
√
n
and δ = 1

4n , we check that

(n − 1) · 1

n(1 − r2)
< 1 − δ − 1

2n
. (5.28)

This implies that l ≥ n. Moreover, if we redefine Tn := ⋃l
j=n Tj , we have

μF (Tn) ≥ 1

2n
μF (V). (5.29)

Thus the subpartition {Ti }[n] satisfies the property (i i). One can then verify the property (i)
by Proposition 5.2 and Lemma 5.9. ��
5.4 Proof of Theorem 5.1

We first prove the upper bound of (5.1). Let {Ti }[n] be the subpartition of VF obtained from
Theorem 5.6. Choosing ε = 1

C0n5/2
, we define the cut-off functions ηp as in (5.12) (replacing

the set S there by Tp). Then the maps �p := ηpF , p ∈ [n], have pairwise disjoint support.
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Recalling that �p|Tp = F |Tp , and applying Lemma 5.5 as well as fact (i i) of Theorem 5.6,
we obtain that for any p ∈ [n],

Rs
μ(�p) ≤

(

1 + 1

ε

)2
∑

{u,v}∈E wuv‖F(u) − suvF(v)‖2
∑

u∈Tp μ(u)‖F(u)‖2
≤ 2n(1 + C0n

5/2)2Rs
μ(F) ≤ Cn6Rs

μ(F), (5.30)

where C is an absolute constant. For every p ∈ [n], the map �p has at least one coordinate
function ψp that satisfies Rs

μ(ψp) ≤ Rs
μ(�p). In particular, we find functions ψp , p ∈ [n],

with pairwise disjoint support and an absolute constant C such that

Rs
μ(ψp) ≤ Cn6Rs

μ(F). (5.31)

Now inequality (5.3) and Lemma 4.4 for � = S1k or Lemma 4.8 for � = U (1) yield the
desired upper bound of (5.1).

Nowwe prove the lower bound of (5.1). Suppose that the n-way Cheeger constant hsn(μ) is
achieved by the nontrivial n-subpartition {˜Vp}[n] and that the function τ̃p : ˜Vp → � achieves
the frustration index ιs(˜Vp) for each p ∈ [n]. Moreover, consider functions ˜f p : V → C

with pairwise disjoint support given for p ∈ [n] by:

˜f p(u) :=
{

τ̃p(u), if u ∈ ˜Vp;
0, otherwise.

(5.32)

By the min–max principle (2.8), we know

λn(�
s
μ) ≤ max

a1,...,an
Rs

μ(˜fa), (5.33)

where the maximum is taken over all complex numbers a1, . . . , an ∈ C such that the linear
combination ˜fa := ∑

p∈[n] ap ˜f p of ˜f1, . . . , ˜fn is nontrivial. This implies

∑

u∈V
μ(u)|˜fa(u)|2 =

∑

p∈[n]
|ap|2volμ(˜Vp). (5.34)

We now want to relate (5.33) and (5.34) to the frustration index and the boundary measure.
To that direction, we set Buv := wuv|˜fa(u) − suv

˜fa(v)|2 and obtain

∑

{u,v}∈E
Buv = 1

2

∑

p,q∈[n]

∑

u∈˜Vp

v∈˜Vq

Buv +
∑

p∈[n]

∑

u∈˜Vp
v∈V ∗

Buv + 1

2

∑

u,v∈V ∗
Buv,

where V ∗ =
(

⋃

p∈[n] ˜Vp

)c
. For u, v ∈ ˜Vp , p ∈ [n], we have

|˜fa(u) − suv
˜fa(v)|2 = |ap|2 · |̃τp(u) − suvτ̃p(v)|2, (5.35)

while for u ∈ ˜Vp and v ∈ ˜Vq with p, q ∈ [n] and p 
= q we have

|˜fa(u) − suv
˜fa(v)|2 = |ap τ̃p(u) − suvaq τ̃q(v)|2 ≤ 2(|ap|2 + |aq |2). (5.36)
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Now the definitions of the frustration index and of the boundary measure yield

∑

{u,v}∈E
Buv ≤

∑

p∈[n]
|ap|2

⎛

⎝2ιs(˜Vp) + 2
∣

∣E(˜Vp,
⋃

q 
=p

˜Vq)
∣

∣ + ∣

∣E(˜Vp, V
∗)
∣

∣

⎞

⎠

≤ 2
∑

p∈[n]
|ap|2

(

ιs(˜Vp) +
∣

∣

∣E(˜Vp, ˜V
c
p )

∣

∣

∣

)

. (5.37)

If we now combine the estimates (5.33), (5.34), and (5.37), we arrive at

λn(�
s
μ) ≤ 2 max

p∈[n] φ
s
μ(˜Vp) = 2hsn(μ). (5.38)

6 Application: spectral clustering on oriented graphs and mixed graphs

In this section, we discuss an application of the Cheeger inequalities (and their proofs) in
the case � = S1k . These results indicate algorithms to find interesting substructures in an
oriented graph or a mixed graph.

6.1 Generalization of Harary’s balance theorem

Let us first discuss an equivalent definition of the Cheeger constant hs1(μ) if � = S1k . For
a nonempty subset ˜V of V , let ˜V0, . . . , ˜Vk−1 be an ordered k-partition of ˜V , that is, ˜Vi are
pairwise disjoint sets and their union is ˜V . In contrast to a nontrivial k-partition, all but one ˜Vi
may be empty. We write Vk(˜V ) for an ordered k-partition ˜V0, . . . , ˜Vk−1 of ˜V .

Given an ordered k-partition Vk(˜V ) of ˜V ⊆ V , we define, for 0 ≤ i, j ≤ k − 1 and l ∈ Z,

|El(˜Vi , ˜Vj )| :=
∑

u∈˜Vi

∑

v∈˜Vj s.t.
suv=ξ l

wuv (6.1)

as the (weighted) cardinality of oriented edgeswith signature ξ l that begin in ˜Vi and terminate
in ˜Vj .

Definition 6.1 Let G be a finite graph with signature s : Eor → S1k . For any nonempty
subset ˜V of V , the k-partiteness ratio of an ordered k-partition Vk(˜V ) of ˜V is defined as

βs
μ

(

Vk(˜V )
) =

1
2

∑k−1
i, j=0

∑k−1
l=1 |1 − ξ l | · |Ei− j+l(˜Vi , ˜Vj )| + |E(˜V , ˜V c)|

volμ(˜V )
. (6.2)

The minimal k-partiteness ratio βs
μ(˜V , k) of ˜V is defined as

βs
μ(˜V , k) := min

Vk (˜V )
βs

μ

(

Vk(˜V )
)

, (6.3)

where the minimum is taken over all ordered k-partitions Vk(˜V ) of ˜V .

The next goal is to prove that the Cheeger constant for � = S1k can also be expressed in
terms of the k-partiteness ratio, see Corollary 6.3 below.

Lemma 6.2 Let G be a finite graph with signature s : Eor → S1k . For any nonempty ˜V ⊆ V ,
we have

φs
μ(˜V ) = βs

μ(˜V , k). (6.4)
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Proof For any function τ : V1 → S1k , we have a natural k-partition Vk(˜V ) of ˜V given by

˜Vi := {u ∈ ˜V | τ(u) = ξ i } (6.5)

for i = 0, 1, . . . , k − 1. We can check that

∑

{u,v}∈˜E

wuv|τ(u) − suvτ (v)| = 1

2

k−1
∑

i, j=0

k−1
∑

l=1

|1 − ξ l | · |Ei− j+l(˜Vi , ˜Vj )|. (6.6)

Observe that the correspondence between the set of S1k -valued functions on ˜V and the set of
ordered k-partitions of ˜V given by (6.5) is one-to-one. Hence, we obtain by definition of the
frustration index

ιs(˜V ) = min
Vk (˜V )

1

2

k−1
∑

i, j=0

k−1
∑

l=1

|1 − ξ l | · |Ei− j+l(˜Vi , ˜Vj )|. (6.7)

This proves the lemma. ��
Corollary 6.3 Let G be a finite graph with signature s : Eor → S1k . Then

hs1(μ) = min
∅
=˜V⊆V

βs
μ(˜V , k). (6.8)

This enables us to prove the following structural balance theorem.

Theorem 6.4 Let G be a finite connected graph with a signature s : Eor → S1k . Then the
following statements are equivalent:

(i) The signature s is balanced.
(ii) There exists an ordered k-partition V0, . . . , Vk−1 of V such that all edges that begin

in Vi and terminate in Vj have signature ξ i− j for all 0 ≤ i, j ≤ k − 1.

Proof Recall that hs1(μ) = 0 if and only if the signature is balanced. The theorem is then a
direct consequence of (6.8). ��
Remark 6.5 Harary’s balance theorem [21] states that a signature s : Eor → {±1} is bal-
anced if and only if there exists a bipartition V0, V1 of V such that an edge has signature −1
if and only if it has one end point in V0 and one in V1. Theorem 6.4 is a natural generalization
of Harary’s theorem.

In Figure 1, we schematically illustrate the situation of Theorem 6.4 if k ∈ {3, 4}. The
class of edges that begin and terminate in Vi are represented by one unoriented edge labeled
by ξ0 = 1. For distinct i, j , the class of edges with endpoints in Vi and Vj are represented
by an oriented edge that begins in Vi and terminates in Vj with i < j . These oriented edges
are labeled by ξ i− j .

6.2 Finding a good substructure

The proof of Cheeger’s inequality in Sect. 4, especially Lemma 4.4, actually indicates an
algorithm to find a subset ˜V ⊆ V with a constant φs

μ(˜V ) close to the Cheeger constant
hs1(μ) of G. In other words, φs

μ(˜V ) is not larger than the upper bound for hs1(μ) given in
Cheeger’s inequality (Theorem 4.1): for every nonzero function f : V → C, Lemma 4.4
provides a nonempty subset ˜V := V f (

√
t ′) ⊆ V satisfying (4.14). If we choose f to be the
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Fig. 1 Schematic illustration of Theorem 6.4 for k = 3 (left) and k = 4 (right)

eigenfunction corresponding to λ1(�
s
μ), we see that ˜V is a nonempty subset of V with the

required property.
Now consider a finite graphG with a k-cyclic signature s. From Lemma 6.2, we know that

φs
μ(˜V ) agrees with the minimum of the k-partiteness ratios of all ordered k-partitions Vk(˜V ).

Having found a nonempty subset ˜V := V f (
√
t ′) ⊆ V satisfying (4.14), we explain in this

subsection, how to find a finer substructure of ˜V , namely an ordered k-partition Vk(˜V ) with
a k-partiteness ratio that is at most the upper bound given in (4.14). The precise statement is
given in Proposition 6.6 below.

Recall the notation Qθ
j and V f (t) of (4.2) and (4.10), respectively. Given t ∈ [0, 1] and

θ ∈ [0, 2π), we define an ordered k-partition Vk(V f (
√
t, θ)) of V f (

√
t, θ) ⊆ V by

V f
j (

√
t, θ) := {u ∈ V | √

t ≤ | f (u)| and f (u) ∈ Qθ
j } (6.9)

for 0 ≤ j ≤ k − 1 and modify Lemma 4.4 into the following result.

Proposition 6.6 Let s : Eor → S1k be a signature of G. For any nonzero function f : V → C

with maxu∈V | f (u)| = 1, there exist t ′ ∈ [0, 1] and θ ′ ∈ [0, 2π) such that

βs
μ

(

Vk(V
f (

√
t ′, θ ′)

)

≤ 2
√

2dμRs
μ( f ). (6.10)

Proof Instead of inequality (4.12), we consider the equality

1

2π

∫ 2π

0

∫ 1

0

∑

{u,v}∈E
wuv

∣

∣

∣Y√
t,θ ( f (u)) − suvY√

t,θ ( f (v))

∣

∣

∣ dt dθ

= 1

2π

∫ 2π

0

∫ 1

0

⎛

⎝

1

2

k−1
∑

i, j=0

k−1
∑

l=1

∣

∣

∣1 − ξ l
∣

∣

∣ ·
∣

∣

∣Ei− j+l(Wi ,Wj )

∣

∣

∣ + ∣

∣E(˜V , ˜V c)
∣

∣

⎞

⎠ dt dθ.

where Wj := V f
j (

√
t, θ) and ˜V := V f (

√
t). The remaining proof follows along similar

arguments as the ones given in the proof of Lemma 4.4. ��
This Proposition provides the following spectral clustering algorithm to find an ordered

k-subpartition of V with a k-partiteness ratio bounded above by the upper bound in Cheeger’s
inequality. Firstly, find the eigenfunction f1 : V → C corresponding to λ1(�

s
μ). For con-

venience, we can normalize f1 such that maxu∈V | f (u)| = 1. Secondly, find the required
ordered k-subpartion from the sets (6.9) by running over fine enough discretizations of the
parameters t and θ .
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Fig. 2 Ideal substructures of partially oriented graphs in case of k = 3 (left) k = 4 (right) that are approximated
in Sect. 6.3

6.3 Applications to partially oriented graphs

In this subsection, we consider mixed graphs instead of undirected graphs which are studied
in scheduling problems, for example [45,52]. Recall that a mixed graph is a graph G =
(V, EU ∪ EO) that consists of unoriented edges (the set EU ) as well as oriented edges
(the set EO ) such that no two vertices u, v ∈ V form more than one edge of EU ∪ EO .
As mentioned in the introduction, we call such a graph also partially oriented. Clearly, a
partially oriented graph is an oriented graph if and only if EU = ∅. The algorithm discussed
in the previous subsection has interesting applications for partially oriented graphs.

Given a partially oriented graphG = (V, EU ∪EO ) and a natural number k, we nowwant
to find a nonempty subset ˜V ⊆ V and an ordered k-subpartitionVk(˜V ) = {V0, V1, . . . , Vk−1}
of ˜V which approximates the following ideal substructure:

(i) The subset ˜V has empty boundary.
(ii) An edge e ∈ EU ∪ EO with endpoints u, v ∈ Vi for some 0 ≤ i ≤ k − 1 is unoriented,

that is, e ∈ EU .
(iii) The partially oriented subgraph G

˜V induced by ˜V has the following cyclic property:
the only oriented edges of G

˜V begin in Vi and end in Vi−1 for some 0 ≤ i ≤ k − 1
where we identify V−1 and Vk−1.

Such ideal substructures are schematically illustrated in Figure 2 for k = 3 and k = 4.
Our approach to this problem is to construct an unoriented graph G = (V, E) with a

k-cyclic signature s from a given partially oriented graphG = (V, EU ∪EO ).More precisely,
we consider the new edge set E := EU ∪ EO where the orientations in EO are dropped and
define a signature s : Eor → S1k by assigning to every edge {u, v} ∈ E the value

suv :=

⎧

⎪

⎨

⎪

⎩

1, if {u, v} ∈ EU ;
ξ, if (u, v) ∈ EO ;
ξ−1 if (v, u) ∈ EO .

(6.11)

This construction to transform a connected partially oriented graph G is set up in such a
way that the signature is balanced if and only if G has the above ideal structure. Using the
eigenfunction of the eigenvalue λ1(�

s
μ), we apply the spectral clustering algorithm discussed

in the Sect. 6.2 to find a k-subpartition Vk(˜V ) of some ˜V ⊆ V with k-partiteness ratio
βs

μ(Vk(˜V )) at most the upper bound given in Cheeger’s inequality. Note that the k-partiteness
ratio can be viewed as a measure to quantify the quality of an approximation to the ideal case
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which is achieved if and only if βs
μ(Vk(˜V )) = 0. By Corollary 6.3, the k-partiteness ratio

βs
μ(Vk(˜V )) is bounded from below by the Cheeger constant hs1(μ).
We remark that in the special situation were we start with an oriented graph, the ordered k-

subpartition V0, V1, . . . , Vk−1 of V approximates an ideal substructure with no edges having
both endpoints in Vi for some 0 ≤ i ≤ k − 1.

These considerations can clearly be extended to obtain multi-way spectral clustering
algorithms. Combining the method here with the spectral clustering via metrics on lens
spaces in Sect. 5, we can find n subgraphs where each subgraph defines a sparse cut and
approximates an ideal substructure as described above.

7 Magnetic Laplacians on Riemannian manifolds

In this section, we transfer the ideas related to Cheeger constants and Cheeger inequalities
from discrete magnetic Laplacians to the Riemannian setting.

Let M be a closed connected Riemannian manifold. We consider a real smooth 1-form α

and the corresponding magnetic Laplacian �α on M , defined as

�α = D∗D, (7.1)

where the operator D := d + iα, d is the exterior differential, maps smooth complex valued
functions to smooth complex valued 1-forms and D∗ is the formal adjoint of D w.r.t. the
L2-inner product of functions and 1-forms:

∫

M
〈Df, η〉dx =

∫

M
f D∗ηdx . (7.2)

The 1-form α is called the magnetic potential. One can check that for any smooth function
f : M → C,

�α f := � f − 2i〈d f,α〉 + (

id∗α + |α|2) f, (7.3)

where d∗ , � := d∗d is the Laplace–Beltrami operator, 〈·, ·〉 the Hermitian inner product in
the cotangent bundle T ∗M induced by the Riemannian metric, and |α|2 := 〈α,α〉.

We recall some basic spectral properties of the magnetic Laplacian from [47] (see also
[43, Section 4]). The operator�α is essentially self-adjoint as an operator defined on smooth
complex valued functions (with compact support). Its self-adjoint extension is defined on a
dense subset of the Hilbert space L2(M,C) of complex valued square integrable functions
w.r.t the Riemannian measure. In the sequel, we will use the same notation for both, the
essentially self-adjoint operator and its closed self-adjoint extension. Since M is compact,
�α has only discrete spectrum, and the eigenvalues can be listed with multiplicity as follows
(see [47, Theorem 2.1])

0 ≤ λ1(�
α) ≤ λ2(�

α) ≤ · · · ↗ ∞. (7.4)

Due to (7.1), the corresponding Rayleigh quotient of a smooth function f : M → C is given
by

Rα( f ) :=
∫

M |(d + iα) f |2dx
∫

M | f |2dx . (7.5)

The min–max principle (2.8) still holds in this setting. In particular, we have

λ1(�
α) = inf

f ∈C∞(M,C)
s.t. f 
≡0

Rα( f ), (7.6)

123



4190 C. Lange et al.

where C∞(M,C) is the set of smooth complex valued functions.
ConsiderU (1) as a subset {z ∈ C | |z| = 1} of C and denote the set of smooth maps from

M to U (1) by C∞(M,U (1)). For τ ∈ C∞(M,U (1)), we then define by

ατ := dτ

iτ
(7.7)

a smooth 1-form. The setB := {ατ | τ ∈ C∞(M,U (1))} has the following characterization
due to Shigekawa, [47, Proposition 3.1 and Theorem 4.2]. Since aατ = ατa for a ∈ R and
ατ + ατ ′ = αττ ′ , B is in fact a real vector space.

Theorem 7.1 (Shigekawa) The following statements are equivalent:

(i) λ1(�
α) = 0;

(ii) α ∈ B;
(iii) dα = 0 and

∫

C α = 0 mod 2π , for any closed curve C in M.

This result can be compared with Corollary 4.10: the setB is comparable to the set of bal-
anced signatures in the discrete setting. Locally, we can find a smooth real-valued function θ

such that τ = eiθ and ατ = dθ .
In the discrete setting, Laplacians �s

μ with switching equivalent signatures are unitarily
equivalent by (2.11) while magnetic Laplacians �α are unitarily equivalent under gauge
transformations in the smooth setting. Recall that a gauge transformation

α �→ α + ατ (7.8)

is associated to any τ ∈ C∞(M,U (1)). We have ([47, Proposition 3.2])

τ�ατ = �α+ατ . (7.9)

In particular, if α ∈ B, then �α is unitarily equivalent to �. In other words, B is the set of
magnetic potentials which “can be gauged away”.

Definition 7.2 Let α be a magnetic potential on M . For any nonempty Borel subset� ⊆ M ,
the frustration index ια(�) of � is defined as

ια(�) = inf
τ∈C∞(�,U (1))

∫

�

|(d + iα)τ |dx = inf
η∈B�

∫

�

|η + α|dx, (7.10)

where B� := {ατ |τ ∈ C∞(�,U (1))}.
Clearly, the frustration index ια(�) is invariant under gauge transformations of the poten-

tial α. Roughly speaking, the frustration index measures how far the potential α is from the
set B�.

For any Borel subset � ⊆ M , we denote by vol(�) its Riemannian volume. Its boundary
measure area(∂�) is defined as

area(∂�) := lim inf
r→0

vol(�r ) − vol(�)

r
, (7.11)

where �r is the open r -neighborhood of �. Let us denote

φα(�) := ια(�) + area(∂�)

vol(�)
. (7.12)
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Definition 7.3 Let M be a closed Riemannian manifold with a magnetic potential α. The
n-way Cheeger constant hα

n is defined as

hα
n := inf{�p}[n]

max
p∈[n] φα(�p), (7.13)

where the infimum is taken over all n-subpartitions {�p}[n] of M with vol(�p) > 0 for every
p ∈ [n].

In particular, the Cheeger constant hα
1 vanishes if and only if α ∈ B. We prove the

following lower bound for the first eigenvalue λ1(�
α).

Theorem 7.4 Let α be a magnetic potential on a closed connected Riemannian manifold M.
Then we have

hα
1 ≤ 2

√

2λ1(�α). (7.14)

We first prove the following Lemma which is an analogue of Lemma 4.3.

Lemma 7.5 (Coarea inequality) Letα be amagnetic potential on M.For any nonzero smooth
function f : M → C, we have

∫ ∞

0

(

ια(� f (
√
t)) + area(∂� f (

√
t))

)

dt ≤ 2
√
2
∫

M
| f | · |(d + iα) f |dx, (7.15)

where we use the notation � f (
√
t) := {x ∈ M | √

t ≤ | f (x)|}.
Proof For convenience, we denote f0 := | f |. W.l.o.g., we assume that f0(x) > 0, for any
x ∈ M . Otherwise, we first consider integration over � f (ε) in the right hand side of (7.15),
ε > 0, and then let ε → 0.

For the function f , we have the following associated 1-form in B:

η f := α f
f0

. (7.16)

Locally, there is a smooth real-valued function θ such that f/ f0 = eiθ and η f = dθ .
Therefore, we have locally

|(d + iα) f | = |(d + iα)( f0e
iθ )| = |d f0 + i f0(dθ + α)|. (7.17)

This implies that
|(d + iα) f | = |d f0 + i f0(η f + α)|. (7.18)

Note that both d f0 and f0(η f + α) are real-valued 1-forms. We estimate

|(d + iα) f | =
√

|d f0|2 + | f0(η f + α)|2 ≥ 1√
2

(|d f0| + | f0(η f + α)|) . (7.19)

By the coarea formula, we have
∫

M
f0 |d f0| dx =

∫ ∞

0
t · area(∂� f0(t)) dt. (7.20)

We also have
∫

M
f 20 |η f + α| dx = 2

∫ ∞

0
t
∫

� f0 (t)
|η f + α| dx dt

≥
∫ ∞

0
t
∫

� f0 (t)
|η f + α| dx dt. (7.21)
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Combining (7.19), (7.20), and (7.21), we obtain
∫

M
| f | · |(d + iα) f |dx ≥ 1

2
√
2

∫ ∞

0
2t

(

area(∂� f (t)) +
∫

� f (t)
|η f + α|dx

)

dt

= 1

2
√
2

∫ ∞

0

(

area(∂� f (
√
t)) +

∫

� f (
√
t)

|η f + α|dx
)

dt

Recalling the definition of the frustration index (7.10), this proves the lemma. ��

Similarly as in Sect. 4 for the discrete setting, we derive the following lemma from the
coarea inequality, which is the continuous analogue of Lemma 4.8.

Lemma 7.6 Let α be a magnetic potential on M. For any nonzero smooth function
f : M → C, there exists t ′ ∈ [0,maxx∈M | f (x)|2] such that

φα(� f (
√
t ′)) ≤ 2

√

2Rα( f ). (7.22)

Proof First observe that there exists t ′ such that

φα(� f (
√
t ′)) ≤

∫ ∞
0

(

ια(� f (
√
t)) + area(∂� f (

√
t))

)

dt
∫ ∞
0 vol(� f (

√
t))dt

. (7.23)

Note that
∫

M | f (x)|2dx = ∫ ∞
0 vol(� f (

√
t))dt . Then the lemma follows from applying the

coarea inequality and Cauchy–Schwarz inequality. ��

Theorem 7.4 is proved by applying Lemma 7.6 to the corresponding eigenfunction of
λ1(�

α). We also have the following higher order Cheeger inequalities for the magnetic
Laplacian �α .

Theorem 7.7 There exists an absolute constant C > 0 such that for any closed connected
Riemannian manifold M with a magnetic potential α and n ∈ N, we have

hα
n ≤ Cn3

√

λn(�α). (7.24)

For the proof, first consider Lemma 7.8 below which is an analogue of Lemma 5.5. Let
F : M → C be the map given by

F(x) = ( f1(x), f2(x), . . . , fn(x)) ∈ C
n, (7.25)

where fi are orthonormal eigenfunctions that correspond to the eigenvalues λi (�
α) for

i ∈ [n]. The pseudometric dF on MF := {x ∈ M | F(x) 
= 0} is defined by (5.11) via

dF (x, y) := inf
γ∈U (1)

∥

∥

∥

∥

F(x)

‖F(x)‖ − γ
F(y)

‖F(y)‖
∥

∥

∥

∥

. (7.26)

For ε > 0, the cut-off function η from (5.12) is directly transferred to the manifold setting
and yields a localized function ηF .

Lemma 7.8 For almost every x ∈ M, we have

‖(d + iα)(ηF)(x)‖2 ≤ 2

(

1 + 4

ε2

)

‖(d + iα)F(x)‖2. (7.27)
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Proof If F(x) = 0, the estimate (7.27) follows directly from |η| ≤ 1. We therefore assume
F(x) 
= 0 in the following and set f p,0 := | f p| for every p ∈ [n]. Then there is a real-valued
function θp that is defined in a small neighborhood of x ∈ M such that f p = f p,0eiθp . We
now obtain at x

‖(d + iα)(ηF)‖2 =
∑

p∈[n]
|(d + iα)(η f p,0e

iθp )|2

=
∑

p∈[n]
| f p,0 dη + ηd f p,0 + i(η f p,0)(α + dθp)|2

≤
∑

p∈[n]

(

2 f 2p,0|dη|2 + 2|η|2|d f p,0|2 + | f p,0(α + dθp)|2
)

≤ 2|dη|2
∑

p∈[n]
f 2p,0 + 2

∑

p∈[n]
|d f p,0 + i f p,0(α + dθp)|2

= 2|dη|2‖F‖2 + 2‖(d + iα)F‖2. (7.28)

There exist a unit tangent vector σ ′(0) ∈ TxM such that

|dη(x)| = lim
t→0

|η(σ (t)) − η(σ (0))|
t

, (7.29)

where σ(t) := expx (tσ
′(0)) is the geodesic with σ(0) = x . Since we have

|η(σ (t)) − η(σ (0))| ≤ 1

ε
· dF (σ (t), σ (0)), (7.30)

we conclude

|dη(x)| · ‖F(x)‖ ≤ 1

ε
· lim
t→0

dF (σ (t), σ (0)) · ‖F(x)‖
t

. (7.31)

Using (7.26) and setting

γ (t) := ei
∫ t
0 〈α|σ(t),σ

′(t)〉dt , (7.32)

we obtain

dF (σ (t), σ (0))‖F(x)‖ ≤
∥

∥

∥

∥

γ (t)
F(σ (t))

‖F(σ (t))‖ − F(σ (0))

‖F(σ (0))‖
∥

∥

∥

∥

· ‖F(x)‖

=
∥

∥

∥

∥

G(t)

‖G(t)‖ − G(0)

‖G(0)‖
∥

∥

∥

∥

· ‖G(0)‖, (7.33)

where G(t) := γ (t)F(σ (t)). Now we can carry out similar estimates as in Lemma 5.4.
Although we do not know whether ‖G(0)‖ is smaller than ‖G(t)‖, we still obtain

∥

∥

∥

∥

G(t)

‖G(t)‖ − G(0)

‖G(0)‖
∥

∥

∥

∥

‖G(0)‖ ≤
∥

∥

∥

∥

‖G(0)‖
‖G(t)‖ · G(t) − G(t)

∥

∥

∥

∥

+ ‖G(t) − G(0)‖
≤ 2 · ‖G(t) − G(0)‖. (7.34)

123



4194 C. Lange et al.

Inserting (7.33) and (7.34) into (7.31), we obtain

|dη(x) | · ‖F(x)‖ ≤ 2

ε
· lim
t→0

‖G(t) − G(0)‖
t

= 2

ε
· lim
t→0

√

∑

p∈[n] |γ (t) f p(σ (t)) − γ (0) f p(σ (0))|2
t

= 2

ε
·
√

√

√

√

∑

p∈[n]

∣

∣

∣

∣

lim
t→0

γ (t) f p(σ (t)) − γ (0) f p(σ (0))

t

∣

∣

∣

∣

2

= 2

ε
·
√

∑

p∈[n]

∣

∣〈(d + iα) f p(x), σ ′(0)〉∣∣2. (7.35)

In the last equality above, we used the fact that dγ (t)
dt |t=0 = i〈α(x), σ ′(0)〉. Since |σ ′(0)| = 1,

we conclude

|dη(x)| · ‖F(x)‖ ≤ 2

ε
‖(d + iα)F(x)‖. (7.36)

Combining (7.36) and (7.28), we finally obtain (7.27). ��
Note that the pseudometric (7.26) induced from the metric on a complex projective space

played an important role in the proof.

Proof of Theorem 7.7 Applying Theorem 5.6 to (MF , dF , ‖F(x)‖2dx), we obtain a subpar-
tition {Ti }[n] of MF , such that

(i) dF (Tp, Tq) ≥ 2
C0n5/2

, for all p, q ∈ [n], p 
= q ,

(ii)
∫

Tp
‖F(x)‖2dx ≥ 1

2n

∫

M ‖F(x)‖2dx , for all p ∈ [n],
where C0 is an absolute constant. Employing further Lemmas 7.6 and 7.8, the proof of the
theorem can be done via the same arguments as in Sect. 5.4. ��
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