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phenomena. For instant, recently discovered electro-
pumping phenomena by De Luca et  al. (J Chem Phys 
138:154712-1–154712-10, 2013a) are based on nano-cou-
pling of angular momentum with linear momentum and the 
electroosmotic draining effect. The theoretical background 
relies upon different angular velocity slip of dipolar liquids 
when confined between hydrophobic and hydrophilic solid 
surfaces—this phenomenon combined with applied rotat-
ing electric field leads to pumping of liquid. In our opinion, 
a concept of angular velocity slip leads to an explanation of 
the electropumping effect enhancement in nano-channels.

Keywords  Micro-flows · Nano-flows · Slip velocity · 
Angular momentum

1  Introduction

Bonthuis et  al. (2009) have been explored mechanism 
for flow generation in fluid-filled nanochannels employ-
ing coupling between translational and rotational (angu-
lar) momentum. High-frequency electric field giving 
source of momentum dipoles leads to effect of pumping 
and hydraulic power plants on the nanoscale. They have 
shown that for rotating electric fields, nonvanishing flow 
is obtained through an appropriate boundary condition 
for the molecular spin (angular velocity). De Luca et  al. 
(2013a, b) have been developed electropumping of water 
for rotating electric fields using nonequilibrium molecu-
lar dynamics (NEMD). They have assumed that linear and 
angular momentum of molecular structure of fluids can 
couple effectively allowing mechanism for the exchange 
of streaming and angular velocity. In this approach, the 
boundary conditions play a significant role, both in hydro-
philic/hydrophobic effect and in electric field coupling. De 

Abstract  The need of reformulation for basic concepts 
of fluid mechanics in order to account some enhancement 
phenomena in micro- and nano-flows is presented in the 
paper. The work is a general formulation of angular veloc-
ity slip condition which is developed from primary princi-
ples. It is postulated that the different slipping phenomena 
take place within a thin shell-like layer where a material 
particle undergoes independently: the slip velocity and 
angular slip velocity. We suppose also that the molecules 
rolling at the layer can give a serious contribution to the 
mass flow enhancement, and therefore, it can be a reason 
to inclusion of a mathematical modeling for molecules 
angular momentum. In this paper, we propose the general 
form of an angular momentum balance for the shell-like 
layer. This balance is expressed by the surface divergence 
of an unsymmetric surface stress and an unsymmetric sur-
face couple stress, either by the bulk momentum and bulk 
moment of momentum or by a surface friction torque. 
With constitutive relations appropriate for a linear, viscous, 
isotropic fluid and the constitutive relation for frictional 
resistance, we obtain generalized Navier-type boundary 
equations for the slip velocity and the angular slip veloc-
ity. As special cases, Poisson’s type boundary condition 
and Aero–Bulygin–Kuvshlinskii’s angular slip condi-
tion are obtained. Proposed here boundary conditions 
have few applications in modeling of complex nano-flows 

J. Badur · P. J. Ziółkowski · P. Ziółkowski (*) 
Energy Conversion Department, Institute of Fluid Flow 
Machinery Polish Academy of Sciences, Gdańsk, Poland
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Luca et al. (2013a) have proposed that slip boundary condi-
tions for molecular spin (angular velocity) and translational 
velocity play a main role and leads to the pumping effect. 
Owing to this inconvenient boundary condition, one can 
observe confinement the angular momentum and it conver-
sion into linear streaming flow. Having this motivation in 
mind, in our report we develop a more general statement 
for the molecular slip boundary condition. We are start-
ing from a general form of boundary condition within a 
thin shell-like slip layer (Zhang et al. 2012; Eremeyev and 
Zubov 2009; Tabeling 2011). We present results of a cor-
rect formulation of angular momentum boundary condition 
which allows a general action similar to the rotating elec-
tric dipoles Grekova and Zhilin (2001).

Discussing in Section 196–205 of “Classical Field The-
ories,” some generalization of the first and second Euler 
laws, Truesdell and Toupin (1960) have made a proposition 
that among of assigned torques the most important one is 
a couple stress vector m(n). This couple stress vector, by 
extending the Cauchy stress principle, is a manifestation of 
couple stress tensor at the boundary ∂V  of continuum ori-
ented by a normal n, i.e., m(n) = mn = mijnjei. Since m(n) 
is to be treated as a contact torque and since on the second 
side of boundary surface there is designed contact bound-
ary torque q∂V, then still adopting Cauchy’s argumentation, 
Truesdell and Toupin propose the following boundary con-
ditions [eq. 203.6]

An existence of internal couple stress tensor m was postu-
lated on the fluid continuum ground and commented in the 
papers by Aero et  al. (1965), Condiff and Dahler (1964), 
Eringen (1964), Łukasiewicz (1999), Eringen (1996), 
Kucaba-Piętal (2004), Hoffmann et al. (2007). This tensor 
is fundamentally nonsymmetric and its presence leads to 
the appearance of a nonsymmetric part of the Cauchy stress 
tensor t �= tT. Both tensors t, m are the measures related to 
the Euler description and therefore we can say that these 
are Cauchy’s type tensors. Yet, in fluid mechanics, for bal-
ancing linear and angular momentum we prefer more ade-
quate names for these tensors, i.e., “the momentum flux 
tensor” and “the angular momentum flux tensor”.

Quite similarly to the Navier slip condition, the expres-
sion (1) can be treated as a simplest model of the angular 
velocity slip condition, if we define the angular friction 
torque q∂V as a linear function of a total angular velocity 
calculated at the boundary and a surface angular friction 
coefficient c : q∂V = c

(

1
2
rotv + ω

)

.

In fluid mechanics, a rotor of the velocity field is called 
a vorticity w = 1

2
rotv and ω is a spin (angular velocity) 

vector postulated as an independent function of continuum 
particle. Within asymmetric hydrodynamics (which is a 
branch of the Cosserat continuum), the couple stress tensor 

(1)q∂V = mn = m(n).

in (1) can consist of elastic and viscous components. It is 
a main difference with the Cauchy stress tensor, where 
an elastic part is a spherical one t(e) = −pI and depends 
only on the thermodynamical pressure. Restricting, for the 
moment, to the simplest definition of viscous couple stress 
m = η2k by Listov (1967), where rate of curvature defor-
mation is defined as a spatial gradient of the angular veloc-
ity only k = gradω = ωi,jei ⊗ ej, we can express the sim-
plest boundary condition (1) in Navier’s-like form:

We will call it “the angular velocity slip condition.” Coef-
ficient of the angular friction c plays a role of an external 
viscosity coefficient, which differs for different contacting 
continua. The ratio lang = η2/c has a dimension of a length 
and, in the analogy to the Navier–Stokes layer, would be 
named “the angular slip length.” The angular slip velocity 
concept and the surface angular slip Eq.  (2) were intro-
duced in the literature by Aero et al. (1965). In the present 
paper, we are going to extend the angular velocity slip 
Eq. (2) to a more complete form.

2 � Mathematical modeling of the slip layer

The details of mathematical derivations for momentum 
transport in the moving slip layer in a fluid continuum one 
can find in the previous author’s paper Badur et al. (2011b). 
Here only the most useful relations for angular momentum 
derivations are brought.

Let assume that two three-dimensional continua under 
consideration, i.e., bulk fluid A (fluid that form a slip layer) 
and continuum B (contacting solid or fluid) are separated by 
a very thin slip layer, as shown in Fig. 1. This layer can be 
treated as a shell-like two-dimensional material body M rep-
resented mathematically by a middle surface S and upper 
and lower surfaces S+ and S−, respectively. Let the body ori-
entation A be the same as an orientation of the surface layer 
nA = nS = nS+ = n. If both A and B are fluids, then the 
Navier–Stokes boundary layer represents the moving inter-
facial region where physical properties change abruptly. 
Therefore in the layer, we observe different so-called appar-
ent material properties. These are quite different from that in 
the contacting bulk continuum A and B. Thus, we define an 
excess of layer density ρs, the layer angular inertia tensor Js,  
the layer particle velocity vs and an excess of layer momen-
tum density ss = ρsvs. Due to experimental data that indicate 
a possible mechanism of particle rolling, we additionally pos-
tulate an internal particle spin or a angular velocity ωs and cor-
responding excess of angular momentum density ls = Jsωs. 
Finally, let us postulate a surface excess of momentum flux ts 
and a surface excess of angular momentum flux ms.

(2)c

(

1

2
rotv + ω

)

= η2 gradω n on ∂V .
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We assume that generally the considered layer moves in a 
space with a geometrical, migration velocity u, which differs 
from material velocity vA in A, velocity vB in B and velocity 
vs in M. In particular case, the velocity u means the rate of 
changing a phase transition surface within the fluid at rest. 
Usually, the component un normal to moving middle surface 
M differs from normal components of vA, vB and vs. It prac-
tically means that there is also some mass transport through 
the layer. The geometrical velocity is usually determined 
from a special evolution equation. If u = v, then the moving 
layer is material, and when u = vsIs + unn, then the surface 
is semi-coherent. In the derivations by Navier and Stokes, 
the surface layer density was assumed as equal to zero. How-
ever in the present approach, we determine the slip velocity 
vs from an independent balance of the layer momentum as 
proposed by Badur et al. (2011b). Similar method is applied 
for the determination of angular velocity slip.

Recall that within the Navier–Stokes layer, we have 
introduced the concept of an “excess of momentum flux” 
which is described by the surface nonsymmetric dyade, ts 
in the following form:

where ξα, α = 1, 2 are local surface curvilinear coordinates 
on M, and aα, n are the base vectors on the middle surface 
of the layer M. A dyade ts governs the momentum transport 
within the layer, and therefore, it has tangential and normal 
components. It should be noted that the physical properties 
of the layer are unknown a priori since they depend on the 
resulting apparent properties in both continua A and B.

The balances of the layer mass and momentum can be 
established using postulated notions, i.e., ρs, vs, ts, ms, ωs 
and employing some mathematical relations. Let introduce 
the Weatherburn surface fundamental dyades in Pietraszk-
iewicz (1977):

(3)ts(ξ ) = t
αβ

aα ⊗ aβ + t
nα
n⊗ aα + t

αn
aα ⊗ n + t

nn
n⊗ n,

(4)Is = I− n⊗ n = gradsxs = aαβaα ⊗ aβ ,

(5)IIs = −gradsn = bαβaα ⊗ aβ .

These diades are called the first and second fundamental 
form of the surface M. Surface gradient acts also on the 
coordinate dependent base aα, n. Thus, the surface gradient 
of velocity is calculated to be:

The surface divergence of this vector needs the contraction 
operation made on the surface gradient in the following form:

The invariants of the second fundamental form of the curva-

ture diade are Ib = trIIs = bαα = b11 + b22 =
(

1
r1
+ 1

r2

)

,  

IIb = detIIs = det
(

bαβ
)

. In analogy to the three-dimen-
sional case, rate of the surface deformation can be defined 
as a symmetric part of the surface gradient of velocity by 
Truesdell and Toupin (1960):

Then the first invariant of ds is:

The surface gradient of a surface tensor, for instance the 
flux of angular momentum, can be written as:

(6)

gradsvs =
(

v
α
aα + vnn

)

⊗∇βa
β

=
(

vα|β − vnbαβ

)

a
α ⊗ a

β +
(

v
α
bαβ + vn,β

)

n⊗ a
β .

(7)

divsvs = C1,2gradsvs =
(

vα|β − vnbαβ
)

aαβ

= vα |α − vnb
α
α = divs

(

vs�
)

− vnIb.

(8)

ds =
1

2

(

gradsvs + gradT
s
vs

)

=

[

1

2

(

vα|β + vβ|α

)

− vnbαβ

]

a
α ⊗ a

β

+
1

2

(

v
α
bαβ + vn,β

)(

n⊗ a
β + a

β ⊗ n

)

.

(9)Ids = trds = C1,2ds = vα |α − vnIb.

(10)

gradsms = ms ⊗
(

∇γ a
γ
)

= m
αβ

|γ aα ⊗ aβ ⊗ a
γ + m

αβ
bαγ n⊗ aβ ⊗ a

γ

+ m
αβ
bβγ aα ⊗ n⊗ a

γ + m
nα

|γ

(

n⊗ aα ⊗ a
γ + aα ⊗ n⊗ a

γ
)

+
(

2mnα
bαγ + m

nn
|γ

)

n⊗ n⊗ a
γ

− m
nα
b
ε
γ

(

aε ⊗ aα ⊗ a
γ + aα ⊗ aε ⊗ a

γ
)

− m
nn
b
ε
γ

(

aε ⊗ n⊗ a
γ + n⊗ aε ⊗ a

γ
)

,

Fig. 1   Outline of the Navier–
Stokes boundary layer and the 
pill-box balance domain
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and its divergence:

After employing an useful identities as (dt = d/dt;

∂t = ∂/∂t), we can write the following theorems:

•	 the Reynolds transport theorem for angular momentum 
in continuum A with the moving subsurface S+: 

•	 the Slattery transport theorem for the surface angular 
momentum by Povstenko and Podstigach (1983): 

•	 the Stokes–Weatherburn surface identity by Weather-
burn (1930): 

3 � Angular momentum balance in the slip layer

A motion of the slip layer particle is governed by its slip 
velocity vs = vs� + vnn and the angular slip velocity 
ωs = ωs� + ωnn. Inertia properties of the layer particle are 
described by the layer density ρs and the layer symmetric 
inertia tensor Js = Jijei ⊗ ej = JTs . The layer momentum, 
according to Galileo’s postulate, is given as a linear rela-
tion between density and velocity: ss = ρsvs. Similarly, the 
layer angular momentum ls is defined by a Galilean-like 
constitutive equation ls = Jsωs.

According to the laws of classical mechanics, the sec-
ond Euler law of motion is determined completely by two 
vector measures (eq. 196.3 in Truesdell and Toupin 1960) 
described by a Newton-like equation of motion:

The vector L represents a total angular momentum taken 
with respect to the common origin, and the vector M is an 
absolute vector defining the torque acting on the bodies. 

(11)

divsms = C2,3gradsms =
(

mαβ
|β − mnβbαβ − Ibm

αn
)

aα

+
(

mαβbαβ + mnα
|α − Ibm

nn
)

n.

(12)

dt

∫ ∫ ∫

A

lAdv =

∫ ∫ ∫

A

∂t(lA)dv+

∫∫

∂A

lA ⊗ vAnAds

+

∫

S+

lA ⊗ wn
+
ds

=

∫ ∫ ∫

A

∂t
[

lA + div(lA ⊗ vA)
]

dv

+

∫∫

S+

lA ⊗ (w − vA)n
+
ds;

(13)

dt

∫∫

S(t)

lsds =

∫∫

S

[

∂t(ls)+ divs

(

ls ⊗ vs�

)

− lswnIb

]

ds

+

∫

L

ls ⊗
(

w� − vs�

)

nldl

(14)

∫

L

msvdl =

∫∫

S

[divsms + (trIIs)msn]ds,

(15)
d

dt
L = M.

Let us propose that both resultant vectors L and M have a 
contribution coming from the moment of momentum and 
from the internal couples:

Some quantities, which are well known in three-dimen-
sional bulk Cosserat continua, appear here (Eringen 1964; 
Kafadar and Eringen 1971), i.e., l, s are the bulk angular 
and linear momentum; c, b are the body couple and body 
force densities. According to extended Cauchy postulate 
by Truesdell and Toupin (1960), the boundary traction and 
torque are t(n) = tn and m(n) = mn, respectively. Consid-
ered diades t = tijei ⊗ ej �= tT and m = mijei ⊗ ej �= mT 
represent Cauchy-type nonsymmetric diades called the 
momentum flux tensor and the angular momentum flux ten-
sor, respectively (Neff and Jeong 2009).

In analogy to the early postulated layer body force bs by 
Badur et al. (2011b), the body couple or body torque density 
cs, which arise from internal interactions between both bulk 
continua, can appear in the moving layer. Also in analogy to 
the postulated layer stress tensor ts by Badur et al. (2011b), 
we postulate an existence of the couple layer stress:1

which arises in such the same way that the tensor ts does. 
The traction on a linear boundary of surface S is a prolon-
gation of ts, ms onto the boundary oriented by a unit vector 
ν = ναa

α tangent to S and normal to the boundary curve L:

From definition (11), it practically means that only 3× 2 
components undergo the surface divergence operation. 
Nevertheless, according to Stokes-Weatherburn theorem 
(14), all the components of surface tensors are indeed to be 
angular momentum, and therefore, during formulation of 
the constitutive equations, one should take tensors of not 
only 3× 2 components but also those of 2× 3 components.

(16)L =

∫ ∫ ∫

A∪B

(l + x × s)dv +

∫∫

S

(ls + xs × ss)ds,

(17)

M =

∫ ∫ ∫

A∪B

ρ(c + x× b)dv+

∫∫

∂A∪∂B

(

mn + xs × t(n)

)

ds

+

∫∫

S

ρ(cs + xs × bs)ds+

∫

∂S

(

m(ν) + xs × t(ν)

)

dl.

1  In the literature on fundamentals of rational continuum mechanics, 
there are two distinct notations of the momentum flux tensor. The first 
one coming from Cauchy who interpreted it as to be “generalized ten-
sion” [solid continuum viewpoint]. Therefore, we denote this tensor 
as t [tension]. The second denotation comes from Stokes [and British 
Islands], who has treated momentum flux as the “generalized pressure” 
tensor; therefore, it has denotation of p [pressure–fluid viewpoint]. It is 
always true that it should be t = −p. Note that in Badur et al. (2011b), 
preferring the Stokes line of reasoning, we have used the layer stress  
ps—it is nothing else than our ts = −ps employed here.

(18)ms = mαβa
α ⊗ a

β + mnαn⊗ a
α + mαna

α ⊗ n + mnnn⊗ n,

(19)t(ν) = tsν; m(ν) = msν.
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Traditionally, in rational mechanics we are looking for a 
local statement of the second Euler law (15) by employing 
Reynolds’ transport theorem and the Gauss–Ostrogradskii 
theorem to divergence. Additionally, the Reynolds–Slattery 
(12), (13) and Stokes–Weatherburn [see (14)] theorems 
should be simultaneously used. Yet one additional, not clas-
sical operation, that come from the vector multiplication 
between the position vector and the traction vector, should 
be also defined here in details.2 Adopting Mindlin and Tier-
sten (1962) denotations, one obtains by calculation:

Looking on the shell-like layer shown in Fig.  1, we con-
clude that the traction forces t(n) and traction couples m(n) 
are given at the contact surfaces S+, S−, respectively. Those 
quantities shifted to a basic surface S by an internal equi-
librium should be replaced by the system of traction forces 
t(n)A, t(n)B and couples m(n)A, m(n)B coming from the con-
tinua A, B, and friction forces fA, fB and couples qA, qB 
coming from the layer reaction:

Now, taking into account the Reynolds and Slattery trans-
port theorems and employing the Gauss–Ostrogradzki and 
Stokes–Weatherburn identities, after step-by-step calcula-
tions, we transform (15) into:

2  In the literature, a reader may found many different results and nota-
tions, which are not, in the first sight, equivalent. The main objec-
tion concerns the sign of a part of equations coming from a vector 
multiplication. For instance, the axial vector of the Cauchy stress 
t× =

(

tijei ⊗ ej
)

×
= tijei × ej sometimes appears in the angular 

momentum equation with the sign (−) and sometimes with the sign (+).

(20)

∫∫

∂A

x × t(n)ds =

∫∫

∂A

x × (tn)ds =

∫ ∫ ∫

V

div(x × t)dv

=

∫∫

∂A

(x × t)nds

=

∫ ∫ ∫

V

[x × (divt)+ I(×·)t]dv

=

∫ ∫ ∫

V

[x × (divt)− t×]dv.

(21)
t(n)+ = t(n)A − fA; t(n)− = t(n)B − fB;

m(n)+ = m(n)A − qA; m(n)− = m(n)B − qB.

(22)

∫ ∫ ∫

V

�x × [∂ts+ div(s⊗ v)− divt − ρb]

+ [∂t l + div(l ⊗ v)− divm+ t× − ρc]�dv

+

∫∫

S

�xs × [∂tss + divs

(

ss ⊗ vs�
)

− sunIb − divsts − Ibtn

−
(

t(n)A + t(n)B − fA − fB
)

− ρsbs]�ds

+

∫∫

S

�∂t ls + divs

(

ls ⊗ vs�
)

− lsunIb − divsms + Ibmsn + (ts)×

−
(

m(n)A +m(n)B − qA − qB
)

− ρsc�ds

+

∫

l

�xl × [s⊗
(

u� − vs�
)

ν] + Is ⊗
(

u� − vs�
)

ν�dl = 0.

Finally, taking into account a local form of the balance 
of momentum for the bulk and slip layer by Badur et  al. 
(2011b):

we obtain the local form of the angular momentum equations:

The last equation is a generalization of “ABK” Eq. (2).3 If 
layer particle cannot be able to induce the internal inertia 
tensor Js, then the angular momentum leads to a static rela-
tion between layer couples, the axial of layer stress, the 
bulk couples and the friction torque. If layer stress is sym-
metric, then it appears as a condition, quite similar to the 
Poisson boundary condition:

where γ is the Young–Laplace surface tension. Assuming 
now that the layer couple consists of only the Gibbs sur-
face bending C: ms = CIs and ts = tTs , cs = 0 , we are able 
to extend some previous Gibbs writings to a Poisson-like 
boundary condition:

Note that in contrast to Young–Laplace and Gibbs, the 
Poisson version of capillarity condition consists of param-
eters that depend on the position γ = γ (xs), C = C(xs).

4 � Constitutive equations for a boundary friction 
resistance

According to the classical d’Alembert–du Buat hypoth-
esis, the total resistance of fluid depends on both resistance 

(23)∂t(ρv)+ div(ρv⊗ v) = divt + ρb, forA ∪ B

(24)
∂t(ss)+ divs

(

ss ⊗ v�
)

− unIbss = divsts + Ibtsn

+ [tAnA + tBnB − fA − fB] + ρsbs, onM

(25)∂t(l )+ div(l ⊗ v) = divm− t× + ρc, forA ∪ B

(26)

∂t(ls)+ divs
(

ls ⊗ v�
)

− unIbls

= divsms + Ibmsn +
(

gradsxs
)T
(×·)ts

+ [m(n)A +m(n)B − qA − qB] + ρscs, onM

3  Note that above balance of angular momentum is formulated not 
precisely within the main stream of Cosserat’s reasoning. At first, the 
statement of dynamics of surfaces has been omitted in original mono-
graph, and secondly, an Eulerian formulation proposed by Cosserat’s 
is restricted only to 3D case. A reader can find a first nonsatisfied pro-
posal for construction of surfaces dynamics by Roy (1929). A com-
plete revalorization of Cosserat model of surface, which includes 
an initial surface geometry and correct dynamics, was developed by 
Badur (1993).

(27)f∂V = tn + divs(γ Is),

(28)q∂V = mn + divs(CIs),
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induced in the bulk and within the boundary layer, see: 
Ziółkowski and Badur (2014). Therefore, the boundary 
friction force f∂V = fA and the boundary friction moment 
q∂V = qA should be correctly stated. Let us introduce an 
auxiliary unit versors:

which represent the slip velocity direction and the total 
angular slip velocity direction, respectively. Assuming a 
possible form of friction mathematical models and restrict-
ing ourselves only to isotropic friction by Zmitrowicz 
(2006), we postulate, as in the classical Coulomb hypothe-
sis of resistance, that the layer resistance contains three dif-
ferent contributions, i.e.: adherence, laminar and turbulent 
(skin eddies):

Three force friction coefficients ν0, ν, ν2 and three torque 
friction coefficients c0, c, c2 are to be determined from 
appropriate experiments in nano-flows. Note that they 
depend not only on the fluid material but also on a kind of 
contacting body. Coefficients ν2 and c2 are responsible for 
conversion of a layer kinetic energy into the skin eddies, 
which are responsible for an inception and development of 
a bulk turbulence in Karcz and Badur (2003). In above 
equations, ̟ [N/m2] represents a postulated adherence 
force normal to a surface by Stokes (1845), and k [Nm/m2] 
is a normal torque pressure. Generally, the adherence part 
is assumed to be similar to Coulomb’s dry friction normal 
force.4

Note that four from six of friction coefficients have 
already been proposed and used in the literature. The linear 
friction ν was introduced by Navier on the base of the vari-
ational arguments in Navier (1827) [p. 415]. The eddy fric-
tion force coefficient ν2 was proposed in Boussinesq (1877) 
[p. 42, eq. 22], and nowadays it is used in some untypical 
models of turbulence [see, for example, Karcz and Badur 
(2003), Ziółkowski and Badur (2014), Straughan and Har-
fash (2013)]. Duhem proposed and tested the adherence 
coefficient ν0 Duhem (1903) [p. 216]. Finally, the coeffi-
cient c was postulated by Aero et al. (1965) [eq. 6.4].

(29)ev =
vs

|vs|
, eω =

ωs + ws

|ωs + ws|
,

(30)f∂V = ν0̟ev + νvs + ν2(vs · vs)ev,

(31)q∂V = c0keω + c(ωs + ws)+ c2(ωs + ws)
2eω.

4  Determination of these coefficients is not a simple matter. In Badur 
et  al. (2011a), the procedure of determination of ν

0
 for flow of rar-

efied argon and helium through the micro channels was elaborated. 
Note that yet another contribution to adherence part can appears—
when the bulk viscous stress is modeled both by the first- and third-
order spatial gradients of velocity. The adherence boundary condition 
proposed by Fried and Gurtin works properly even for a no-slip case 
in Fried and Gurtin (2005).

5 � Constitutive equations for the layer momentum 
and angular momentum fluxes

Fluid contained in the Navier–Stokes slip layer still pos-
sesses typical feature of fluidity, i.e., viscosity; there-
fore, the elastic stresses are limited only to the tangential 
surface pressures t(rec)s = −psIs and the surface torque 
m

(rec)
s = −ksIs. Both state parameters need a thermody-

namical constitutive equations and should be differentiated 
from the normal Stokes pressure ̟ and torque k, which 
appears in Eqs. (30) and (31).

Viscous parts of ts, ms as in the normal Cauchy-like 
mechanics, would be expressed by appropriate “rates of 
deformation.” In general, these rates are defined in the 
same manner, independently of continua dimension. The 
procedure starts from the Lagrangian deformation meas-
ures which, after material time differentiation, are “pushed 
forward” to the Eulerian “picture”. Adopting here three-
dimensional operations of “pull back” and the “push for-
ward” discovered by Kafadar and Eringen (1971), to a two-
dimensional shell-like layer, we find the following surface 
rate of deformation introduced by Rey (2006), Stumpf and 
Badur (1993):

In an analogy to 3D case es, ks should be called “the posi-
tional deformation rate” and “the curvature rate.” In 
Eq.  (32), above ∈= −I× I is the Ricci alternator, 
Fs = Gradsxs is the surface deformation gradient, and R is 
rotation tensor such as RT = R−1. Lagrangian measure of 
position and curvature U, G are one-point tensors of Jau-
mann–Trefftz type, proposed by Kafadar and Eringen 
(1971). These are the following functions of the referential 
gradient of position Fs, rotation tensor R and the gradient 
of rotation tensor5 GradsR proposed in analogy to Kafadar 
and Eringen (1971):

According to Mindlin and Tiersten (1962) concept of body 
with constrained rotation and independently from a contri-
bution of the free rotational measures, there is also a con-
tribution form constrained rotation, that is, expressed by a 

(32)es = gradsvs− ∈ ωs = RT d

dt
(U)F−1

s ,

(33)ks = gradsωs = RT d

dt
(G)F−1

s .

5  Note a small difference between the above and original Kafadar 
and Eringen’s definitions. Since we have to do with nonsymmetric 
objects, we must remember that the first index always coming from 
screw symmetry and the second from an action of gradient. Only the 
gradient index can interact with divergence

(34)U = RTGradsx, G = −
1

2
∈
(

RTGradsR
)

.
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second gradient of slip velocity k(2)s = grads
(

gradsvs
)

. This 
measure can contributes only to the symmetric part of ts by 
surface divergence.

Now the viscous stresses and couples can be expressed 
by linear combination of es, ks, k

(2)
s :

where α1, α2 and α3, α4, α5, α6 are the bulk and shear 
coefficients of viscosity, respectively. The third-order 
symmetric couple tensor m(2)

s  describes symmetric con-
tribution to the surface Cauchy tensor from the second 
gradient of slip velocity k(2)s . A simplest expression for 
m

(2)
s  is as follows:

Taking into account that divs
(

grads(·)
)

= laps(·) is a sur-
face laplacian, after substitution of (37) to (35) we obtain:

Further, a dimensional argument yields two constants �1,  
�2 and constants α1, α2, which are related by a material 
length of type l2s = �2/α2 by Fried and Gurtin (2005), that 
is, appropriate to the modeling of fluid in the nanoscale.

6 � An example: a stationary flow of the Cosserat fluid 
through a pipe

Let us consider a flow of fluid in a straight pipe of circular 
cross section of radius R and z-axis of cylindrical coordi-
nate system (r,φ, z). In analogy to the Hagen–Poiseuille 
simplified flow, let the vectors of the translational velocity 
and the spin to be in the form v = v(r)ez, ω = ω(r)eϕ. For 
the only two components v, ω, the system of momentum 
and moment of momentum equations Eqs.  (24),  (26) is 
reduced to:

where �, µ are two translational viscosity coefficients and 
γ, η, τ, θ are four rotational viscosity coefficients by Rey 
(2006), Stumpf and Badur (1993). Boundary conditions are 
r = R

Further putting p,z = const, b, Ŵ = 0. We have a solution:

(35)t(vis)s = α1tr(es)Is + α2es + α3e
T
s − divs

(

m(2)
s

)

,

(36)m(vis)
s = α4tr(es)Is + α5ks + α6k

T
s ,

(37)−m(2)
s = �1Is ⊗ lapsvs + �2gradsds.

(38)

t
(vis)
s

= α1tr(es)Is + α2es + α3e
T
s

+ �1laps(divsvs)+ �2gradsds,

(39)

ρv,t = ρb+ (�+ 2µ)(rv,r ),r +(µ− γ )(rv,r ),r −γ (rω),r +rp,z

ρIω,t = ρŴ + (η + τ + θ)(ω,r +ω/r),r −γ (v,r +2ω)

}

(40)
v − θµ−1ω,r = 0 (translational no-slip),

cω = 2(η + τ + θ)ω,r (spin-slip).

where I0, I2 are the Bessel functions of zeroth and 
second order with argument I0(r/k2) and I2(r/k2),  
k22 = 0, 5θ(µ− γ )µ−1γ−1. From the boundary conditions, 
we have the constant B, C and a parameter Ae expressed by:

Substituting further ξ = r/R, a = (2µ)0,5Rθ̇−0,5 and con-
stants B, C, we have the axial velocity field given by:

If by QH−P = − π
8µ

p,z R
4, we denote known Hagen–Poi-

seuille volume flux (the volume discharge Kucaba-Piętal 
2004) than taking Qspin =

∫∫

v(r)dA one can obtain:

It is obvious that solution depends on value of the dimen-
sionless parameter that physically should be interpreted as 
dimensionless spin friction coefficient. Flow enhancement, 
observed in nanotubes, can be realized when is less than 
zero or cR/θ ≥ 1

7 � Conclusions

A numerous experimental discoveries of enhancement trans-
port phenomena in nano-flows turned our attention to more 
accurate modeling of the boundary condition by Capritz and 
Podio-Guidugli (2004). Researches agree that the nano-flu-
idics flows are characterized mainly by a one fundamental 
distinctive property, which is a huge surface to volume ratio. 
The classical Navier–Stokes model of bulk flow is not satis-
factory for the very small characteristic length scale; there-
fore, models with molecular spin by Hansen et al. (2009) or 
those employed a higher-order velocity gradients by Fried 
and Gurtin (2005) should be applied. But in some cases, a 
successful description of nano-flows can be find also with 
the classical Navier–Stokes model in the bulk and a non-
classical Navier slip layer.

(41)v = B+
1

4µ
p,z r

2 −
θ

µ
CI0, ω = Ck2I2 −

1

4µ
p,z r,

(42)B = −
1

4µ
p,z R

2 +
θ

µ
CI0(k), k = R/k2

(43)C =
1

4µ
p,z CR, C−1

R = k−1I1(k)+ AeI2(k),

(44)Ae = 1−
τ

θ
−

cR

θ
.

(45)

v(r) = −
1

4µ
p,z R

2

[

1− ξ2 +
2

a2

I0(kξ)− I0(ξ)

k−1I1(k)+ AeI2(k)

]

(46)Qspin = QH−P

[

1−
4

a2

(

Ae+
I1(k)

kI2(k)

)−1
]

.
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In the present paper, we have introduced the angular slip 
velocity variable into consideration, under assumption that 
the molecule rolling on a surface can be a proper mecha-
nism for further enhancement of nano-flows properties. The 
appropriate balance of angular momentum, that base on our 
previously elaborated algorithm in Badur et  al. (2011b), 
has been proposed. The angular momentum equation in the 
slip layer imposes relation between the surface stress ten-
sor, surface couple tensor and frictional couples.

Similar to Gurtin and Murdoch (1975), this formulation 
assumes that both surface tensors ts and ms consist of the 
capillarity contribution independently of another recovera-
ble stress state. The modeling formalism adopted here leads 
to a direct incorporation of all slipping and rolling effects 
and fulfills basic principles of rational mechanics.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s) 
and the source are credited.
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