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ABSTRACT

Sensor Integration for Low-Cost Crash Avoidance Project

Stephane Roussel

This report is a summary of the development of sensor integratitowfarost craskavoidance
for over-land commercial trucks. The goal of the project was to build and tesémsys
composed of low-cost commercially available sensors arranged on a #ilexkitr
monitor the environment around the truck. The system combines the data from each
sensor to increase the reliability of the sensor using a probabilistic data dpproach.

A combination of ultrasonic and magnetoresistive sensors was used in this study. In
addition, Radar and digital imaging were investigated as reference sagagb®ssible
candidates for additional sensor integration. However, the primary focus wfoitkiss

the integration of the ultrasonic and magnetoresistive sensors.

During the investigation the individual sensors were evaluated for their usesiystben.

This included communication with vendors and lab and field testing. In addition, the
sensors were modeled using an analytical mathematical model to help underdtand a
predict the sensor behavior. Next, an algorithm was developed to fuse the data from the
individual sensors. A probabilistic approach was used based on Bayesian filtighiag w
prediction-correction algorithm. Sensor fusion was implemented using joint a pitybabil
algorithm. The output of the system is a prediction of the likelihood of the presence of a
vehicle in a given region near the host truck trailer. The algorithm was dentesina

the fusion of an ultrasonic sensor and a magnetic sensor. Testing was conducted using
both a light pickup truck and also with a class 8 truck. Various scenarios were alaluate

to determine the system performance. These included vehicles pasdiogtttreck



from behind and the host truck passing vehicles. Also scenarios were includedtte test
system at distinguishing other vehicles from objects that are not vehicleassign

posts, walls or railroads that could produce electronic signals similar toaheskicles

and confuse the system. The test results indicate that the system wasfaliate

predicting the presence and absence of vehicles and also successfuhatiefalse
positives from objects that are not vehicles with overall accuracy rarrgimg90 to

100% depending on the scenario. Some additional improvements in the performance are

expected with future improvements in the algorithm discussed in the report.

The report includes a discussion of the mapping of the algorithm output with the
implementation of current and future safety and crash avoidance technologtesibase
the level of confidence of the algorithm output and the seriousness of the impending
crash scenario. For example, irreversible countermeasures suchgaarfiairbag or
engaging the brakes should only be initiated if the confidence of the signal lEglery
while reversible countermeasures such as warnings to the driver or nearbgsvesircl

be initiated with a relatively lower confidence.

The results indicate that the system shows good potential as a low costiaeéi¢ma
competing systems which require multiple, high cost sensors. Truck fleetavpavdk
likely adopt technology only if the costs are justified by reduced damage andhoesura
costs, therefore developing an effective crash avoidance system at@slaw required

for the technology to be adopted on a large scale.
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1. PROJECT BACKGROUND
The project is aimed at developing a sensing system for Clask8 that detects objects around
the vehicle, discriminates between object types, and determinestbbget levels. This system
will provide data to enable multiple accident avoidance countermeasuobsas:

« Support decision-making in engaging on-board safety systems (e.g. airbags)

« Warn driver of potential threat objects in projected path (audildaalior

haptic)

« Prevent drivers from engaging in risky maneuvers (e.g. turning acragscle’s
path)

« Perform preventative measures to avoid accidents (e.g. brakingibzisig)
« Perform protective measures to reduce accident severity (e.qudpraki
deployments)
To achieve these goals, this project will focus on developing a seisgration system to gather
and process data from a wide selection of low-cost exterior sensorkiyadvantage of
multiple sensors, we can fill the gaps in coverage and avoid the longati detection that a
single type of sensor inevitably has. In addition, we can use the diffeesr results returned

from the same object to improve our object discrimination and threatatexcis

The product will be a system consisting of multiple sensors connected by moeecodigital
computer processors. The computers will host a software algorithm whidresa
communication from the sensors, signal processing and filtering, and data figautput of
the algorithm will be capable of providing feedback to the driver aggkiring safety device
deployment. Result mapping will provide a mapping between sensor outpetcanthmended
actions triggered within the vehicle. Note that implementing anithgesafety devices is outside

the scope of this project.



1.1.CONCEPT AND INNOVATION

This research project makes use of low-cost readily availablersdnstetect objects outside the
commercial vehicle. Because the data from these individual sanagnsot be reliable enough to
make irreversible decisions, a critical data fusion step muskee.tRata from the multiple
sensors will be integrated, or ‘fused’ together to create a situatioaeddess within the system
that is far greater than the individual sensors can provide, at a priessféihan a new custom-

designed sensor.

Although not all accidents can be eliminated, a properly functioning detegtitems(the aim of
this project) should be capable of predicting more than 90% of the potentddracsituations.
Many of these can be avoided by warning the truck driver to avoid maneuvd@rassiane
changes or turns), or with an appropriate warning system for other driversuleloe the rear
of the truck. In addition, new automated systems, such as a resistancenty mrautomated

braking, may be used to prevent further crashes.

The implementation of these systems in commercial vehicles shoulidimessuimmediate
reduction in the number and severity of crashes. We anticipate the bfnéfiiaternal
warnings and/or automated responses should be permanent. However, witheutfiigration
of the technology into personal use vehicles as well, any exterior warniggeova of limited
benefit as other drivers become used to the warnings and resume more riskyrbeha
Fortunately, the sensor integration approach proposed in thisaleseplies equally well to
object detection for passenger cars. Once a reliable low-aistishas been demonstrated in
commercial vehicles, it should not take long to migrate into passeagetitereby providing

additional life-saving benefits.



1.2.INVESTIGATION

The investigation is organized into two stag@ésnsor Testing and ModeliagdVehicle

Detection AlgorithmSensor Testing and Modelirgnsists of literature review and acquiring and
testing candidate senso¥&hicle Detection Algorithroonsists of algorithm development, system

testing, data analysis, result mapping and final documentation and review.

Sensor Testing & Modeling

« Literature Review: Reviewed work done by others and identified additional

sensors for this application.

« Additional Sensors: The literature review identified additional psorgisensors
that were considered for integration into the final system. feisisinvolved
identifying manufacturers for these sensors, contacting manufa;ture

negotiating equipment prices or donations, and ordering parts.

« Refine Test Matrix: Another outcome of the literature review waerdata on
sensor limitations. Together with input from sensor suppliers, in tdedsé t
limitations were used to refine existing test matrices for preljiaidained

sensors and define test protocols for the new sensors.

« Modeling: To generate the most information in the shortest time,dd set
mathematical models for each sensor was developed. These models Ipeedict t
anticipated output from the sensors under a variety of circumstarees. T
modeling will aid in the simulation and algorithm development. Modeling
included effects of sensor range, noise, sampling rate, etc. Sensonadgts
were developed to test the system with targets of different sizerggedistance,
velocity, acceleration, etc. The objective is to use the modelingttortgmsed

algorithms to process sensor data and predict a crash event.

« Baseline Testing: The goal of the initial testing was to confire validity of the
mathematical models and identify the key strengths and weaknesseh of ea
sensor. In addition, experience with these tests enabled the final product

confirmation tests to be more completely defined.

« Simulations: After the models were validated by baseline testing ofrikerse

certain design parameters (e.g. size, locations, and power) weie teadigfine

3



the most robust configuration under a variety of sensing scenarios. Simulations
were also used to confirm individual sensor’s strengths and weaknedses a

determine a fit between the proposed sensors.

Vehicle Detection Algorithm

« Algorithm Development: Develop preliminary algorithms for integrating

(‘fusing’) sensors into a complete vehicle collision avoidance sesgstgm.

« System Testing: Completed physical testing of the sensor configurations
identified in Task 7 together with the integration algorithm definecask®.
These tests consisted of lab bench tests, static traffic aestslynamic traffic

tests on subject vehicles.

« Data Analysis: The data collected during system testing waszalaty

determine the potential for the sensor system to perform colliskprédictions

« Results Mapping: After reviewing the results of the sensor awdithlion tests,
the team identified and evaluated a set of accident avoidance coeaseres
that might be triggered by this system. Based on sensor performance,
connections were proposed between specific system predictions and potential
countermeasures. These connections are intended to be used by potential
implementers to decide how to use the sensing system to effect chatiges
real-world traffic environment.
Once a set of options has been identified, these will be associated mithlpaoutputs from the
sensor algorithm. For example, a high probability of crash near the vegitkr might trigger
pre-crash braking to reduce the speed, while a medium probability of a cornetr imgatc

trigger warning to steer away from the obstacles. The actual magggiingd for this project will

be much more complex, since the output from the sensor is far more detaildted@maxamples

imply.



2. SENSOR TESTING AND MODELING

This section summarizes the tasks completed d@amgor Testing and Modelinghese include:

Literature Review
Refine Test Matrix
Sensor Modeling
Sensor Baseline Testing

Sensor Simulations

Several of the tasks deal with investigation of specific sersach as a magnetic sensor, radar

sensor and ultrasonic sensor. The same sensors appear in mugkipldt taas decided to

organize this section by task instead of by sensor in order to be consisiteiie project

proposal and organization.

2.1.LITERATURE REVIEW

Two desired outcomes from the literature review were to:

Collect accident data and identify a project focus area.

Identify state-of-the art sensors and their capabilities and lionitat

2.1.1. Accident Data

Truck accident data was reviewed to confirm the type and circumstanaessoit @accidents.

From this data, and information about the current commercial aesivtlating to accident

prevention, a research focus area was identified.

The Federal Motor Carrier Safety Administration (FMCSA) Largeck Crash Causation Study

(LTCCS) [1] reports that rear-end collisions represent 30%astd@ truck accidents. Half of

those rear-end collisions (14% of all class 8 accidents) involve an objeatting the rear of the

truck trailer. No existing or proposed commercial warning system is focusad @mea.



Sideswipe collisions represent 12% of class 8 truck accidents. Hadsu (6% of all class 8
accidents) occur when another vehicle encroaches on the truck’s lalee408si (5% of all
accidents) involve the truck encroaching on another vehicle. Many siddidlet®ystems are in
production or under development to warn the truck driver of objects nearby, butcinosiy&f a
lane change is anticipated. Current and proposed commercial sideotletgstems do not warn

other vehicles or interact with rear-facing sensors to anticipabdgmns.

Based on this data, the team chose to focus on a sensing system to prevepactaand
sideswipe crashes. Both long- and short-range sensor were consideresefardise modes, as

described in the next section.

2.1.2. State-of-the-art Sensors

A thorough literature review was completed to identify the state-eduthgensors and their
applications in today’s crash avoidance systems. Most technieakclsn this area focuses on a
specific type of sensor and its application limitations. Insteadcofsfog on a particular sensor
type, this literature search was aimed at reviewing all seyyses being used in crash avoidance

and similar applications.

Although many different crash avoidance systems were identified,thwf rely on one of more
of the following technologies: RADAR, LIDAR, computer vision, ultrasomitrared, or

magnetoresistive.

RADAR
Radar is a well-known and commonly used sensor in today’s crash avoidances sysiemne
factor that separates Radar from other sensors is its ability toepeeaiverse weather

conditions such as rain, fog, and dirty environments. This sensor is also dftifders market



availability and its ability to measure range, relative velocitg, angle, as well as detect and

track multiple targets.

Radar is a key technology for automotive applications of driver assstéacsafety. Compared
to other technologies used for the same purpose it is a robust and provelotgchnaddition
radar operates under bad weather conditions, which is usually the moat tnite a driver will

need assistance [2].

Currently cars equipped with 24 GHz Short Range Radar (SSR) systems inatonbivith 77
GHz Long Range Radar (LRR) are already in the market [3]. The used IdRER has been
mostly for adaptive cruise control [4]. Possible applications for BiRIRde collision warning
and mitigation, blind spot monitoring, and lane change assistance ntRe a number of

automotive suppliers have developed proprietary 24 GHz SRR concepts [5].

LIDAR

LIDAR measures distance and speed by analyzing the time of flight andebshijit of its
transmitted light signal. The source of light is usually transmitted a set of LEDs with a
narrow field of view. The light signals can also be transmitted sy or progressively
scanned to achieve a wider field of view. LIDAR is able to measumndistand speed
accurately, but this accuracy can decrease if the laser’s optiésaged by dirt or rain. The

literature search indicated LIDAR performance can be similaAidAR, but at a reduced price

[6].

Computer Vision
Computer vision consists of one or more cameras to characterize la'gedmwironment or
monitor driver state. Computer vision can be found in blind spot detection, gparlirand driver

fatigue warning systems [6]. These systems work by sending digitatgs to a processor that



converts these images into data such as distance, speed, and imafigaiiten. Using computer
vision requires a great deal of processing, but the possibilitiescfash avoidance system are
only limited by the processor speed and picture resolution. When usingpihigftsensor,
processing speed is of large concern because the time it takesd¢egpan image may delay a
warning to the driver. Weather also can affect the processing of/#tesrs Fog, dirt, and the sun

may affect the image quality and thus the output data of to the system.

Ultrasonic Sensor

The use of these sensors in active crash avoidance applicatiohsasmmoon due to the adverse
environment the sensor must endure, including weather and high vehicle ghaedsiew
focused on finding applications of these sensors in a trucking environregataSstudies have
investigated ultrasonic sensor performance during highway driving8[7] hese reports claim
that wind turbulence causes errors in the sensor measurements. Itidad tieat the low-cost

and range measurement benefits of these sensors was worth corrobloestngdims.

Infrared Sensor

Infrared sensors can be classified into two categories: active ssidgadl hese sensors have the
ability to measure distance and speed by measuring the change inyiraétisitreflected

infrared beams. An active infrared sensor emits a scatter afedfpaulses and detects the
reflected signals. The passive infrared sensor measures incomargdnivaves emitted by a heat
source without transmitting any signal. In crash avoidance systemsh#as®urces may be
pedestrian, animals, or even engine heat. Use of infrared sensors invoidahae applications

is limited because they are affected by sun, headlights, and other heasg6lir



Magneto-resistive Sensor

The inherent ability of magnetic sensors to accurately detect thgehan the earth's magnetic
field has resulted in their primary use as navigation devices for208@0 years. In the more
recent past, extensive research has resulted in the inventiofeoélitypes of magnetic sensors
that are capable of measuring magnetic field strengthsft@amuss to MGauss [9]. These
magnetic sensors are capable of directly measuring the eartiretedfield as well as localized
changes in this magnetic field (presence of ferromagnetic majefigpical magneto-resistive
sensors are low cost, high sensitivity magnetic devices with sumaent range from several
uGauss to tens of Gauss [10]. In addition, their small size and resileehaesh environments
have led to their extensive use in varied applications such astiama systems [11], [12],
traffic surveillance [13], [14], and vehicle detection [12], [15],][T0ome research has also been
conducted on the use of magnetic sensors onboard vehicles for proximity angdtiddtection
[17], [18]. Based on this background information, a similar magnetoiuesigpe sensor has

been utilized in this project for the purpose of vehicle type detection.

2.2.ADDITIONAL SENSORS

This section consists of the consideration and procurement of sésioidusion in the project,
based on the results of the literature search. Potential sensor tes\didee evaluated based on
their cost, signal characteristics and availability. Sensorsipgdénclude:

« Radar sensor 24 GHz RADAR sensors were donated by an OEM sensor

manufacturer.

« Computer Vision senserA Uni-brain fire wire camera was purchased to act as a
test validation tool as well as being used for image processing. fegaca
resolution is 640 x 480 with a FOV of 42° horizontally and 32° vertically [19].

« Ultrasonic sensor MaxBotix 42 KHz LV-MaxSonar®-EZ1 ultrasonic sensors
were purchased [20]. This sensor transmits a pulsed inaudible 4duhit s

wave at a sampling rate of 20 Hz to detect range up to 6 m. Range is measured



using a time-of-flight (TOF) method, where the time it takes for artnatesl
signal to return to the sensor face is analyzed. Relating thisatithéhe velocity

of sound the range can be determined.

« Magneto-resistive sensor — The particular sensor selectéuefpresent study is

the HMC 2003 series 3-axis magneto-resistive sensor manufactured by
Honeywell [10]. This sensor type has been shown to function as eitberpass
by measuring the earth’s magnetic field with respect to the ser@htation or
as a vehicle detecting device by measuring only localized distortions in a
magnetic field (presence of ferromagnetic material) [1Bis Ftudy focuses
solely on vehicle detection and any effect due to the earth’s constanttimagne
field and sensor orientation is filtered out for all the analysesepited. This
sensor uses three nickel-iron, permalloy magneto-resistive semsio
magnetic field sensing range of 2 Gauss and has a resolutiomGia4@s. With
a sensing bandwidth of 1 kHz, this sensor is capable of vehicle proximity
detection even at high relative speeds [10].

Based on the literature search, each of these sensors appeared te pregtchgoals of low

cost, readily available, and having useful signal characteri$tias other possible sensors were

identified during the literature review but were later rejectesicanning LIDAR sensor could

not obtained at a reasonable cost for the project. Infrared (IR)rsemsre rejected due to their

inherent limitations (confusion by existing IR sources) and developmeniroagie(processing).

Each of the procured sensors were tested, modeled, and evaluated fat#mialto contribute

to the goals of the project. These steps will be discussed foiseasor in the following sections.

2.3.REFINE TEST MATRIX

The original project anticipated the investigation of radar and attrasensors and included
testing for these sensors. As discussed, magneto-resistive and congoiesemsors were also
selected as possible sensor candidates. This section réggesting matrix to include the

magneto-resistive and computer vision sensors.

10



The magneto-resistive sensor has not been used for this application iattarcis
characteristics are not well established. Therefore testing waseplahat would characterize the
sensor behavior under a tightly controlled environment. This consistezpetil test fixture on
a lab bench setting. Next static and mobile traffic environment testinglavasegd. The results of

these tests are described along with the other sensors in Task @inreBassting.

The computer vision sensor also required testing to verify its idipabA basic test plan was
developed to record video in relevant settings (on-highway, multipieles, daylight) and
successively test the computer vision algorithms with one, two, andbkeghicles. Since the
major effort for vision sensing is in the processing algorithms, thighveasxtent of the baseline
test plan. If algorithm development proceeds smoothly, additional video willleeted in

different conditions (hill climb, nighttime, fog, etc).

2.4 SENSOR MODELING

Mathematical models of the sensors were constructed to provide a rheamslating the
performance of the sensors and to facilitate algorithm development objaetpin addition, the
modeling helped to understand the behavior of the sensors when it was not aspeasa(ly

with the magnetic sensor).

2.4.1. Magnetic Sensor

The Honeywell HMC 2003 series three-axis anisotropic magnetic sensat hgbrits sensor
elements oriented as a resistive “Wheatstone bridge” that vasissance slightly as the
magnetic field changes in each element. This change in resistaises eachange in output
voltage, whose voltage magnitude is related to the induced magnetic fible fgrisitivity
equation (1).

(Out+) - (Out-) = SY*B 1)

11



where,

S = Sensitivity (nominally 1mV/V/Gauss),
V= Bridge supply voltage (Volts), and

Bs= Bridge applied magnetic flux (Gauss).

The values o6andV,; in the above expression are constants and depend only on the sensor type.

However, the magnitude & depends on the properties of the sensed object, which, in our case

are magnets used in laboratory tests and vehicles in field testinge,Htemas necessary to

model the magnetic source to produce the induced field strBagth

Simple 2-D Dipole Modeling

In literature, a 2-D dipole modeling approach was undertaken to captumagmetic behavior of

vehicles [14], [15]. In these studies, it was mentioned that each of the autmdbs behaved

as a magnet and it was concluded that the total induced field of théevadhutd be adequately

represented by a single magnet (single dipole) [14]. To ascertain ittieywafl these claims and

conclusions, a simple 2-D single dipole model similar to the one proposed indd4leveloped

and is described below.

(0,0)

“Gm

Y

Figure 1. 2-D single magnetic dipole model.

Consider the 2-D dipole model shown in Fig. 1. The dipole in this model condsspmthe

axially magnetized permanent magnet that was used in the bench testigithef the co-

12



ordinate axes in the figure is where the magnetic sensor is consinléetbtated. For the
purposes of model development, assume that the dipole is comprised of two eqpaldsiie
magnetic chargesgk and g, separated by a distance. Zhe center of the dipole is considered
to be located at coordinates ¥) with respect to the origin and makes an angkewith the x-

axis.

For this particular configuration, the magnetic fiBldnduced by the dipole at the sensor location

is given by the well-known expression,

5 M a b (2)
ST 4m \a3 b3
where,

1 = magnetic permeability of the magnet material, and

Om = Magnetic charge strength of the dipole.

From vector algebra we have,
a=rt+ul 3)

(4)

(Sl
1
=S
I
<l
~

where,
u- unit vector along the dipole length.

- distance vector from the dipole center to the origin.

L — half length of dipole.
The unit vecto andr are given by
u = cos(0)i — sin(6)y )

r=xt+yj (6)

Substituting (5) and (6) into (3) and (4) we get;
a=(x+Lcos(®)i + (y — Lsin(6))j (7)

b= (x — Lcos(@))? + (y + Lsin(@))f (8)

Finally, substituting (7) and (8) into (2) and simplifying we; get

13



9)

B (,uqm) x + Lcos(0) _x= Leos(6)] . N (uqm> y — Lsin(6) _y+ Lsin(6)] .
S \ag a3 b3 ! 4 a3 b3 J

The above expression is of the form

B, =B,1+B,j (10)
In (2), the termg andq;, are theoretical quantities that are difficult to ascertain iliwedd

applications and have been replaced by empirical relations as shown below.

x + Lcos(8) x — Lcos(6)

By = K a3 - b3 (11)
y — Lsin(@) y + Lsin(6)

By, =K, a3 - b3 (12)

The predictions of this model will be compared against the bench tess taged in this report.

3-D Mathematical Model Development

The road tests mentioned above involved the measurement of vehicleimégiptints along,

y, andz axes. Compared to the 2-D bench testsz #ira@s was also considered for measurement
increasing the model dimension to 3-D. Although, the added dimension inciteasesiplexity
of the model, it provides additional information on the magnetic footghatscould be utilized

to better distinguish the different vehicle types.

__(0,0,0)

Figure 2. Magnetic dipole in 3-D space.

Consider a dipole of leng®lL and having magnetic charge strengtlgpsimilar to that shown in

Fig. 1. However, the dipole is now oriented in 3-D space with its centgetbat coordinates,(

14



y, and-2) as shown in Fig. 2. Equations (3) and (4) still hold true for tletlimensional case;
however, the vectorgs andt are now three dimensional and given by the expressions (13) and
(14).

u = cos(8)sin(¢p)i — sin(8)sin(p)j — cos(p)k (13)

F=xi+y]—zk (14)

Substituting (13) and (14) into (3) and (4) we get;

a = (x + Lcos(8)sin(¢) )t + (y — Lsin(0)sin(¢p))] + (—z + Lcos(q,’)))E (15)
b= (x — Lcos(@)sin(¢))?+ (y + Lsin(@)sin(qﬁ))f + (—z — Lcos(¢))E (16)

Further, substituting (15) and (16) into (2) and simplifying we get;

_ (qu> x + Lcos(0)sin(¢) _x- Leos(8)sin(¢p) :

B = A a3 b3
Ugmy |y — Lsin(@)sin(¢p) vy + Lsin(8)sin(p)] .
+ ( ar ) a3 - b3 J an
Uqmy [—2z + Lcos(¢p) —z — Lcos(P)] -
* ( 41 ) [ a3 B b3 ] k
where,
8
a= \/(x + Lcos(@)sin(¢))2 + (y - Lsin(@)sin(qﬁ))2 + (—z + Lcos(qﬁ))2 (18)
2 2 2 (19)
b = J(x - Lcos(@)sin(q,’))) + (y + Lsin(H)sin(q,’))) + (—Z - Lcos(d)))
Equation (17) is of the form:
_ (20)

B, = B, + B,j + B,k
Similar to (9) the termg andqg., in (17) are theoretical quantities that are difficult to asaedad

are replaced by empirical co-relations (21)-(23).

B K x + Lcos(0)sin(¢) _xX= Lcos(9)sin(¢) 1)

X X a3 b3
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B, = K, [y - Lsinif)sin(qﬁ) Y+ Lsinb(ﬁ)sin@)] 22)

B, =K, [—Z + Lzos(q,’)) Tz 2205((1))] (23)
a

Equations (21)- (23) provide the expressions relating the magnddi dieng the, y, andz axes
to the model parameters; dipole lendth dipole anglesq, ¢), location of dipole centex(y, 2),
and the empirical co-relationBy Ky, K,). To better understand the effect that each of these
model parameters has on the field strengths, a detailed parametetisimstudy was carried

out.

Parameter Simulation Study

The behavior of the magnetic field induced by a dipole is dependent on its geantespacial
orientation with respect to the sensor. Hence, a detailed paramneierssrequired to isolate the
effects of each of these parameters on the model response. As mentioredrehdifferent
model parameters are; dipole lendth, dipole anglesd, ¢), location of dipole centex(y, 2 and
the empirical co-relations(, Ky, K,). From (21)-(23), it can be noticed that the empirical co-
relations Ky, K,, K,) are simple multiplying factors and hence have only a scaling effeeon t
magnitudes of the magnetic fields. Also, since the dipole is conditteraove along thg-axis

of the sensor, the effects of the dipole y coordinate is implicit theaparameter study plots. The

following paragraphs describe the effects of each of the other paranneligidually.
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Figure 3. Effect of dipole location

Dipole Coordinate Location

From Fig. 3, it can be seen that theoordinate location of the dipole decides the lateral position
of the dipole with respect to the sensor location. Simulations were cartibyg warying this
distance from 2 m to 4.6 m and the results are as shown in Fig. 3. As exgrectadghitude of

the magnetic footprints in all the axes increase ag thgtance is reduced.

The effect of the coordinate location of the dipole is more interesting (Fig. 3). While the
magnitudes of the induced magnetic fields alongthrdy axes peak when= 0, the behavior
observed along themeasurement axis shows a different trend. From Fig. 3, it can bwedbse
that as the value is decreased, starting from a value of zero, the magnit@&lembroaches a
maximum aiz = -1 before decreasing and eventually tending to zero asctwdinate further

decreases. Similar trend will be observed from symmetry for pesitilues of.
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Figure 4. Effects of dipole angle.

Dipole Bearing

Again from Fig. 2, the dipole was assumed to make an @it thex-axis and an angle with
thez-axis. The anglé@ orients the dipole in one of two positions depending on whétiser
positive or negative. In the case wlteis positive, the magnetic sensor sees the magnetic pole
closest to the sensor quicker than if the afglere negative. Hence, dss changed from its
positive maximum to its negative minimum, the effect is that of aydel sensing on the part of
the sensor (Fig. 4). This delay appears to be symmetric on either Haezefo bearing. Also, it
can be observed that changthbas little effect on the magnetic field strengghsindBy, but

alters the magnitude &, more considerably.

Figure 4 also shows the effect of changing the dipole angidich is the angle that the dipole
was assumed to make with thaxis (Fig. 2). As compared to the effect of changing the ahgle
where the magnetic trend was continuous and changed monotonically, the haglan effect
similar to that of changing tteecoordinate location. It can also be noticed from Fig. 4 that the

magnitudes oB,, B, andB, are the largest when the dipole is oriented irxth@lane § = 90°).

The effect of changing the dipole length is shown in Fig. 5. It can be obskatéddreasing the

length of the dipole has a similar effect to increasing the dipoleetiagntensity. This is
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because, increasing the length increases the distance+af.ttmagnetic pole from the sensor
location causing theayy;, magnetic pole to produce an enhanced effect at the same location without

cancellation (Fig. 2).

@
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0.8
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= 04r o 8. 125m
O 5ol ---1,438m
" : === 1.75m
% 05 1 15 2 25

Figure 5. Effects of dipole length (L).
Equations (21)-(23) provided magnetic field strength information forghesdipole along the,
y, andz axes. However, the magnetic profiles of vehicles obtained from estxishowed higher
order dynamics suggesting the presence of multiple dipoles (Fig. 7xdrhjdex behavior was
assumed to be due to superposition effects and could be captured by modelinghivtse as
multiple dipoles (Fig. 6). A slight modification to the single dipole model-(23) yields am-

dipole model that was used to model cars and trucks (24)-(26).

(0P010]

f~kk‘___ ~

—— "\
(xuy-zi)

-Z

Figure 6. Multi-dipole model schematic.
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3 - 3
a; b3

B, = Zn: K., [xn + Lycos(0,)sin(p,)  x, — anos(Hn)sin(q’)n)] (24)

n=1

(25)

n . . .
_ K »t Dn,l B LnSln(en)Sln(qbn) »nt Dn,l B LnCOS(Qn)Sm(%)
y = n a3 - b3

(26)

Zn: [—Zn +L cos(d)n)  TZn— Lycos(¢,)
= Kzn b3

n=1

where,
D1 — distance between th& dipole and the idipole measured along the y-axis
an (27)
- J (0 + Lacos(@)sin(é)’ + (y1 + Doy = Lusin@,)sin($)) + (~2o + Locos(d,)’
b, (28)

= J(xn - anos(Bn)sin(¢n))2 + (yl +Dpq — anos(Gn)sin(¢n))2 + (—zn - anos(¢n))2

From the insights gained in the parameter simulation study, this muifiedinodel was tuned to
obtain a good representation for the magnetic behavior of a typical passanged a truck. The
3-D mathematical model comprised of 2 dipoles for modeling the magnetitsaifecars and 5
dipoles to get a reasonably accurate representation of tymsal&ltrucks. As shown in Fig. 7,
the dipole locations for both cars and trucks closely relate to tted comcentration areas such as

wheel axles, engine manifold, etc where the magnetic field linesogeentrated.

-—-Model | ———
- ---Model
Experiment —Class 8 Truck

Dipole 1 Dipole 4 pinoje 5

Dipole 3

[y
-

61t
23f 171t 6ft 81t
—

—
—
2548 . . - r . :
(] 02 04 [ 08 1 12 14 16 18 2 0 05 1 15 2 25 3
Time (s) Time (s)

(a) Passenger car. (b) Class 8 truck.

Figure 7. Dipole locations for vehicles.

20



2.4.2. Ultrasonic Sensor

The MaxBotix 42 KHz LV-MaxSonar®-EZ1 is a piezoelectric transdutar émits an inaudible
sound wave when electricity is applied to it. The time it takes vean echo from a
transmitted signal can be analyzed to measure range. Although ultrasownrd aemsvell
understood for low-speed vehicle applications, the added complexities ofrgpatatighway
speeds and the increased reliability for a safety (versus congepagrplication necessitated
further study. Modeling focused on how these other factors influence #wtidetzone and

predicted distances.

Ultrasonic Sensor Environmental Effects

In a laboratory setting ultrasonic sensors have a simple linear reldpdsetween range and
sensor output voltage; however, the adverse environmental elemenisstisansor will endure
in this crash avoidance application may affect this simple oeksttip. This model may be
modified to include effects of relative humidity, air temperature, Vekjeeed, and wind
turbulence. Each of these effects influences the velocity of sound anthflugsces the range

measurement of the ultrasonic sensor.

From our literature review, it has been shown that changes in theediatnidity may be
neglected because the change in the velocity of sound is relatively Barakample, the change
in the velocity of sound is only 0.15% over a range of 10%RH-90%RH at 20E3fgcks from
temperature may also be neglected for this specific applicatioas been reported that the effect

of temperature on the velocity of sound [m/s] in air may be approximated wiimittéon:
V, ~20.055 T (29)
whereT is absolute temperature in Kelvin [7]. Class 8 vehicle operating tatoperange may

be assumed to be -30°C to +55°C. In this range, this ultrasonic sensor may have up to ~8%

uncertainty in its range measurement. Because this sensor’s prumatipi is to detect the
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presence of a vehicle in the adjacent lane and precise distanceameasls of secondary

importance, this error may be neglected.

Uncertainty of an ultrasonic sensor due to vehicle spgedhich has the same effect of the
component of the wind that flows along the length of the vehicle, has been repdréeff'L:

2
AD 1 (V, (30)
D 2\V

S

Again, this error is neglected because the error of a vehicle at higipsags at 20°C is only

~0.35%.

Mathematical modeling of air turbulence over the ultrasonic sensocevesidered; however, due
to the nontrivial approach of modeling air turbulence in various condj@nexperimental
approach to reduce turbulence was taken. The approach taken to redurteilgince was simple

shielding. This will be discussed in the testing section.

In the end, although temperature and vehicle speed can be considered indbeicisensor

algorithm, their effect is likely insignificant for the purposeshig study.

Ultrasonic Sensor Sample Rate

Most current ultrasonic sensors are used in low speed scenarios packig aids; however, in
a crash avoidance system the sensor must operate properly over a ratgelefkpeeds. For a
side-mounted ultrasonic sensor, at higher vehicle speeds it is possilds tmpabject without
detecting it if the sensor sampling rate is too slow. In order to veefeffectiveness of a side-
mounted ultrasonic sensor the relation between sensor sample rate, ype@dleand the

minimum detectable length were studied. This relationship carpbesented ds=v/ f , where

L is the minimum detectable object length, f is the sensor samelmridtz, and v is the relative

speed. Figure 8 shows this relation for ultrasonic sensors with vaaayse rates. The sensor
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procured for this study operates at a sample rate of 20 Hz and therdifoegaive a return
signal for objects 1.4 m or longer at 100 km/hr; this is the minimum distagoeed to measure
at least one data point. In the worst case scenario where the host pekits a stopped
motorcycle (2 m long) on the side of the highway at 100 km/hr, the selectedniltrasnsor will

be able to detect this object.

120

10 Hz
—15Hz
20 Hz
25 Hz
30 Hz
35 Hz
40 Hz

“ehicle speed [km/shr]

- L 1 1 L 1
0 0.5 1 1.5 2 25 3
Minimum detectable object length [m]

Figure 8. Minimum object sizes for side-mounted ulasonic sensor return signal.
Ultrasonic Sensor Placement
Placement of the ultrasonic sensors is crucial because a setaksenst monitor an area that
covers the entire length of a class 8 truck’s trailer. To ensura thehicle can be detected along
the entire length of the trailer the ultrasonic sensors may bedpéd@n anglé relative to the
trailer of the large truck (Fig. 9). This allows a single utiras sensor to be used to monitor a
region rather than detect what is directly adjacent to tilertr@ihe ultrasonic sensor spacing and
angle settings must be selected to ensure that the crash avoidaeeisysvare of a vehicle's
presence as the vehicle moves along the length of the trailer anichasitions from one
ultrasonic sensing region to the subsequent one. With the assumption thatumid sensors
are mounted at a fixed angle and only detect targets on their centedewmatric relationship
has been defined between object length, road parameters, sensor agabilitisensor spacing.

Figure 9 shows a class 8 truck trailer with two ultrasound sensorsedoamits lateral side and
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a motorcycle (minimum detectable threat) in the adjacent lafe Tashows equations and
values used to determine the minimum separation. The minimum separatverréto

ultrasonic sensors is the sum of the target length and a component of éhevidity,

1

w

Figure 9. Coverage zone for side-mounted ultrasongensors.

TABLE 1. Variables and equations to determine ultrasonic sghscement

Variable Description Equation Motorcycle
r Ultrasonic max range n/a 6.0m
w Lane width n/a 35m
wit Trailer width n/a 25m
wm Motorcycle width n/a 1.0m
Im Motorcycle length n/a 20m
d Distance to lane divider d= W_Zwt 0.5m
. 4(d
0 Ultrasonic sensor angle 0= COSl(twj 48
S Maximum sensor spacing g= [ +w_ tand 3.1m

2.4.3. Computer Vision Sensor Modeling
In order to use computer vision to recognize vehicles accurately inmeglappropriate
hardware coupled with a fast robust algorithm must be used. Popular methods obgettor

detection requires using specialty cameras (i.e. infrared) orrimepling stereoscopic vision.
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However, those methods are expensive and require substantial processingycapaiw-cost

low-processor system is a more appropriate solution for this projec

Based on the real-time requirements and available hardware,|$saga processing techniques

have been selected as potential methods of detecting vehicles.

Edge based shape detection

Most vehicles are rectangular in nature. Captured frames carebedilising an edge detection
algorithm such as the Sobel or Canny. A shape detection algorithm such asghettdosform
follows that, allowing objects to be digitized and tracked in subsequené$. Depending on the
image resolution, the edge detection algorithm and the number of detectds, dhgealgorithm

may require substantial processor power.

Frame comparison

By comparing the previous captured frame with the current frame andtiexea pixel-by-pixel
intensity subtraction, the differences between frames can be defEite can be used to either
filter out stationary objects when the host vehicle is not moving, detect moving objects that
are moving behind the host vehicle. This is merely an intermediatenfilgtep used to reduce as
much stationary terrain in the image as possible, resulting in less dsisg.this method in
conjunction with an edge based detection method yields more accurate retogeition

results.

Edge based color detection
Under normal daylight conditions, a vehicle’s color can be used for deteftiertaptured
image is masked into a strip to reduce processing requirements. Thaifrdengoes color and

edge detection. Comparing data from previous captured frames, vehatlericand relative
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distance can be determined. Figure 10 depicts two successive frathedge tracking for the

green vehicle.

Figure 10. Edge based color detection example.

Headlight detection
During evening or low-light conditions, a vehicle can be tracked usingigleadétection.
Similar to color detection, the captured image will be masked andtdresity would be used to

track the vehicle.

Object discrimination

A digital camera is mounted on the rear of the test vehicle. Batsférs through FireWire (IEEE
1394) to a laptop. An external power source currently powers the camerd pui-@ pin
FireWire can supply the necessary power. Matlab running on the laptdiefidow level

FireWire interfacing as well as image processing tasks.

The image processing algorithm developed focuses on shape detection (Fig. 11)

Capture Reduce Convert to Adjust Canny Detector Ider':f: ShaEe
Image Resolution Grayscale Contrast Edge Detect eriEes
Transform

Figure 11. Image processing algorithm.

Captured video footage of different sized vehicles driving on a freesfag ito the algorithm to
see how effective it is in detecting vehicles and filtering ouaiterr
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The vision algorithm was found to be very processor intensive amémefints to its processing
methods were considered to increase the accuracy of vehicle deiecgahtime. In order to
decrease processing time, the image resolution was quartered (dimsdmaived) and an edge-

based color detection method was considered.

Due to the high development time required to implement a reliable conwsiter system, the
computer vision is only considered to be a secondary system usedexsrceeto verify the

presence of vehicles and is not an integral part in the crash avoidigortm.

2.5.BASELINE TESTING

Baseline testing was conducted on the magnetic, radar, and ultrespsds to establish critical
performance characteristics. Testing was conducted first in adddb@nch environment, then in
a static traffic environment and finally in a moving traffic environm8aseline testing was not
conducted on the vision sensor because it was concluded this sensouithtet for the
proposed crash avoidance algorithm (Section 2.4.3); however, the semidardedto reference

the presence of objects detected by the other sensors.

2.5.1. Magnetic Sensor Testing
The experimental study was carried out in two parts. The first part labsratory test that

utilized a bench top unit (Fig. 12) while the second part consisted of résd tes

Figure 12. Laboratory bench test apparatus.
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Laboratory Bench-Tests

Literature suggests that a vehicle can be modeled by a single matjpekt [17]. Accordingly,
in lab bench tests, permanent magnets were used to simulate theoffietticles. To gain a
first-hand feel for the working of the magneto-resistive sensor, #tienprary bench test
apparatus was constructed as shown in Fig. 12. The sensor electropienglesed in a plastic
casing and placed at the center of the apparatus. Two different siaty meignetized
cylindrical permanent magnets were used to simulate the presence ahddrucks. The
magnets were moved parallel to the y-axis of the sensor (see Fig.si®utate a vehicle-
passing scenario. The induced magnetic field from the two different magrethen recorded

by the magnetic sensor and is as shown in Fig. 13.
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(a) Small magnet. (b) Large magnet.

Figure 13. Magnetic sensor bench test results.

Road tests

Based on the encouraging results obtained from the bench tests and the @heoreticoration
of the sensor working-principle, the magnetic sensor was tested on thEiguad.14 shows a
schematic of the road test configuration. The sensor was mounted onriiesldeeof the
vehicle with its sensitive axes oriented in the directions showh vébiles were made to pass
the sensor at a constant velocity in the direction shown and their magogbients were

recorded in all the three dimensions x, y and z by the onboard data acquisition §ygtee 15
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shows two such profiles recorded for a typical passenger car and a clasgr8dtrailer

respectively. It can be observed from these figures that unlike the testghvhich used single

dipole magnets, the magnetic profiles for both the car and the truck she&apberposition of

multiple single dipoles. The presence of multiple dipoles can be sdath magnetic footprints

in Fig. 15 by the number of peaks that are present above 0 Gauss.
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Figure 14. Magnetic sensor road test configuration.
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2.5.2. Radar Sensor Testing
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Figure 15. Magnetic sensor road test result.

For this project, a 24 GHz Ultra-Wide Band Short Range Radar was probatésiwidely used

for Adaptive Cruise Control (ACC) applications in the automotive maifltet radar is capable of

rapid detection of multiple objects, can provide quick information on batiosary and moving
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objects (distance, relative velocity, and bearing), and is functiomalvi@rse weather conditions
(e.g. rain, snow, fog, etc...). In order to confirm the radar specificgtiovgded by the supplier
and to become familiar with its operation and capabilities a series cfi bests and road tests

were performed:

« ldentify the noise floor — Determined if the radar reports spurious sesh#n
viewing a field of view with no objects, to investigate the occueaidalse

positives.

« Angle Beamwidth — Computed the azimuth and elevation fields of view usipdesim
trigonometry (see Fig. 16). The target was kept at a known distirioemn the face
of the radar and it is moved in the negatiwdirection until detected by the radar; at

this point the distanca was measured and used along wiitb compute.

Target

Y )
L) X —
Radar

Figure 16. Schematic of radar azimuth and elevatiomangle measurements.

« Detection Range — Determined the detection range by keeping track gétaasr
it moved away from the radar until no longer observed. When the radar was

unable to locate the target the detection range was thus determined.

« Range Accuracy — Determined the accuracy of the radar range measisrém
doing a controlled experiment where targets were placed at known dishaces

the radar was used to measure the distances to the targets.

« Target Detection Bench Tests — These tests consisted of pladargmtifsize
and shape objects in the vicinity of the sensor and arranging them inrdiffere
order and distances relative to each other. The purpose of theseatesbs
determine what the radar considers a target; does it combine maoljptds into

a single target or does it give multiple targets for a single t¥jec
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o Target Detection and Tracking Road Tests — The tests consigittiolg the
radar in the rear bumper of a truck facing backward to tag targets gnttdee
of them. The following scenarios were considered: (a) a target vslagie
behind the host vehicle. (b) a target vehicle approaches from behind egesme
into the left lane. (c) The host vehicle passes a target vehitcheaight. These

tests evaluated the tagging and tracking capabilities of the rada

The Target Detection and Tracking road test were conducted using th@assimg scenario

used in the ultrasonic and magnetic sensor tests (Fig. 17).

o
Vehicle Heading
Direction

RADAR Units

Figure 17. Radar road test schematic.
The radar accurately tracked the moving vehicle while providing raegecity, and bearing

information. Figure 18 shows a passing vehicle as it approaches the hast frehidhe rear.

[%
o

o
o
o
[=]
Lol
Lol
[N
~n
(ol
w

Range (m)
s 3
T T
/

K=]

o

Velocity (m/s)
' &
T
(

10
e 8
o
o
o
o
o
[N
N
o
w

Bearing (Deg)
o
T
j

Time (s)

Figure 18. Radar (rear facing) road test results.
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. When identifying the noise floor false positives were observed buadlae was unable to keep
track of these false positives — giving a good method to discard thdrtafjged objects can be
ignored). Finally, the bench tests for Target Detection showed very jmgmesults. The radar
lumps object that are close to each other into a single target but te didénguish between two
objects that are further apart. Vehicle distances on the highwayaifcantly greater than

those used in the bench test, indicating that the radar should be abbk teetrles individually.

Based on these results, the radar has good potential as one of thenswis f&& this project.
This radar was subsequently positioned at the rear of the claseBttradlentify and tag vehicles
as they approached. By knowing the location, velocity and bearing of an appgoasihicle the
algorithm should be able to predict its future location and be ready kattrith the side-

mounted sensors.

2.5.3. Ultrasonic Sensor Testing

For testing purposes, the 42 kHz LV-MaxSonar®-EZ1 ultrasonic sensaewensed in plastic
enclosures fitted with mounting brackets, wind shield, and powered by a 9 \¥ laaitea 5 V
voltage regulator. Figure 19 shows the ultrasonic sensor housing as\slbrientation on a

test vehicle.

Wind Shield

Ultrsonic Sensor

\

Mounting Bracket

Figure 19. Ultrasonic sensor enclosure.
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Laboratory Study

The operation and function of ultrasonic sensors are well known, thus talydesting focused
on profiling the beam characteristics and voltage to distance ralaifioior this particular sensor.
An ultrasonic sensor beam characteristic can vary depending on theisizaé i@, and material
of the object it is detecting. Representing the material of a movingleeai0.5 m metal flat

plate was used to profile our sensor’'s beam contour. This plate wad fativte right while
parallel to the sensor face and with the sensor stationary. Figar®®2@ the beam characteristic

of our ultrasonic sensor.

T: Ultrasonic Sensor FOV 0.6m

6.0m

Figure 20. Ultrasonic sensor beam characteristic.
The largest error created from a target measured at the edge ofrthprbéke rather than the

centerline is 0.12% at 6 m.

Using the same target as before, the relationship between the sepsoroliage, input voltage,

and range along the sensor’s centerline was found\&o:bly&.d where d is range (cm) ang.
130C

is the sensor input voltage, regulated at 5 volts.

Mobile Testing

Although ultrasonic sensors are used in current vehicles, their useittedgb low-speed
applications. Other researchers have found that these sensors may becouratmat vehicle
speeds of 30 km/hr [8] to 105 km/hr [7]. To corroborate this data with our sensdrtunnel
testing was considered to verify the operating range of our ultrasonar sidosvever, due to the

proximity of the tunnel walls the operating conditions of the sensor could mepleated.
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Instead, field tests were used: The ultrasonic sensor was attacnézbt fixture on a light
vehicle and faced out perpendicular to the length of the vehicle (§e21fi Effects of vehicle
speed or wind flowing perpendicular to the sensor face caused significaot cemsit noise
around 80 km/hr. Other wind turbulence such as in high wind gust areas createdetineisam
By employing shielding (adding a solid surface to direct the airflow arthendensor — see Fig.
21) the turbulence over the sensor was reduced, allowing the sensarate efffectively at
highway speeds (65 mph or 105 km/hr). The same noise can further be reducedlingitigtal
ultrasonic sensor at an angle facing away from the direction of wind-dlther than facing the

sensor perpendicular to the vehicle (Fig. 9).

<

.

Figure 21. Ultrasonic sensor mobile test setup.

2.6.SIMULATIONS

Simulations were conducted to compare the magnetic sensor mathematiedd with the
testing to validate the models. It was decided that the radar and ultrasngors were well
understood and established for similar applications, so further siomsaif these sensors were

not necessary.

The simple 2-D single dipole model (5) and (6) was used to perform siomglagplicating the
bench tests that were conducted. Using appropriate parameter valinesdipole length, dipole
angle and empirical relation(andK,), the response was obtained and compared with the
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experimental results. Figure 22 shows a good match between theory and exgestifging the

ability of the model to predict the magnetic phenomenon recorded in experiments
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(a) Small magnet. (b) Large magnet.

Figure 22. Comparison of simple dipole model exparient and simulation

Magnet Type Detection
From Eqgn. (1) it can be seen that the magnetic sensor output dependgrehtjte sf the
induced magnetic field, which in turn is dependent of the size of the magnet, Hengggnetic
sensor can possibly be used to detect the magnet size. Figure 23 shawsliatatetion (from a
magnitude standpoint) between the magnetic fields induced by the two diffexgnets, thereby
corroborating this claim. However, these magnetic fields are sign depamndeitip sign when
the dipoles are flipped. Hence, in order to clearly distinguish tfereiit sized magnets,
appropriate mathematical functions that not only eliminate this sigmdepey, but also produce
a pronounced difference in the values were studied. Two such functions are,
|Bx| + Byl (31)

(B2 + (By)? (32)
The results obtained by using these functions are as shown in Fig. 23. Bothcti@fuwere
able to achieve the desired objective and the sum-square function inlpaxtias able to
provide a more comprehensive threshold difference that could be used todikarguish the

smaller magnet from the bigger one.
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Figure 24shows a comparison between the mathematical megipbnse and the experimer
response from the road testhe high fidelity 3D mathematical model comprised of two dipc
for modeling the effect of cars, and five dipoleobtain an accurate representation of tyg
class8 trucks. The following section describes the dsmathematical functions on the mietic

data to help distinguish different vehicle typ
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Figure 23.Magnetic threshold for object discrimination for simple dipoles.
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Figure 24. Comparison of on-road simulation and road test.
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Vehicle Typéiscriminatior
Similar to the case of the2 model, mathematical functions were employed toomdy extract
the magnitude information, but also magnify the barad magnetic effects along all three a

of measurement. Two functions employed \

Byl +[By|+|B (33)
(B)*+(B,)*+(B,)* (34)
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Figure 25.Magnetic threshold for object discrimination for vehicles.
From Fig. 25t can be seen that there exists a clear threshdle magnitude obtain for a
typical truck when compared with that for passernger It can also be observed that the-
square function is able magnify this threshold touch greater extent. The extensive mode
testing, and simulations performed with the magnatnsr have confirmed its capabilities f

object type discrimination.
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3. VEHICLE DETECTION ALGORITHM

Radar, ultrasonic sensors, and magnetic sensors were identifiethble sensors to be used in
this crash avoidance system. Through modeling, simulation, and bassiing tke strengths and
weaknesses of these sensors were identified. Because of tfemerantal and process noise
inherent in monitoring a region around a vehicle, the data from these indivaéthsals are not
reliable enough to make irreversible decisions. An intelligent akgoris required to integrate
data from the multiple sensors to create a situational awarenegsstivétsystem that is far
greater than the individual sensors can provide, at a price far less tieav custom-designed

sensor.

3.1.ALGORITHM DEVELOPMENT

An intelligent algorithm is required to translate sensor data imfulisformation for a crash
avoidance system. It is necessary for any warning or countermeasmnédye& crash avoidance
system to be completed as soon as possible without false positives orativgrrieahe situation.
Simply interpreting the sensor data is not sufficient to idertifyats because these sensors
usually carry data that is noisy or incomplete. It is crucial that emsos noise created by the
environment (especially that of a large truck) is considered andredof by other sensor
information. A probabilistic approach has been taken to help manage emaastiof uncertainty
and perform multi-sensor fusion. The following sections discuss thedmxiepts used in
probability, the basic concepts of Bayesian filtering and its uses, howayesian filtering may

be applied to vehicle identification, and how this technique facilitaasor fusion.

3.1.1. Basic Concepts in Probability
For this application, voltage measurements taken from individuabiseaise treated as random
variables. Let the random variable (sensor measurement) be dendtedvayiableZ and the

specific sensor reading at time t be denotezl 8hese random variables can take on multiple
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values, and they do so according to specific probabilistic laws. A prigbalddw can be defined
for sensor measurements for specific applications, such as vegietsion and is explain in the

next section.

To describe the probabilistic nature of sensor data, it is assumedeyhabissess probability
density functions (PDFs). It is common for sensor PDFs to be that oh&idimensional normal
distribution with meam and variance®. Normal PDFs are given by the following Gaussian
function [21]:

—(z- u)z} (35)

1
= (2nc?) " 2
p(z) = 2no*) exp{ 552

wherep(z) represents the likelihood of a sensor measuremeith an expected value pfand
the variability of the sensor measurement represented hyie PDF for the ultrasonic sensor
and magnetic sensor are derived later in “Statistical Sensor Mgtahd used to attain the
likelihood of vehicles being present around the host vehicle while takimgdaount false

targets.

The information from an individual sensor can be compared with data fromsetisgrs when
applying a probabilistic approach for multiple sensors; this prasesdled joint distribution.
Joint distribution describes the probability that the random varkablg and thaty =y. If X and

Y are independent the joint distribution is given to be
p(x.y) =px)p() (36)

Joint distribution is important for multi-sensor fusion in vehicleedgon because presence of an
object and its type is difficult to positively identify with agie sensor. The above equation can
be used to integrate multiple sensors because the information of eamhisérdependent of the
other. Figure 26 shows the results of joint distribution betweersénsor belief curves. If two

sensors are in agreement, the joint likelihood has a unique modalfikehat occurs most
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frequently) at the estimated state variable; however, whertis®is are in disagreement, the
joint likelihood is bimodal and has a low likelihood at the estimated statable. This idea of
joint distribution can be applied to the ultrasonic sensors and mageesors to check for the

presence of an object and to ascertain if the object is a vehicle.

Flplzy.2:)
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£ f(plz) )
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(a) Joint likelihood of two sensors in agreement. dmtdikelihood of two sensors in disagreement.

Figure 26. Joint likelihood of two sensors [22].
Often, random variables carry information about other random variaidesas are not
independent. The joint distribution of the two random variables is tiedconditional
probability, which can be stated as the probabilitX efx being true whety =y is true. From

[21] conditional probability is denoted as

pr()p(») 37)

p(xly) = 0

Conditional probability can be used to describe the behavior of an indigielusdr or the
likelihood of an event by assuming that the measurement at time t is depentient on
measurement &tl. Conditional probabilities can also be examined by an alternate method called

Bayes rule [21].

_pIp) (38)
r(y)

“If x is a quantity that we would like to infer from y, the probability p(x) will be
referred to as prior probability distribution, and y is called the sensor measurement
data. The distribution p(x) summarizes the knowledge we have regarding X prior to
incorporating the data y. The probability p(x|y) is called the posterior probability
distribution over X. This method provides a convenient way to compute posterior
conditional probability p(x|y) using the “inverse” conditional probability p(y|x)

p(xly)
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along with the prior probability p(x).In other words, if we are interested in inferring a
guantity x from sensor data y, Bayes rule allows us to do so through the inverse
probability, which specifies the probability of the data y assuming that x was the
case.”[21]

The following section expands on the basic concepts of probability and exptainBayes rule
can be modified into a filter to reject sensor noise. Furthermordiltitiss modified to handle
information from the ultrasonic and magnetic sensors and play an ad¢ive tloe proposed

vehicle detection algorithm.

3.1.2. Bayesian Filtering

Raw data from sensors is corrupted by process noise and anomalies duetoremtail
influences as seen in Fig. 27. In this figure, the ultrasonic sensogevatidicates the presence of
a vehicle when the voltage is below 1 V. The noise outlined in red in KignZause a false
negative reading in a vehicle detection algorithm and must be accountedyfesidh filters can
be created to filter this noisy or partial sensor data using the lmeieqts in probability from

the previous section [21], [23]. A Bayesian filter is a recursive ststimation model with the
ability to output the likelihood of an event occurring. The state of the sulirgsaround
sensors cannot be measured directly due to environmental and procedsavaéser, the
likelihood of the state can be inferred through sensor data and a BefjlesiaThe filter is

completed in two steps: the prediction step and correction step.
Prediction StepAt each time update, the state is predicted according to the fodaypidate rule
[21], [24].

Bel (%) = [ p(x | %.4)Bel(x ,)dx ; (39)

The predicted belief of the state variable at tiniel(x,), is represented by the integral or sum of
the product of two distributions: the prior distributi@gl(x.,), and a predicted belief based on

the prior belief. The term(x|x..) describes the system dynamics, which ascertains how the state
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of the system changes over time. This term predicts the likelihobe sf/stem state based on

the last measurement. The prediction parameters are desaribedollowing section.
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Figure 27. Raw ultrasonic data with noise.
Correction StepWhenever new sensor informatigns received, the measurement is used to

correct the predicted belief using the observation [21], [24].

Bel(x,) =7p(z | x,)Bel (x,) (40)

The termp(z|x,) is the perceptual model that describes the likelihood of making obsergation
given that a state variable is equaktd-or location estimation, the perceptual model is usually
considered a property of a given sensor technology. It depends on the typesiamalspof these
sensors and captures a sensor’s error characteristics. Theigeanmormalizing constant which
ensures that the posterior over the entire state space sums up to onendtaist ¢s discussed in

more detail in the following section.

3.1.3. Bayesian Filter Algorithm
Bayesian filtering can be directly applied to the sensors for the mapbdsehicle detection. To
clearly explain how the Bayes filter algorithm is developed; considertbalyltrasonic sensor

with the state variable of interest being the presence of an olpgsprbcedure will later be
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expanded to include the magnetic sensor and other state variables. s atkintthe previous

section, the Bayesian filter is completed in two steps: prediction aretton.

Prediction StepThe predicted model for the ultrasonic sensor is based on Theorem of Total
Probability. The following equation represents the predicted probabiléy object’s presence at
time t based on the probability of an object’s presence at+inf21].

p(x0) = p(xilxe—)p(xe—q) + el Txe—)p(xp—y) (41)

Here, the termp(x;|x;_;1) andp(x{|1x;_,) describe the predicted probability that an object is
present at timebased on the probability that an object is present atttifmend the probability

that an object is absent at timd respectively. In detecting an object’s presence, this conditional
probability is referred to as the motion model where the vehicle raht time, given its

location atx.;.

Correction SteptJsing the information from the prediction step, the likelihood of aclelki

presence(x)and a vehicle's absenp€lx) are evaluated using the correction step. The

correction step of the algorithm is represented by [21]:

p(x) = np(z¢|x)p(x;) (42)
p(1x) = np(z: | 1x)p(1x¢) (43)
n = [pz|xDp(x)) + p(z[1xDp(Ox)] ™! (44)

wherez represents the normalizing parameter to ensure the probability(@) andp (x)are

between 0 and 1.
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3.2.SYSTEM TESTING

For algorithm developmepgystem testing was completed in three stagesnprelry date
collection, simulation, and a full scale t The data collection was performed using a smatl
vehicle with the various sensors attached. Dateaeld from this test vehicle was used to cr
the sensor probability density functions explaiimethe previous section. The data collected
pod processed and used to simulate the effectivesfes8ayes filter algorithm. Finally, tf
system was attached to a heavy truck and dataellastec and applied to the purpos

algorithm.

3.2.1. Data Collection

The test vehicle seen kig. 2¢ was modified to include two ultrasonic sensors, tmagnetic
sensors, and two radars. Information was colleftted all sensors as vehicles passed the lg
side of the vehicle. A digital camera was useceésrence to positively identify the prese of a

passing vehicle (not shown in figur

Ultrasonic and
Magnetic Sensors

CAl

Radar

Figure 28. Test vehicle (pickup truck).
Figure 29shows the typical data set for a passing vehAs the vehicle passes, three disti
regions based on the vehicle’s location in refeedndhe sensors are taken into considera
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region A, B, and C. It is clear that Region B Haes inost potential to positively identify t

presence of a vehicle.
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Figure 2€. Sensor data for vehicle passing scenario.

3.2.2. Statistical Sensor Modelin¢ (Individual Sensors)

The Baysian filter requires specific parameterdfath the prediction and correction steps.
following section describes the prediction params and correction parameters used for
ultrasonic sensor and magnetic sensor. Data wctad for a vehicle passing scenaric
mentioned in the introductic The methods described in the following sections bagxtende
to create other predictiomd correction stepfor scenarios other than the passing scenario tl

modeled in the following sectiol

Ultrasonic Sensor
The ultrasonic sensor is used to detect the randgreesence of an object on the lateral side

large truck. The predictioand correction models for this sensor can be aetibecause th
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sensor is operating in a specific manner with physical constraintsulieedimension and vehicle
dimensions) and detection frequency (i.e. traffic flow). For this sermsostate variable of
interest is presence of a vehicle. In other words, when the ultrasonic isefilsered through the

Bayesian filter, the output is the likelihood that a vehicle is present

To describe the sensors behavior, a perceptual model is required. Fmpifgation, the
perceptual model was created for the ultrasonic sensor by monitogitene on the lateral side
of a large truck. As vehicles pass by the sensors, the average distemoecorded and average
sensor behavior identified. The sensor behaviors can be modeled as@disssbutions and
used in the correction step of the filter. The histograms shown beloesesy the behavior of an
ultrasonic sensor when vehicles are present and absent, respéEiiyeBO and 31). The average
distance of a passing car from this model is about 6.25ft (sensor voltdgd &f). It is

important to note that some transmitted signals from the ultrasorgorsaay be reflected off a
vehicle’s body and not be received by the sensor. This causes the sengior bheha somewhat
bimodal. The information from this belief distribution is utilized in ginediction step to account

for this sensor characteristic.

[lUltrasonic Sensor Data
| ——Gaussian Distribution

=

—— e — T e —
Distance (ft)

Figure 30. Ultrasonic sensor belief distribution wien vehicle present.
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Figure 31. Ultrasonic sensor belief distribution wien vehicle absent.

Magnetic Sensor

The magnetic sensor was tested in the same manner as the ultressoic Bhe magnetic fields
in all three axesx(y, z) were recorded as vehicles passed by the sensor. As mentioned in the
“Introduction” section, a math function was used to positively detect eehiekence.

|Bx|+|By|+|B:| (45)

Unlike the ultrasonic sensor when a vehicle passes by a magnetic femstiange in sensor
voltage is gradual and is not proportional to the vehicle’s length. duoately identify a
vehicle’s presence from the magnetic sensor, its behavior is mod€k®g) & an incremented
range of data rather than frequency.

Number of "Present" Measurements

Total Number of Measurements (46)

The behavior for the magnetic data is best described using a two stéprfamct a Gaussian
distribution (Fig. 32). The two step function best describe beligfldision of the magnetic
sensor behavior in the lower magnetic field ranges and the Gaussias bast describes the
higher field strengths. The same process is followed to describeativetit sensor’s behavior

during the absence of a vehicle.
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Figure 32. Magnetic sensor belief distribution whervehicle present.

(# of Present Measurements)/(Total # of Measurements)
I

Prediction Model

The prediction step requires the probability that an event will occumat based on the
previous correction step at tihd. These parameters can be based on a variety of ideas. In the
case of predicting the likelihood of a vehicle being present, two pradethemes are taken into
consideration. One prediction phase is in effect when a vehicle is detedtdwather

prediction phase is in between vehicles. The first prediction step itstkeaccount the number of
“present” measurements taken by the ultrasonic sensor when a vehicte fressember of
“present” samples varies with the physical length of a vehicle anelatsve velocity. As the
number of “present” measurements increases, the predicted prgtattilivehicle being present
in the next sensor measurement will decrease. This process carhberifited by integrating
the magnetic sensor to identify the vehicle type allowing adjustrivetite number of predicted
“present” measurements based on vehicle length. The same approach mentisaddas the
prediction parameter when a vehicle is absent; however, the numbesentaimeasurements is

based off of vehicle frequency or traffic flow information provided fratelligent transportation
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systems. As traffic flow increases, the likelihood of a vehiclegoabsent in the next “absent
measurement will decrease. Figure 33 shows the ultrasonic sensor@neent and predicted

likelihood when a vehicle is present and absent.
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Figure 33. Ultrasonic sensor raw data and predictig models.

Correction Model

The correction step uses the sensor models to make correction in tleéepregkasurements.
With the ultrasonic and magnetic sensor models and a prediction modwipbladility of an
object being present and being of specific type can now be identified useigpagy42)-(44).
The results for this prediction and correction methods being applied tanbotidual sensor case

and sensor fusion case are presented in the next section.

3.2.3. Bayesian Filter Results (Individual Sensors)
The Bayesian filter is complete with both the prediction and correctionlsnpaeluced above as
shown in the following schematic (Fig. 34). The following shows the reguehavior of the

Bayesian filters for the ultrasonic sensor and magnetic sensor.
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Figure 34. Bayesian filter algorithm (individual sensor).
As vehicles pass the ultrasonic sensor, the data is recorded amd émntiethe Bayesian filter
algorithm (Fig. 34). The prediction model and the correction model, in this algpvithirk
together to output the likelihood that a vehicle is present. It can bénsEign 35 that the noise in
the ultrasonic sensor, such as the large spike at time step 220da$ddt on the belief that a
vehicle is present. The same procedure is used for the magretar $Fig. 36). With this
Bayesian filter, the uncertainties that arise from partial and mdtiysonic data are accounted for

and the belief of a vehicle’s presence can be evaluated to make ddcisiehigle identification.
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Figure 35. Likelihood of vehicle presence (ultrasdn sensor).
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Figure 36. Likelihood of vehicle presence (magnet®ensor).

3.2.4. Sensor Fusion

The outputs from the Bayesian filter only represent the belief ofithdilsensors. Thus, a joint
probabilistic method is required to “fuse” this information togetfrey. 37). If the ultrasonic
sensor is represented@sand the magnetic sensor@sthe joint belief distribution can be

represented as [21]:
p(x|zs1, Zs2) = p(x|2s1)p(x|Zs2) (47)

where x andy represent independent state variables for the sensorggmesents the joint

distribution.
Predicted Probability
PXelXe1) Prediction
: Step
" Correction
Range Data Sensor ] Step Joint Likelihood of
(Zus) Model ] a Vehicle being
| Present p(x)
Sensor
Fusion |
3
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Figure 37. Bayesian filter algorithm (multiple sensrs).
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Figure 39. Joint likelihood of a non-metallic objet
Figures 38 and 39 show the detection of two objects; in Fig. 38ittdikelihood being high
(about 0.8) suggests the presence of a vehicle and on the other hand hBiga3&ro joint
likelihood suggesting the presence of a non-metallic object. Thiscpoguis justified by
observing that the magnetic sensor data is low while only the ultegsicks up the presence of
an object.
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3.2.5. Full Scale Testing

To proficiently test the vehicle detection algorithm describetié previous section, data
collection was extended to a class 8 vehicle and collected during normdiapefahe vehicle.
A test fixture was fabricated to attach the sensors and data siogusgstem to a class 8 trailer
without disturbing normal operation. The design of this test fixturestiite account: powering
the system, protecting the system from excessive vibration, protéotirsystem from roadway
debris, providing the system with proper cooling and ventilation, maingaadcessibility to all

components, and attaching the fixture to the exterior of the trailer.

The final test fixture is shown in Fig. 40. The data acquisition haedveguired includes a 16
channel data acquisition system for the ultrasonic and magneticseDAN bus system for
radar sensors, and FireWire for the reference camera. The systeimchudes a 12 V deep cycle
battery and a 120 V pure sin wave inverter to make the system self-poWarelelps to avoid
introducing any noise from the truck’s power supply. All hardware in thdixage are secured
or isolated from vibration to avoid any damage that may be incurred from tle€sraibration.
To protect the computer used for data acquisition from excessive vibrasiolid atate hard
drive is used and the computer is surrounded by packaging foam. To protect thefigyste
roadway debris the text fixture is enclosed in 5/8” wood and securemhétahframe with
fasteners. The rear panels were fitted with cooling vents to prowidiatien for the computer
and the power inverter. All components of the test fixture are accessilg removable rear

and top panels.
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Figure 40. Equipment housing for road testing.
This fixture was designed to attach underneattirthiler to allow for normal use of the traile
The test fixture is attached to the trausing a carriagthat is secured to the trailer usir-beam

clamps (Fig. 4L The test fixture is slid into the carriage asd@cure using fastenersFig. 42).

Test fixture
carriage

Figure 41. Carriage for equipment housing.
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Figure 4Z. Equipment housing and carriage on large truck.
The ultrasonic sensors, magnetic sensors, and rear fadiiag veere attached on tleft and rear
of the trailer (Fig. 43)A combination of one ultrasonic sensor and one rdgensor wa

placed at the rear corner of the trailer and andiHfeet aheac

Ultrasonic and
magnetic sensors

Camera, ultrasonic, and
magnetic sensors

Figure 43. Sensor placement on large truck.
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The Class 8 truck was taken out on its normal delivery route and throughl spemific passing
scenarios. After completion of the testing it was discovered thaittlasonic sensor data was
noisy due to an electrical grounding issue and the data from both ultraswuocsseould not be
used. The results indicated that the magnetic and radar sturstiisned as expected. Video was

also acquired for reference.

Due to time constraints, additional testing on the class 8 truck coulgrmnducted for this
study. The final tests were conducted using a pickup truck driven throughs/passing
scenarios. The data from these tests is free from the induced nthisefdf scale test and is
comparable to the conditions of the full scale tests. The datgsanpiesented in the following

section uses this data.
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3.3.DATA ANALYSIS

Several road tests were carried out to test the performanoe Bagtesian filter algorithm in the
detection of vehicles and the rejection of false targets. The testsotedéssess the performance
of the filter while passing a variety of targets that couldafthe sensors, such as non-vehicle
magnetic objects and objects with dimensions similar to vehithesfollowing sections include:
how the filter performance is quantified, the filter performance féer@nt passing scenarios,

and recommendations for future work to improve the filter’'s performdreefollowing sections
include: Quantification of filter performance, filter performaneedifferent passing scenarios,

and recommendations for future work to improve the filter’'s performance.

3.3.1. Bayes Filter Algorithm Performance

The performance of the Bayes filter is quantified using the pexgesf true and false outputs

of the filter. Using the camera data as a reference of true veheslenze and the vehicle

presence likelihood output of the filter, the number of true and faleedilitputs can be

calculated. Figure 44 shows the four possible outputs of the fiherd&finitions and case names
that will be used for the remainder of this paper are described in Tdide this study, an output
from the filter is consideretlue (Case 1 and 2) if a vehicle is present (determined from the video
data) and the filter likelihood is over 0.5 (Case 1) or if a vehiaietpresent and the filter
likelihood is under 0.5 (Case 2). The filter output is considtisd(Case 3 and 4) if a vehicle is
present and the filter likelihood is under 0.5 (Case 3) or if a vehiclé mesent and the filter

likelihood is over 0.5 (Case 4).
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Figure 44. Filter performance.

TABLE 2. Filter performance cases.

Description

Action Taken

Filter reports a vehicle accurately

Proper action or
warning taken

Filter reports a “non-vehicle” target
accurately

No action taken

Filter reports a “non-vehicle” target
when a vehicle is present

Required action or
warning not taken

Filter
Case Output Case Name
1 True Present
True
2 True Absent
3 False Present
False
4 False Absent

Filter reports a vehicle when no
vehicle is present

Over-correction or
false warning

The performance of the Bayes filter can now be calculated by claggif filter outputs. Three

types of percentages are used to describe the performance of théh&lbeerall performance,

thevehicle presenpercentage, and tivehicle absenpercentage (Table 3). Tlogerall

performance is the percentage of how many true filter outputs (Case 1waeck2hade over the

entire data set. Theehicle presenperformance percentage shows how ntamg presenbutputs

(Case 1) were made for the total number of data points where gahile present. Theshicle

absentperformance percentage shows how namg absenbutputs (Case 2) were made for the

data points where vehicles were not present.oMeegall performance shows how many correct
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outputs the filter can produce while thehicle preserandvehicle absenperformances show

whether the filter is biased to positive or negative detections of vehicles

TABLE 3. Performance percentages.

Performance (% Equation

overall (True Present + True Absent) 100%
X
Total Number of Data Points 0

True Present

i x 1009
Vehicle Present Total Number of Present Points %

Vehicle Absent True Absent X 100%
Total Number of Absent Points 0

Analyzing the Bayes filter performance also requires consideratidhe testing environment.
The sensor models created in Section 3.2.2. were created in a controltedreemat where
vehicle data was collected when the sensors are stationary. Cheingat testing, it was
apparent that sensor environment has more variance and is more \datillbe environment
where data was collected in Section 3.2.2.To improve the implementattun fifter in this
unstable environment, further testing and data collection angeddo include the sensor
variations into the statistical sensor model. Other considerdtioimaproving the filter

performance are addressed in Section 3.3.3.

To demonstrate the effects of the sensor behavior on the filferppance, the results presented
in the following section show the behavior of the Bayes filter algoritbimg two independent
methods: first, with theevelopedensor model created in Section 3.2.2. and second, using a
tunedsensor model. Thieinedsensor model is created by modifying the ultrasonic sensor
variance and the expected magnetic field ranges afeéhelopedensor model. Theeinedsensor
model optimizes the performance of the Bayes filter algorithnach ef the individual scenarios
presented in the following section. The results for each indivehgalario are presented in the

format of Table 4. This data can be interpreted as a best and worstrfasag®ee measure.
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This table presents tlwrerall, vehicle presentandvehicle absenperformance percentages for

both thedevelopedndtunedsensor models.

TABLE 4. Example performance results table.

Overall Vehicle Present Vehicle Absent
Developed Mode --% --% --%
Tuned Model --% --% --%

3.3.2. Filter Performance

The following section shows the performance of the filter algorithm anpeiteentage of true
and false detection when the host vehicle passes various types of targetey cases, it is
possible for non-vehicular objects to have the same sensor behavimvératle may have. For
example, foliage on the side of the road may cause the ultrasonic sengputadigh belief
that a vehicle is present or railroad track may cause the mageresior $0 output a high belief
that a vehicle is present. The tests conducted show how the indi\etisalr ®ehavior affects the
overall belief of a vehicle’s presence. The following scenarios vedgeted to test the filter's
ability to discriminate from true vehicle detection and false targétstargets include:

« Two passenger vehicles True vehicle detection with high belief of vehicle

presence for both the ultrasonic sensor and magnetic sensor.

« Set of garbage containers- Possible false warning with high belief of vehicle

presence for ultrasonic sensor and low belief for magnetic sensor.

« Railroad tracks — Possible false warning with low belief of vehicle presence for

ultrasonic sensor and high belief for magnetic sensor.

« Building wall — Possible false warning with high belief of vehicle presence for

both the ultrasonic sensor and magnetic sensor.

Most of the above tests are less than 10 seconds in length; howeverpthegmethe typical

behavior of the Bayes filter algorithm during regular operation.
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Two sensors models are presented in each of the case scendeiasiopednodel and auned
model. Thedevelopednodel represents the sensor models developed in Section 3.2.2. The sensor
models for the ultrasonic and the magnetic sensor were created ivlledrgnvironment; but as
expected, the variance in the sensors’ behavior during the roadrtesflily captured in the
developednodel. The performance of the Bayesian filter usingltheslopednodel is presented,
but does not represent the full capability of the filter. To demonshratemaximum performance

of the filter during road testing, tltevelopednodel was tuned by adjusting the expected values
for the ultrasonic sensor and the magnetic sensor to values that meattimfilter performance.

It was found that the expected value and variance of the ultrasonic sersiefdlopednodel
provide suitable filter performance. However, the expected valuedanagnetic sensor was
changed from a range of 45 mG to 20 mG to maximize filter performance. Thiechaagnade
to fit the actual road test data, which better represents typiealgidonditions. Théunedmodel
was implemented to also demonstrate that the filter performance famhae increased by
creating more advance sensor models that can account for the sensarhetnarice that exist

in the real world.

Two Passenger Vehicles

In this scenario, the host vehicle passes two passenger vehicleskisupgession. This scenario
tests the baseline performance of the Bayes filter. It can be seign 4% Ehat the ultrasonic
sensor voltage goes low and the magnetic sensor voltage goes up when asvptesknt (34.5-
35.5 s and 35.7-36.6 s). THevelopedsensor model does not report the presence of the first
vehicle because the magnetic field amplitude is expected to be bé&t®%eed 62 mG (Fig. 32).
With thedevelopednodel the overall performance is 70.6%. For maximum performance, the
tunedsensor model shifts the expected magnetic field amplitude to the rah@e836fmG. This

brings the overall sensor performance to 90%.
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Figure 45. Two passenger vehicles test usingveloped and tuned senor models.

It can be seen in Table 5 that the filter is biased toWatdcle Absentmeaning that the filter is
more likely to report that a vehicle is not present. This has am&deof not setting off false

alarms, but also indicates that further testing is necessairyefeersible decision making.

TABLE 5. Filter performance while passing two passengerclesi

Overall | Vehicle Presen| Vehicle Absent
Developed Mode| 70.6% 100.0%
Tuned Model | 90.7% 78.4% 99.1%

Passenger Vehicle and Set of Garbage Containers
This scenario has the host vehicle passing both a vehicle as wshkiagfdarash containers. The
trash containers produce an ultrasonic signature that is similahicles. As the host vehicle

passes the target the Bayes filter is able to distinguish betwegaltltle and the trash bins. In
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Fig. 46, the ultrasonic sensor voltage goes low for both the passenger salithe trash
containers; however, the magnetic sensor voltage only changes fohitie.Mé can be seen
when using th&evelopednodel that the vehicle has a high probability of being present as
opposed to the garbage containers. The sanmaimodel (with the reduced range of magnetic

field strength) is applied to this data.
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Figure 46. Trash containers test usingleveloped and tuned sensor models.
The filter performs with 91.7% accuracy with tevelopednodel and 98.2% with thened
model (Table 6).This scenario shows that the Bayes filter has thg @bieject non-vehicular

objects that have heavy influence on one of the two sensors.

TABLE 6. Filter performance while passing a vehicle and tcasttainers.

Overall | Vehicle Presen| Vehicle Absent
Developed Mode| 91.7% 100.0%
Tuned Model | 98.2% 90.7% 99.9%
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Railroad Tracks

The next scenario conducted had the host vehicle drive over railroad Traeksilroad tracks
have a high magnetic influence, but no influence from the ultrasonic sensarsbe seen that

the Bayes filter continues to output a low likelihood of a vehicle’s presehen the host vehicle

passes over railroad tracks.
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Figure 47.

In this scenario, the Bayes filter performed at 100% wittdéheslopednodel (Table 7). The use

of atunedmodel was not applied to this scenario because the filter perfornauidenot be

further enhanced.

TABLE 7. Filter performance while driving over railroaddka (high magnetic influence).

Railroad tracks test usingdevel oped sensor model.

Overall

Vehicle Presen

Vehicle Absent

| Developed Mode| 100.0%

N/A

100.0%
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Building Wall

In this last scenario, the host vehicle is driven past a metal warefitneseuilding wall has high

influence on both range and magnetic signature. The host vehicle fhesstst of the building

around 16 s. and passes the end of the building around 26.8 s. In between those times, the

ultrasonic sensor voltage is low as if a vehicle was present and gimetiassignature is high as

well.
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Figure 48. Metal building test usingdeveloped and tuned sensor model.

It can be seen in Fig. 48 that when the host vehicle first passes the buildiitgrtihags a high

belief that a vehicle is present; however, that belief chandes®s. This is due to the prediction

model created in Section 3.2.2. The prediction model (Fig. 49) expects kvelbe in the

sensor’s field of view for 1.5 s. As time increase the likelihood that @&leakipresent is reduced

because a vehicle is expected to be within some dimensional constraints.
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Note that in final implementation of this system, the expected darafivehicle presence could
be controlled by host vehicle speed and road type (if available). Howeggorehliction
technique still has an issue if a vehicle pulls alongside a truck and #iehas speeds. More

work is needed to address that scenario.

& 25

o 2

T 15

P

2 04

5

o 05

&

% 0

B 1

o

=

T

E —Vehicle Present [\
o 05 Vehicle Absent

o]

a

k]

2 0 | | f f t t t t f f A
o 17 18 19 20 21 22 23 24 25 26 27

05

Likelihood of
Vehicle Presence

l l I
17 18 19 20 21 22 23 24 25 26 27
Time (s)

Figure 49. Ultrasonic sensor filter.

In this scenario, the filter had a delayed reaction in identifying thatimoleevas present. The
filter has shown the ability to reject false positive targeth titth strong range and strong
magnetic influence. The overall performance of the filter was 84T2#dle 8). The samtened

model was applied to further increase the filter’'s performance t&97.9

TABLE 8. Filter performance while driving over railroaddka
(high magnetic signature and high range influence).

Overall | Vehicle Presen| Vehicle Absent
Developed Mode| 84.2% N/A 84.2%
Tuned Model 97.9% N/A 97.9%
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3.3.3. Improving Filter Performance
The Bayes filter has room for improvement in two areas: the predictidelrand the corrective
model. The following sections discuss the specific tasks that have an opgddtimiprove the

filter's performance and increase the consistency of that performance

Prediction Model

Correction model input The current prediction model is based on edge detection of the

ultrasonic sensor, thus is influenced by noise of the sensor. To mirires noise effects the
prediction model must see a consistent low voltage or high voltage (about B06fams it can
take any action. Using the correction step to input the prediction stepdnsft using the sensor
reading will allow the filter to act without this delay and the dff@t the ultrasonic sensor will
not affect the prediction step. To modify the current prediction model a study oftléhen
correction step can be triggered to properly identify the presence ofcéevelist be completed.
While the current trigger takes a continuous low voltage for a period of 3@®identify the
presence of a vehicle, a prediction model based off the correction step magquilg one data

point above 50% belief, for example.

Correction Model

Sensor model varianceThe correction model that was used in the study was created from sensor

data collection in a single controlled environment which consisted of thedtdste parked on a
roadside while other vehicles passed at low speeds. This data was useer#begthe correction
model. Vehicle detection was consistently above 80% accurate whegahieéhat was operated
under similar conditions. However, when the system was tested under contigipdifered
significantly from those used to generate the correction model, thetemggigand accuracy was
lower. To improve the performance of the filter, sensor data collestionld be extended to

include more extensive “real-world” scenarios. In the road tests trata@nducted the
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ultrasonic sensor variance is much greater than the controlledisdbiaathe sensor model was
based on. In the tuned sensor models shown above the standard deviation of the seha@smode
increased to allow the likelihood of the vehicle presence to decreasboater rate as the vehicle
were detected closer and farther than the expected value of the sedsbrThe system could

be designed to change from one correction model to another depending on extemsas tiah

as location from GPS system, live traffic data, or vehicle-to-lelmmmunication. For example
one correction model could be used at low speeds on surface roads, a second fardswrspe

highways, a third for high speeds on highways, etc.

Weighting individual sensors Observations were made while comparing the video of vehicles

passing to the ultrasonic sensor and magnetic sensor. It was seen tha aases) the ultrasonic
sensor produced a belief that better represented the true vehielegeréisan the magnetic sensor
and vice a versa. The correction step may be further improved if the lagasiextended to give
an influential weight to the sensor that has a better reprasenéthe true vehicle presence or
the higher belief. An influential weight allows the algorithm to inddlynjudge its own belief. An
investigation on different statistical methods to change weiglaictgifs is recommended.
Additionally the weighting factors could be changed based on road conditiossriteat manner

as the correction model.

3.4.RESULTS MAPPING
The following sections present the areas that are most suitable forpleenentation of the
purposed crash avoidance system. These areas include:

Improving truck driver awareness

Improving nearby driver awareness

Preventing risky actions

Taking preventative actions
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3.4.1. Improving Truck Driver Awareness

A first level of countermeasure would be to use the sensing systempriove the driver's
awareness of the truck’s surroundings. This could be either continusitisafion display) or
only when objects of interest are detected (a warning system). itfomexchange would be
visual, audible, or haptic. These safety countermeasures rely on thetdking the necessary

action once alerted to a dangerous situation.

Continuous Situation Display
Since the system would be constantly scanning the rear and sides o€kheformation on the

current status of these scans could be used to provide a continuous aifitatriter.

Visual

Some sort of visual display would be added to the truck to indicate the prestaweasrobjects
nearby. This could be as simple as a ‘green/yellow/red’ indicatordigiwing the presence of
any vehicles in the detection range, or as complicated as a full-ggptaydshowing the top of

the truck and the positions and vehicle types for any objects iruttiestvicinity.

Provide Warnings

Instead of providing feedback continuously, information from the sensors cocatohbeyed to
the driver only when a vehicle is within the detection range. Alkednvarning systems carry
some risk of precipitating risky actions by startling the driver. Humaor&are critical in the

selection of an appropriate warning system.
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Visual
A visual warning would be implemented in much the same way as a continual Véglay.dT he
only difference is that the driver would only see the warning when objetedst are present.

As a result, the warning could be more intrusive (e.g. heads-up-display, flaghtay

Audible
Warning sounds could be used to indicate of the presence of nearby objeet aasheir
approximate locations (by using the truck’s 4-channel speaker systemmalinéenefits of this

option are low cost and less distraction potential.

Haptic
The steering wheel or seat mounts could be used to give some sense of wameg &

vibration when a vehicle is nearby. The major benefit would be redu&eaf dsstraction.

3.4.2. Improve Nearby Drivers’ Awareness

Accident data shows that proximity errors committed by car drivera fetor in most side and
rear heavy truck accidents with cars. In order to address this, a tremtt-$ensing system could
be used to trigger exterior warnings to the surrounding vehicles. iesé systems would
require very quick sensing and a simple, easily recognized message to hagm#icgnt effect.
These countermeasures also rely on the drivers (in this case, ebthy mehicles) to take an

appropriate action when warned of danger.

Visual Warnings
Exterior visual warnings could include flashing lights, flags, or pop-gussiWhen the sensing

system detects an object approaching into a danger zone, one of thesesxaulthdpe used to
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alert the other driver. If a visual signal could be triggeredefiastigh and were easily recognized

(like a flashing light), then proximity accidents might be reduced.

Audible Warnings
Horns or loudspeakers could be added on the rear and sides of the trailgraiogpsonple

warning message if a vehicle approaches too close.

Truck/Car Communication

Vehicle-to-Vehicle and Vehicle-to-Infrastructure communicationldesen discussed for many
years. If these systems are implemented, a truck-based sensing cyste be used to directly
inform nearby vehicles if they are entering a danger zone, and rely ohiahewsarnings to

notify each driver.

3.4.3. Preventing Risky Actions

Although it is important to keep the human in the loop, under certain conditions you eipnot
on the vehicle operator to take appropriate actions. If distracted arseoihfbout the situation,
drivers may even take actions that exacerbate dangerous situtigmeyvent such actions, it
may be possible to put passive/active countermeasures in place widdd be countermeasures
that do nothing except to resist or prevent a poor motion (e.g. turning into a taramather

vehicle inside) by the driver.

Haptic Warning

One easy way to convey information is through the steering wheel. If a @ttespts to move
the wheel in a direction that would move the truck to close to a neighboringevehelwheel
could vibrate or push back. The driver would still be able to make the maneuveoubdit w

receive some negative feedback about it.
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Resistive force

One step beyond steering wheel motion is a resistive force against the.rtidghe turn creates a
dangerous situation, progressively higher turning resistance could be apbitgedotld likely
work best when combined with another warning system, so the driver doesn’t jubapdshto
overcome the obstacle. As with motion, this system would still allow tiierdo make the

decision.

Audible or Visual Warnings

A visual or audible warning could be used to notify the driver when his¢hiena are risky. This
would be like the proximity warning mentioned in 3.4.10 above, but would only be ssdthe
driver was taking such an action. In other words, they could be less iatthiaiv proximity

warnings.

3.4.4. Taking Preventative Actions
If other countermeasures are unsuccessful at correcting a dangeratisrsitt may be necessary
for the safety system to take unilateral action. For rear andmnspiets, these actions may

include minor steering corrections and small accelerations or de#ierat

Steer

If a truck and nearby object are approaching rapidly and the driver hakemttarective
action, the venhicle steering system would be engaged in an attempt to widep thetween the
two vehicles. This action could only be taken if the safety system hade866e awareness of
the truck’s surroundings. In addition, it should be taken in concert with baking, so that the

maneuver doesn’'t move the truck outside of its own lane.
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Brake
If a vehicle is approaching the front side of the truck, an appropriate actiobenigint
deceleration. This would allow the other vehicle to move past the tubk ifront, preventing an

impact.

Accelerate
If a vehicle is approaching the rear or rear side of the truck, a lighleaation may enable the
two vehicles to avoid an impact. As with steering, however, this action shoyldeonbnsidered

if the safety system has 360-degree situational awareness.
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4. CONCLUSIONS

A thorough literature was conducted to identify state-of-the-ashamoidance system
technologies and opportunities to reduce the cost of current crash avoigeteaessor large
trucks. A sensor evaluation was conducted and several technologeesl@rified for this

system: magnetic sensors, ultrasonic sensors, vision system, and radar.

The magnetic sensor was identified as a cost reducing technologydlorsafaty; however, it has
primarily been developed for vehicle identification at intersestiand electronic compasses, but
not for vehicle type classification and real time crash avoidance. In thig, neqdiminary work
was conducted in the form of 2-D analytical modeling of dipoles and experirbent tests to
corroborate the findings of previous studies. A 3-D analytical singt@almodel was then
developed to better represent the magnetic phenomenon of real-world objéetailéd
parameter study was conducted to better understand the magnetic behdiodipole models
and the insights gained from the exercise were used for model matchinevitxperimental
data. Road tests were conducted to capture the 3-D magnetic baliashbicles. The single 3-D
dipole model was then extended to incorporate multiple dipoles for captugiegriplex
magnetic footprints recorded from vehicles. Mathematical functions leapfaboth eliminating
the sign dependency of magnetic signals and producing a magnitude threshadditietent
vehicle types were developed. The analytical and experimental studyotidiscted showed that
vehicle magnetic behavior could indeed be captured by mathenmtidels and that a magnetic

sensor could be used to identify vehicle types.

The magnetic sensor was identified as a suitable sensor for vdagddication; however, due to
the sensor’s range dependency, sensor fusion is required with a rargge Heisgeport
investigated the application of statistical algorithms in the formBéyesian filter to enhance

vehicle identification that uses an ultrasonic sensor andgmetic sensor combination. This
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research study utilized the knowledge gained by the authors in a previous stbody on t
applicability of ultrasonic and magnetic sensor fusion for vehicle wigted his report presents a
detailed description of the procedure to formulate a two stepciogdcorrection based Bayesian
filtering algorithm for both the ultrasonic and magnetic sensors. Statisensor models were
developed for each type of sensor and individually utilized in the Bay@gamlgorithm. The
results obtained showed a reduction in process noise and sensor anoaiatiegatively
influence the credibility of vehicle detection (Section 3.3.2.)oiAtjBayesian filter algorithm
was then developed to facilitate sensor fusion. Typical resulte dilter performance indicates
that the filter performs at greater than 80% accuracy overalrd3ults obtained clearly show
the ability of the probabilistic approach to further enhance the p@uictiobject detection and
discrimination capabilities of an ultrasonic-magnetic sensor fuggterm. This study shows that
this filter is effective for systems such as blind spot detection a@ndeelassification systems;
however, further studies must be conducted for systems that regemexsible decision making

such as airbag deployment or active braking.
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