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Abstract A pattern-based simulation technique using wavelet analysis is proposed
for the simulation (wavesim) of categorical and continuous variables. Patterns are ex-
tracted by scanning a training image with a template and then storing them in a pattern
database. The dimension reduction of patterns in the pattern database is performed by
wavelet decomposition at certain scale and the approximate sub-band is used for pat-
tern database classification. The pattern database classification is performed by the
k-means clustering algorithm and classes are represented by a class prototype. For
the simulation of categorical variables, the conditional cumulative density function
(ccdf) for each class is generated based on the frequency of the individual categories
at the central node of the template. During the simulation process, the similarity of
the conditioning data event with the class prototypes is measured using the L,-norm.
When simulating categorical variables, the ccdf of the best matched class is used
to draw a pattern from a class. When continuous variables are simulated, a random
pattern is drawn from the best matched class. Several examples of conditional and
unconditional simulation with two- and three- dimensional data sets show that the
spatial continuity of geometric features and shapes is well reproduced. A compara-
tive study with the filtersim algorithm shows that the wavesim performs better than
filtersim in all examples. A full-field case study at the Olympic Dam base metals de-
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posit, South Australia, simulates the lithological rock-type units as categorical vari-
ables. Results show that the proportions of various rock-type units in the hard data are
well reproduced when similar to those in the training image; when rock-type propor-
tions between the training image and hard data differ, the results show a compromise
between the two.

Keywords Pattern-based simulation - k-means clustering - Wavelet analysis -
Conditional simulation - Training image

1 Introduction

Simulation at spatially correlated continuous and/or categorical variables such as the
geological units and metal grades of mineral deposits, or sedimentary facies and
pertinent attributes of petroleum reservoirs and water aquifers is a challenging task.
The well-known variogram-based two-point statistical techniques (Goovaerts 1997;
Deutsch and Journel 1998) are limited in its ability to adequately model spatial com-
plexity (Journel and Alabert 1989). To address the limitations of two-point statistical
models, new developments have introduced high-order spatial statistics in the form
of the multi-point models (mp) (Guardiano and Srivastava 1993; Tjelmeland 1998;
Journel 1997). In multi-point models, a pattern is defined as a set of values spa-
tially distributed over a given template of spatial locations (Arpat and Caers 2007;
Remy et al. 2009). During simulation, multi-point conditioning data in the form
of a template is compared with patterns of the training image (a geological ana-
logue of what is being modeled) and a pattern is selected from the training im-
age. A pattern is selected either based on the most similar pattern (Arpat and
Caers 2007) or a random pattern from the best matched class (Zhang et al. 2006;
Wau et al. 2008). Different distance functions are used for similarity measures, includ-
ing Manhattan distance (Zhang et al. 2006), Ly-norm (Chatterjee and Dimitrakopou-
los 2011), and others.

The main goal of mp simulation methods is finding the best matching pattern
from a pattern database with the conditioning data event. A pattern database is gener-
ated by scanning the training image using the given template. The snesim algorithm
(Strebelle 2000, 2002) generates a search tree from the training image and modeled
conditional cumulative distribution function (ccdf) of patterns. The main disadvan-
tage of the snesim algorithm is that it is demanding in terms of computer random-
access memory (RAM) particularly when very large training images are used. RAM
requirements may limit snesim when large size simulation of several multiple cate-
gories is needed. The snesim algorithm searches for exact replicates of conditioning
data event. Since exact replicates may not always be possible to obtain from the pat-
tern database, some conditioning data points from the conditioning data event are
deleted. Arpat and Caers (2007) proposed an mp simulation algorithm termed as sim-
pat (simulation with patterns), which is not based on the exact match of the training
patterns with the conditioning data event but rather it searches for the best possible
match. A simpat algorithm considers the training image as a collection of patterns,
same as snesim, from which a pattern can be selected to locally match as close as pos-
sible to the conditioning data event. The main advantage of this algorithm is that no
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conditioning data points from the conditioning data event are required to be deleted;
however, the major limitation is that the entire pattern database will be searched to
find the best match at each simulating node; therefore computational time will be
extensively high.

The filtersim (simulation using filter scores) algorithm overcomes simpat’s com-
puting limitation (Zhang et al. 2006; Wu et al. 2008). Like simpat, the main advantage
of filtersim is that no conditioning data points need to be deleted from the condition-
ing data event for matching with the patterns from the pattern database. In filtersim,
similarly to snesim and other mp simulation approaches, scanning of the entire train-
ing image is performed using a given template to obtain patterns. Different filters
are applied on patterns to obtain values of filter scores. The patterns in the pattern
database are then grouped, based on their filter score values, into different classes.
The classes are represented by their prototype, which is the average value of all pat-
terns in a class. During simulation, the conditioning data event is compared with the
class prototypes to find the closest matched class. Unlike simpat, filtersim does not
need to search the entire pattern database. The algorithm is looking for ‘best match’
rather than ‘exact match’; therefore, no elimination of conditioning data points from
the data event is required. Honarkhah and Caers (2010) introduced a distance-based
simulation algorithm for efficiently classifying pattern database. Their results show
that the algorithm performs better than filtersim for pattern reproduction. However,
in all-pattern-bases simulation, a pattern is drawn randomly from a class; no condi-
tional cumulative distribution function (ccdf) is generated for each class like snesim
for categorical variable simulation. Therefore, the success of the technique is depen-
dent on how well the patterns in the pattern database are classified. Since no ccdf’s
are generated, the pattern obtained from a ‘best match’ class is random; no statistics
are involved in it.

In other approaches to mp simulation, researchers proposed a high-order spa-
tial cumulants-based technique where ccdf was generated by Legendre polynomials
(Dimitrakopoulos et al. 2010; Mustapha and Dimitrakopoulos 2010). In this frame-
work, the coefficients of Legendre polynomials are calculated using cumulant maps
generated from a training image. This high-order simulation technique is data driven
instead of training image driven and therefore reproduces high-order spatial statistics
of the data. The limit of this approach is that, at present, the framework is limited
to simulating continuous variables. Gloaguen and Dimitrakopoulos (2009) present a
different technique of conditional simulation using the inter-scale dependency at the
wavelet domain. The advantage of this approach is that the direct conditioning is easy,
but it is difficult to fitting the conditioning data in the wavelet domain.

As an alternative to other mp simulations, a pattern-based simulation algorithm
using wavelet analysis is proposed in this paper termed as wavesim. The pattern
database is generated in a manner similar to other mp simulation techniques. The
pattern database is classified by using wavelet approximate sub-band coefficients of
each pattern. The wavelet approximate sub-band can capture most of the pattern vari-
ability, and at the same time reduce the dimensionality of the pattern database. Pattern
database classification is performed using the k-means clustering technique. For cat-
egorical data simulation, the ccdf of the individual prototype class for the central
node category of the template is developed using the probability of each individual
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category within the class; however, for continuous data simulation, a random sample
is selected from ‘best match’ class. For simulation, the similarity of the prototype
classes with the conditioning data event is calculated. A random pattern is generated
from the developed ccdf of the ‘best match’ class. Unlike filtersim, wavesim is not
generating a random pattern from a class; rather, it generates a random pattern from
a ccdf developed for a class. However, for continuous data, no ccdf is generated.

The present paper is organized as follows. Section 2 describes the wavesim
method. A brief overview of pattern-based simulation is presented in Sect. 2.1, and
the basic fundamentals of wavelet analysis and dimensional reduction techniques are
presented in Sect. 2.2. The pattern database classification technique is presented in
Sect. 2.3, while Sect. 2.4 describes the ccdf generation of a class. The similar mea-
sures of the class prototype with the conditional data event are presented in Sect. 2.5.
Section 3.1 presents unconditional simulation using binary training image, three-
categories training image and continuous training image for two-dimensional prob-
lem. The conditional simulations of two- and three-dimensional continuous data are
presented in Sect. 3.2. The sensitivity of wavesim is presented in Sect. 4. An appli-
cation for simulating categorical variable of three-dimensional data at the Olympic
Dam base metal deposit in South Australia is presented in Sect. 5; and, conclusion
and discussion follow.

2 Method
2.1 Generation of a Pattern Database

Pattern-based simulation is viewed as an image reconstruction problem (Arpat 2004;
Zhang et al. 2006; Wu et al. 2008). Instead of directly reproducing the multiple-
point statistics of a training image, the training image patterns are reproduced in a
stochastic manner, and this ultimately respects the multi-point statistics of the training
image (Arpat and Caers 2007). Pattern-based simulation algorithms consist of two
steps. First, a pattern database is generated by scanning the training image using a
given template. Then, a pattern that provides the best match to the conditioning data
is searched from in the pattern database.

Define ti(u) as a value of the training image ti where u € G and Gy; is the regular
Cartesian grid discretizing the training image, tir (1) indicates a specific multiple-
point vector of ti(x) within a template T centered at node u, that is

tir ()={ti(u + h), G + h2), ... G0+ he), ., G+ ) (1

where the h, vectors are the vectors defining the geometry of the n7 nodes of tem-
plate T and @ = {1, 2,...,n7}. The vector h; = O represents the central location u
of template T'. The pattern database is then obtained by scanning #i using template 7’
and stored the multi-point ti7 (1) vectors in the database. For a categorical training
image with M categories, the training image is first transformed into M sets of binary
values I,,(u),m=1,.... M,ueT,

1, if u belongs to mth Category,
0, otherwise

In(u) = { (@)
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Thus, a pattern of M-categories can be represented as M sets of binary patterns,
where the mth binary pattern with indicator value 1 represents the presence of cat-
egory m, and value O represents the absence of category m at a certain location in
the template. Note that for continuous training images, no such transformation was
made and patterns tir (1) are saved as extracted from the training image. The pattern
database generated from continuous training image or categorical training image with
M -categories is now defined as patdbT.

2.2 Dimensional Reduction of a Pattern Database

After generating the patdbT irrespective of using a continuous or a categorical train-
ing image, the classification of the pattern database will be performed so that dur-
ing simulation, instead of searching the entire pattern database (patdbT), only some
representative members, i.e. prototypes of the classes, are compared with the condi-
tioning data event. However, when the template dimension is large, the dimension
of patdbT will also be large. Therefore, classification of this large dimensional pat-
tern database patdbT is a computationally demanding task. In previous research, the
patdbT classification was performed by reducing the dimensions of the pattern by
using few filter scores (Zhang et al. 2006; Wu et al. 2008). Zhang et al. (2006) and
Wu et al. (2008) used 6 and 9 filters for two- and three-dimensional training images,
respectively. Any dimensional pattern in the patdbT is represented by 6 x M filter
scores (for a two-dimensional image) where M is the number of categories (M = 1
for continuous image) present in the training image. A wavelet-based representation
of patterns is introduced where the dimension of the pattern-for-pattern classification
can be reduced by selecting the scale of wavelet decomposition.

Wavelets analysis can decompose a training image into different frequency com-
ponents (Mallat 1998). The wavelet decomposition of an image provides one ap-
proximate sub-band image and three high frequency sub-band images after one scale
decomposition of a two-dimensional training image. For further decomposition, the
approximate image is decomposed to obtain the next scale sub-band images. The
approximate sub-band provides average type information about the training image
and preserves most of the data variability of the training image. If the high frequency
sub-bands are added to the approximate sub-band, then the training image is perfectly
reconstructed. It is noted that the amount of data in an approximate sub-band is 2/*¢
times less than the amount of data in the training image, where j is the scale num-
ber in wavelet decomposition, and d is the dimension of the original image. Figure 1
shows an example of an original image and the reconstructed image after keeping
only the approximate sub-band image and zero padding to all wavelet sub-band co-
efficients after one scale decomposition. Figure 1 demonstrates that the image is well
reconstructed after reducing 75% of the data of the original image.

Let ti7 be a pattern from the pattern database patdbT with size p x p. If wavelet
decomposition of the given pattern is performed, then it can be presented as

Ny—1 J Nj—1

: L B B

ur = Z asi19yii+ Z Z Z Wi Wi (3)
i1=0 BeD j=1i,1=0
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Fig. 1 (a) Original image, and (a) Original image (b) Reconstructed image
(b) its reconstructed image after
reducing 75% of the data of the
original image

i .
20 40 6(;( 80 100 120 20 40 6(;{ 80 100 120

where D = {LH,HL,HH}, N; = %, and J is the number of scales, L and H are
low-pass and high-pass filters obtained from wavelet basis function, N = p when
p is even, N = (p + 1) when p is odd, ¢; is scaling function and VB are wavelet
functions. The scaling and wavelet coefficients a;_1 and w;_; at scale j — 1 can be
experimentally calculated by taking inner products

aj—1 = (tir, ;)

B - “)

wi_y = (tr. v7)
Each of these basis functions (¢; and wf ) is used to scan the M binary training
image. At each pixel location, the template of neighborhood data values is convoluted
by these basis functions to obtain the approximate and wavelet sub-band data for
category m. The length of the vector of generated approximate sub-band for the M-

categories image will be
N d
LN = ((—) x M) &)
2J

where d is the number of dimensions of the image. It is noted that the original length
of pattern vector is (N )4 x M). Therefore, depending on the value of j, the dimen-
sion of the original pattern vector can be significantly reduced. For example, a three-
dimensional template with size 16 x 16 x 16 for 4 categories has a vector length of
16,384, and if 2-scale wavelet decomposition is performed, the length of the vector
will be 256, which is significantly less than the original.

2.3 Pattern Database Classification

For classification of pattern database patdbT, the approximate sub-band of the
patterns, which is reduced in dimension depending on the value of j, is used.
The k-means clustering technique (MacQueen 1967; Hartigan and Wong 1979;
Ding and He 2004) is applied to classify the pattern database patdbT. The main idea
of k-means clustering is to divide the patdbT into a number of classes such that the
sum of the inter-class distance is maximized.

The k-means clustering is a simple unsupervised learning algorithm (MacQueen
1967). In this algorithm, the pattern database is classified based on the selected priory
cluster number (k). First, k patterns from the patdbT are randomly selected. These
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Fig. 2 All 36 patterns in a class after pattern classification of pattern database

k patterns represent the initial class centroids. Since the patdbT classification is per-
formed by using the approximate sub-band of patterns, randomly selected approx-
imate sub-band of k patterns from patdbT will act as initial centroids. Then each
pattern from the patdbT is assigned to a class which has the closest distance to the
centroids. After assigning all patterns into any one of those classes, the centroids’ po-
sitions are recalculated. This is an iterative process and the algorithm stops when the
centroids’ positions no longer change. The aim of the k-means clustering algorithm
is to minimize the following objective function

k n

T I) D) [ ©

where ||ti(J L j |? is the squared Euclidean distance between a pattern ti(j ) and the
centroids of class c;, and is a measure of the distance of the n patterns from their
respective cluster centers.

To provide an example of k-means clustering, Fig. 1(a) shows a two-categories
training image. A template size of 15 x 15 is used to extract patterns from the train-
ing image. The approximate sub-band of two-scale decomposition is used for patdbT
classification. If the number of classes is 300 for k-means clustering, Fig. 2 repre-
sents all patterns (36) falling in a particular class after classification of patdbT. It is
observed from the figure that the patterns look very similar, and the algorithm can
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Fig. 3 Prototype of a class 36 1
patterns of Fig. 2 ’
0.8
0.6
-
0.4
12} 5

5 10 15
X

easily classify the patterns. Since the pattern classification was performed using the
approximate sub-band after two-scale decomposition, the dimensionality of the pat-
terns is reduced from 225 (15 x 15) to 16 (4 x 4, size of approximate sub-band).
After classifying the patdbT by minimizing the objective function at (6), prototypes
of classes are calculated. These prototypes are used during the simulation process,
when the similarity between the conditional data event and prototype class is calcu-
lated. The prototype value is obtained by averaging all patterns falling into a particu-
lar class. Figure 3 presents the prototype of 36 patterns presented in Fig. 2.

2.4 Similarity Measures Between Conditional Data and Class Prototypes

After classifying the patdbT prototype calculation, simulation was carried out. Dur-
ing simulation, the similarity between the conditioning data event and the prototypes
of the classes are carried out. A sequential simulation algorithm (Goovaerts 1997)
is used for pattern-based simulation in this paper. At each visited node, a condi-
tioning data event is obtained by placing the same template used in the training
image, centering at the node to be simulated. The similarity between the condi-
tioning data and prototypes of classes are calculated by a distance function. A dis-
tance function is used to calculate the distance from the prototypes of classes to the
conditioning data event. The distance function used in this paper is L;-norm for
its success in template matching (Goshtasby et al. 1984; Kuglin and Hines 1975;
Chatterjee and Dimitrakopoulos 2011), and it is

3 Ntype
d(x,y) =) w;x (nt PEIOE y(j))z) )
i=1 YPe =i

3
S wi=1 ®)

i=1

where x is the conditioning data event, y is the prototype of class, nype is the number
of data from a particular data type, w; is weight associated with data types. Three
different data types are considered for distance calculation: hard conditioning data,
previously simulated node data, and pattern pasting node data. Generally, hard con-
ditioning data have higher weights than other data types.
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Fig. 4 Conditional cumulative 1.2 7
distribution function (ccdf) of a
class with two categories

03

c:cdjb 6 |

04

02

Lithology & Lithology B

If all the nodes within a template are known when simulating a node, the distance
calculation with a large template can be computationally demanding. To reduce the
computational time of a distance calculation, approximate sub-band coefficients after
wavelet decomposition of the conditioning data event are used. The modified distance
function can be presented as

Napprox

1 Napprox
d(x,y) = ( 3 (PR — yapp“”‘(j))Z), ©)

j=i

where ngpprox 1S a number of approximate sub-band coefficients after the wavelet
decomposition, x?PP™X is an approximate sub-band coefficient of conditioning data
event, and y?PP™* is an approximate sub-band coefficient of prototype class. If within
the conditioning data event any hard data are presented, (7) will be used for distance
calculations even if all the nodes within a template are fully known.

2.5 Conditional Cumulative Distribution Function (ccdf) of a Class for Categorical
Image

After measuring the similarities of the conditioning data event with the prototypes of
classes, the best matching class is selected. In filtersim, a random pattern from the
selected class is drawn and pasted in a simulated node. The probability of the central
node categories within a class may be different, which has not been considered in
filtersim. However in wavesim, a conditional cumulative distribution function (ccdf)
is generated for each class. This is developed by calculating the probability of oc-
currence of a particular category in the central template node, divided by the total
number of patterns in that class. For example in Fig. 2, out of 36 patterns, 7 times
the central node category is lithology A, and 29 times it is lithology B. Therefore, the
probability of occurrence of lithology A is 0.1944 (7/36) and probability of occur-
rence of lithology B is 0.8056 (29/36). The ccdf of that class can be presented as in
Fig. 4.
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During the simulation process, after finding the best matched class, a uniform
random number is generated. From the developed ccdf, the category at the central
node is obtained corresponding to the generated random number. Then, a random
pattern is drawn from the matched class patterns which have the same central node
category as the category obtained from the ccdf. After pasting the drawn pattern at a
simulated node, the next node is visited in a random path. The same distance function
and the patterns-drawing algorithm are performed until all nodes are simulated. The
algorithm stops when no nodes are left unvisited. It is noted that, for continuous
image, a random pattern is drawn from a class; no ccdf is generated for continuous
case.

The main steps of the wavesim are as follows:

1. Scan the training image #i using the given template 7. Perform wavelet decom-
position of the generated patterns using selected wavelet basis function and scale.
Save the wavelet coefficient and approximate coefficients in the pattern database.
If the training image is categorical image, generate M binary image from the M-
categories training image before wavelet decomposition.

2. Classify the patterns, based on only the approximate sub-band coefficients in pre-
viously defined cluster numbers and calculate the class prototype using the point-
wise averaging of all patterns within a class.

3. Define a random path visiting once and only once all unsampled nodes.

4. Use the same template shape 7" at each unsampled location u. The distance from
the class prototype is calculated from the conditioning data available within the
template using either (7) or (9). Select the class which has minimum distance
from the conditioning data. If no conditioning data are available, a random class
is selected.

5. Draw a random pattern from the prototype class and paste the pattern by centring
at the simulated location u. If any hard data or central node value of any already
simulated locations are present in any node within the template 7 at location u,
they are frozen before simulated pattern pasting. For categorical data, the random
sample is drawn based on ccdf generated for each class as described in Sect. 2.5.

6. Add the simulated value at point u to a different file to use it during distance
calculation.

7. Repeat Steps 4 and 6 for the next points in the random path defined in Step 3.

8. Repeat Steps 3 to 7 to generate different realizations using different random paths.

To demonstrate the strengths and improved performance of the ccdf-based model
over the random-sampling-based method for simulating the categorical image, an
example is demonstrated here. The patterns are extracted from Fig. 5(a) which repre-
sents a binary channel image using a 9 x 9 template. The unconditional simulations
are performed using wavesim-ccdf approach and without ccdf approach considering
the same random path. The numbers of clusters are same for both simulations. In
Fig. 5, parts (b) and (c) present one realization generated using ccdf-based approach,
and non-ccdf-based approach (random sampling), respectively. The results clearly
demonstrated that ccdf-based approach can reproduced better the channels’ shapes
in comparison with non-ccdf approach.
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Fig. 5 Comparison of (a) Training image
ccdf-based approach and

random sampling based 100
approach 80 %
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20 40 60 80 100
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(b) Unconditional simulation using ccdf (c) Unconditional simulation using random

based wavesim method sampling-based wavesim method

100

20 40 60 80100 20 40 60 80 100
X X

3 Application of the Proposed Method

The wavesim algorithm is validated by simulating known categorical and continu-
ous two-dimensional and three-dimensional data sets. The exhaustive data sets are
obtained from different sources. All runs are performed on a 3.2 GHz Intel(R) Xeon
(TM) PC with 2 GB of RAM. For wavelet decomposition, the Haar basis functions are
applied for all cases unless otherwise specified. The results of wavesim are compared
with filtersim results to make a valid comparison. The filtersim results are generated
by using SGeMS software (Remy et al. 2009). To assess the wavesim method, un-
conditional and conditional simulations are performed for categorical and continuous
data sets which are then compared against results from filtersim.

3.1 Unconditional Simulation

To perform unconditional simulation, binary training image, three-categories training
image, and continuous training image are considered and presented hereafter.

3.1.1 Two-categories Training Image

For unconditional simulation of categorical image, the wavelet decomposition is per-
formed after generating the pattern database to reduce the dimensionality of the pat-
tern database. The critical step of wavelet decomposition for dimensionality reduc-
tion is the selection of optimal scale. The main goal of dimensional reduction is to
retain maximum data variability by fewer dimensions. The successfulness of the di-
mensional reduction is depends on how the lower dimensional space is preserving the
energy (entropy) of the original data (Huber 1985). In wavelet analysis, the energy is
distributed over the scales. Therefore, an optimal scale, in which the characteristics
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frequency is most dominated compared to the other, must be selected. The Shannon
entropy (Schiirmann 2004) is an efficient tool for calculating the entropy at differ-
ent scales. To select optimal scale, we have calculated wavelet entropy value of each
pattern ti7 at scale j using the following equation

==X ol o) 1o
BeD
where
Nj=1 B 2
B = Zu:o w7 1
i~ Nj—1 g
2_BeD 2i.i=0 |wj,i»l|2
and
N
2J

and j is the scale of decomposition; w; ; ; is wavelet coefficients in scale j at location

@i,0).

The average of entropy for all patterns in the pattern database is calculated by

1 N )
Ej:;ZE;‘, (11)

ti=1

where s is number of patterns in pattern database. The value of (11) is compared by
changing the scale j and optimal scale is selected where the value is the maximum.
Figure 6 demonstrates the optimal scale selection algorithm applied in this paper. The
entropy value is calculated starting from scale j = 1 and stopped when the maximum
scale is reached. The maximum scale is that when no more decomposition is possible,
i.e. the scaling image has only one pixel (data).

To demonstrate our scale selection algorithm, we have used a binary training im-
age (Honarkhah and Caers 2010; Strebelle 2000). The training image is presented in
Fig. 5(a). This training image represents complex channels presented in a deposit.
The template size is selected using the method proposed in Honarkhah and Caers
(2010) and it is 9 x 9. The patterns are extracted from the training image and up to
scale 4 wavelet decomposition was performed. The average entropy values are calcu-
lated for each scale using (11) and plotted in Fig. 7(a). Form Fig. 7(a) it is observed
that the entropy value of the binary channel training image is first increased from
scale 1 to scale 2 to and then starts decreasing. Thus, the optimal scale for the exam-
ple is 2. To check the scale selection approach, we have unconditionally simulated
the binary training image using the approximate sub-band of scale 1 to scale 4 and
presented in Fig. 7(b)—(d). These figures show that the simulated realizations are al-
most same for scale 1 and scale 2; but the channel reproduction deteriorates when
we move from scale 2 to scales 3 and 4. Therefore, the channel reproduction of the
simulated realization also supports that the optimal scale for this example is 2.

After selecting the optimal scale, the unconditional simulation is performed using
the same binary training image and compared to the results obtained from filtersim.
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Fig. 6 The optimal scale
selection algorithm Start

Choose training image
fi and template T
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Construct pattern
databasepatdbT

Select scale of
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Calculateentropy E; —is]
using Eq.(11) R

Select optimum scale
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The parameters used for the simulations from the wavesim and filtersim are the same.
Note that the inner patch size is 5 x 5. The k-means clustering algorithm is used
with number of classes at 100. Two different unconditionally generated realizations
using wavesim and filtersim are presented in Fig. 8. It is observed from the figure that
the wavesim can reproduce channels presented in the training image. On the other
hand, filtersim fails to reproduce the continuity of the channels. The main difference
between the wavesim and filtersim is the way of classifying the patterns in patterns’
database. The example shows that when classifying patterns, using only few filter
scores is not always possible to capture the complexity present in the available pat-
terns, resulting in discontinuities of the channels when unconditional simulations are
performed.

3.1.2 Multi-Categories Training Image

To perform unconditional simulation with multiple categories, a three-categories
training image is obtained from Osterholt (2006). The training image size is 50 x 200
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Fig.7 (a) Entropy value at different scale of the training image; and (b)—(e) unconditional simulations by
selecting different scales of decomposition

pixels coding three different geological units (Fig. 6(a)). The template size used in
this example is 11 x 11 and pasting is 7 x 7. The optimal scale of decomposition
for this example is also 2. The number of wavelet coefficients used for classification
after two-scale wavelet decomposition is 9. Different unconditionally simulated real-
izations of the wavesim and filtersim are presented in Fig. 9. It is observed from the
figure that wavesim provides better reproduction of geological model as compared to
filtersim.
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Fig. 8 Two simulated (a) wavesim # Realization 1 (b) wavesim # Redlization 2
realizations of the wavesim (a),
(b) and the filtersim algorithm 100 100
(), (d) 30/ 30M™;

60 60

ks . >

40 40

2 2

20 = 20 : ]

20 40 60 80 100 20 40 60 80 100
X X
(c) Altersim # Realization 1 (d) fltersim # Realization 2

A W
20 40 60 80 100
X

(a) Training image
200

(e) FILTERSIM
200

180

160

140

B Category 1 Category2 Hl Category 3

Fig. 9 3-category training image (a); two simulated realizations of wavesim (b), (¢); and filtersim algo-
rithm (d), (e)

3.1.3 Contentious Training Image
For unconditional simulation of continuous data, an exhaustive two-dimensional con-

tinuous horizontal slice is obtained from a three-dimensional fluvial reservoir. The
exhaustive data sets used here are obtained from the Stanford V Reservoir Data Set
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Fig. 10 Continuous training image (a); two simulated realizations of wavesim (b), (¢); and filtersim algo-
rithm (d), (e)

(Mao and Journel 1999). The channel configurations and orientation is complex in
nature form one slice to another in the vertical direction. The size of the domain to be
simulated is 100 x 128. The number of clusters chosen for this analysis is 200. The
sensitivity of the number of clusters is presented in Sect. 4.

The template size used in this study is large enough to capture high variability
of patterns (15 x 15). Two-scale wavelet decomposition was performed after zero
padding with template since wavelet needs even size template. After zero padding at
last column and last row, template size is converted to 16 x 16. The pattern database
is generated by scanning the entire training image and performing the wavelet de-
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Fig. 11 Histograms of unconditional simulated realizations of continuous training image using wavesim
and filtersim algorithms

composition of the pattern database. The approximate sub-band is utilized for pattern
data classification. The optimal scale for this problem is 3. Therefore, the dimension
of the data for pattern classification is reduced from 225 (template size 15 x 15) to 16
(approximate sub-band size 4 x 4). Two realizations are generated by wavesim and
filtersim algorithm and presented in Fig. 10. It is observed from the figure that with
wavesim channels are well reproduced; however, filtersim fails to reproduce channels.
Moreover, from visual observation, it shows that the proportions of high, medium,
and low values are well reproduced by wavesim which is not reproduced by the fil-
tersim algorithm. This observation is also supported by the histograms of simulated
realizations of wavesim and filtersim (Fig. 11) and their comparisons with the his-
togram of the training image.

3.2 Conditional Simulation

Two different examples are shown for conditional simulation with the wavesim and
compared with the filtersim results. One two-dimensional and one three-dimensional
continuous data examples are presented hereafter.

3.2.1 Two-Dimensional Conditional Simulation with Continuous Data

The same Stanford V Reservoir Data Set (Mao and Journel 1999) is used for condi-
tional simulation example. One slice of the three-dimensional reservoir data is used
as reference image where from conditioning data are sampled. Another slice is used
as the training image. The size of the domain to be simulated is 100 x 128.

The reference image to be simulated is presented in Fig. 12(a). The simulation
was performed using two different data sets. The first data set consists of 208 data
on regular grid at equal spacing. The second data set consists of 100 data at irregular
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Fig. 12 (a) Reference image; (b) hard data set 1; (¢) hard data set 2

spacing scattered all over the domain. In Fig. 12, parts (b) and (c) represent first and
second data sets, respectively. The training image used in this study is the same as
used in last example (Fig. 10(a)). The template size and scale of wavelet decomposi-
tion are also the same as in last example (Sect. 3.1.3). The k-means clustering with
cluster number 300 is used for training pattern classification. During simulation, the
distance from the cluster centers to the conditional data are calculated either using (7)
or (9) depending on whether the conditional data template is fully informed or not.
The weights of hard data, previously simulated node point, and patch data are 0.5,
0.3, and 0.2, respectively for distance calculation. When the conditioning data set is
fully informed, only approximate sub-band coefficients after wavelet decomposition
are used. The conditionally simulated realizations generated by wavesim and filtersim
using the first data set, are presented in Fig. 13. The realizations show that the high-
valued channels are well reproduced. The comparison study with filtersim realizations
shows that the channels continuity is well reproduced using wavesim as compared to
filtersim. The histogram and variogram of the simulated realizations are compared
with the data histogram and variogram and presented in Fig. 14. The results revealed
that the first- and second-order statistics are well reproduced using wavesim. To show
the multi-point reproduction of wavesim method, the 3-point cumulant maps of the
training image and simulated realizations are generated. The 3-point template pre-
sented in Fig. 15(a) is used for cumulant calculation. Figure 15(b)-(d) demonstrates
that wavesim can reproduce well the cumulant map of the training image.
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Fig. 13 Two simulated realizations using wavesim (a), (b); and filtersim algorithm (c), (d)
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Fig. 14 (a) Histogram and (b) variogram of simulated realizations (solid line) and hard data set 1 (circle)

In the second example, data set 2, shown in Fig. 12(c), is used as hard conditioning
data. All other parameters are kept the same as in the previous example. Two condi-
tional realizations using wavesim and filtersim algorithm are presented in Fig. 16. It is
observed from the figure that the channels are not reproduced as good as in previous
example using wavesim as well as filtersim, which is reasonable with less number
of conditioning data. However, continuity of high-valued channels is much better as
compared to filtersim algorithm. The histograms and variograms of realizations are
well reproduced in the hard data histogram and variogram as presented in Fig. 17.
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Fig. 18 Cumulant maps of two simulated realizations with hard data set 2 by wavesim

Same as in previous example, we have generated cumulant maps of the simulated
realizations and presented them in Fig. 18. The figure shows that 3-point cumulant
maps are well reproduced in the training image cumulant maps.

3.2.2 Three-Dimensional Conditional Simulation with Continuous Data

To performed three-dimensional conditional simulation for continuous data, we have
rescaled the Stanford V Reservoir Data Set (Mao and Journel 1999) to 100 x 100 x
28. One part of the three-dimensional reservoir data is used as training image and the
other part is simulated using wavesim and filtersim algorithm. The size of the training
image and reference image is 100 x 5 x 28 each.

The reference image to be simulated and the training image are presented in
Fig. 19(a) and (b). The simulation was performed using 153 hard data from reference
image. The template size used in this example is 11 x 11 x 7 and 7 x 7 x 5 pat-
tern is pasted. The optimal scale of decomposition for this example is 2. Therefore,
two-scale wavelet decomposition is performed and approximate sub-band of size
3 x 3 x 2 is used for pattern classification. Due to dimensional reduction technique us-
ing wavelet decomposition, the pattern dimension is reduced from 847 (11 x 11 x 7)
to 18 (3 x 3 x 2). The dimensionality of the data is reduced more than 47 times.
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Fig. 19 Three-dimensional training image (a); reference image (b); filtersim realization (c); and wavesim
realization (d)

Since major computational time of the pattern-based simulation is utilized for pattern
similarity search during simulation, therefore the computing time of the algorithm
will be also reduced after dimension reduction. The number of clusters used in this
example is 300. Figure 19(c) and (d), shows two different realizations generated us-
ing wavesim and filtersim algorithms. After comparing with reference image, it is
observed that wavesim well reproduced the channels shapes; however, filtersim fails
to reproduce the channels shapes.

A contributor to the success of a simulation algorithm, in terms of use for real
world applications, is its computational efficiency. The proposed algorithm is imple-
mented in the MATLAB environment, which makes it difficult to compare the CPU
time taken in our various examples to filtersim or other algorithms which are imple-
mented in the C++ environment. The main difference between our proposed algo-
rithm and filtersim is the dimensionality reduction. Both the algorithms are using the
same clustering algorithm and simulation steps are almost the same. The computing
time depends on the number of reduced dimensions.

In Sect. 3.1.1 and for a binary training image, we have used the approximate sub-
band of 2-scale wavelet decomposition of a 9 x 9 training image. Therefore, the
number of variables used for classification in our algorithm is 9 in comparison to 6
of filtersim. Thus, the computing time of our proposed approach is slightly higher
than that of filtersim for the simulation images in Fig. 8. However, in Fig. 7 we have
presented different realizations of the same training image using 3-scale (4 variables)
and 4-scale (1 variable) decomposition. It is observed in Fig. 7 that the simulation
using 3-scale and 4-scale decomposition is also performing better than the filtersim
results (Fig. 8(c), (d)). Since 3-scale and 4-scale are using less number of variables,
4 and 1 respectively, than filtersim, computing time will also be less for the proposed
method compared to filtersim.
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4 Sensitivity Analysis

It is now clear from presented examples that wavesim has performed better than the
filtersim algorithm for continuous and categorical, two- and three-dimensional prob-
lems. However, the success of the proposed method, same as for filtersim, depends
on some parameters. In this section, we will present the sensitivity of the proposed
method to different parameters. The number of clusters for pattern database classi-
fication, type of basis functions used, weights assigned to the distance calculation,
the number of wavelet coefficients used for distance calculation will be investigated
in the simulated realization. In this section, the sensitivity of the method is tested
using conditional simulation techniques with same data set presented in Sect. 3.2.1.
The data set 1 is used as conditioning data for sensitivity analysis unless otherwise
mentioned.

4.1 Sensitivity to the Cluster Number

The sensitivity of the wavesim algorithm is studied using the training image of
Fig. 10(a). All parameters are kept the same as in the example of Sect. 3.2.1 except the
number of clusters. It is noted that during simulation the distances are calculated from
the conditioning data to the cluster centers. Therefore, when the number of clusters
is large, several distance values have to be calculated and consequently the compu-
tational time becomes higher. On other hand, due to large number of clusters, the
number of patterns within a cluster will be less. Therefore, when a random drawing
is performed from a cluster, it is expected that the closely similar pattern of condi-
tioning data event will be drawn from a cluster. In this example, four different cluster
numbers 50, 100, 200, and 300 are chosen. Figure 20 presents simulated realization
generated by changing the cluster numbers. The result revealed, as expected, that the
channels are reproduced much better, same as in the other pattern base simulation,
when number of clusters is bigger. However, computational time is also highest for
cluster number 300.

4.2 Sensitivity to the Wavelet Basis

In this example, we have presented the effect of wavelet basis function in the proposed
algorithm. Three different basis functions are used: Haar, Daubechies 3 (db3) and
Daubechies 5 (db5) (Daubechies 1992). Higher-order Daubechies filter has higher
vanishing moments thus the approximate sub-band of db5 can store more energy of
the pattern than the db3 and Haar. Therefore, it is expected when the distance cal-
culation will be performed based on only the approximate sub-band, db5 or higher
Daubechies filter may provide better cluster match with conditioning data event. In
this example, number of clusters is 200. The weight values are 0.5, 0.3, and 0.2 for
hard data, previously simulated nodes, and patch nodes, respectively. Only the ap-
proximate sub-band is used for patterns database classification. Figure 21 presents
the simulated realizations generated with three different basis functions. The chan-
nels are well reproduced with three different basis functions, as reproduced in previ-
ous examples. The results show that there are no such significant differences observed
in simulated realizations when different basis functions are used.
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Fig. 20 Simulated realizations with cluster number (a) 50; (b) 100; (c) 200; and (d) 300

It is always expected that when the higher order wavelet basis functions will be
used, the results of the simulated map should be improved. However, we have not
observed that improvement in this case. The possible reason may be that the approx-
imate sub-band coefficients using Haar basis are sufficient to capture the complexity
present in the patterns of the training image. It implies that even if we have not seen
any such improvement in this case with increasing the order of wavelet basis, the
improvement may be observed when the training image pattern is more complex.

4.3 Sensitivity to the Training Image

In this example, the sensitivity of the training image is performed. In this test, the
training image of the previous examples is rotated to change the orientation of the
channels. Figure 22(a) shows the rotated training image used in this example. Data
set 1 and data set 2 are used as hard data for this exercise. The number of classes is
300 in this example. The weights and other parameters are the same as in example
in Sect. 4.2. Figure 22 represents different realizations for data set 1 and data set 2
with the rotated training image. The result showed that the directions of the channels
of the simulated realizations are the same as the reference image with data set 1;
whereas the directions of channels are different with data set 2, as expected. The
result revealed that changing the orientation of the training image does not affect
the simulated image in terms of orientation of channels when sufficient number of
hard data is available; however, the conflict between hard data and training image is

@ Springer



Math Geosci (2012) 44:343-374 367

(@) Haar (b) db3

4 ey LT | e . i
20 40 60 80 100120 20 40 60 80100120
X X
(c) db5

0.3

0.2

0.1

20 40 60 30 100120
X

Fig. 21 Simulated realization using data set 1 with three different basis functions (a) Haar; (b) db3;
(¢) db5

observed, same as other pattern base simulation, when small number of hard data are
available for simulation.

4.4 Sensitivity to the Number of Wavelet Coefficients

The examples presented so far were performed by calculating the distance from the
conditioning data event to the cluster center using only approximate sub-band coef-
ficients if the conditioning data event is fully informed (9). However, it is presented
in different literature that by only keeping few wavelet coefficients with approximate
sub-band coefficients can improve the quality of the reconstructed image significantly
(Donoho et al. 1996; Vannucci and Corradi 1999). Therefore, in this example, the
distance calculation was performed by using few wavelet coefficients along with ap-
proximate sub-band coefficients when the conditioning data event is fully informed.
The dimension of the resultant data for distance calculation will be not increased
much by adding few wavelet coefficients; however, adding few coefficients may in-
crease the power of the algorithm. Four different runs were performed by changing
the number of wavelet coefficients. In the first run, only approximate sub-band is
used. In other three runs, numbers of wavelet coefficients incorporated for distance
calculation are 40, 80, and 100.

Figure 23 presents the realizations generated by four different runs. The result
showed that when 40 wavelet coefficients are incorporated for distance calculation,
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Fig. 22 Different simulated realizations using data set 1 (b), (¢) and data ser 2 (d), (e) with rotated training
image (a)

there is some improvement in the generated realization; however, when 80 and 100
wavelet coefficients are incorporated, very little improvement is observed for this
example. It is noted that increasing the number of wavelet coefficients for distance
calculation means the representative features of the template is tending towards exact
template. When all the wavelet coefficients will be incorporated, it will represent
the exact template and the computational time will be the same as the pixel-wise
distance calculation. Therefore, a trade-off between the complexity and accuracy,
as always, needs to be carried out. The result revealed from this example that with
few wavelet coefficients (in this example, 40) along with approximate sub-band can
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Fig. 23 Simulated realizations when distance calculation was performed using approximate sub-band and
(a) no wavelet coefficients; (b) 40 wavelet coefficients; (¢) 80 wavelet coefficients; and (d) 100 wavelet
coefficients

reasonably calculate the distance from the cluster centers, thus improving the quality
of the simulated maps. It is noted that the observation is a case in a specific example.
One may need more number of wavelet coefficients when the image is more complex.

5 Case Study

The Olympic Dam base metal deposit, Southern Australia, is simulated in this sec-
tion, using the hard data presented in Fig. 24 and the training image shown in Fig. 25.
The training image #i is scanned with the three-dimensional template (7)) to gener-
ate pattern database patdbT. The size of template is generally decided based on both
the size and complexity of the training image. For large and complex training images,
a large template is used; however, for small and less complex training images, a small
sized template is sufficient for capturing the pattern variability. In this case study, the
template size chosen is 7 x 7 x 3. The pattern database is classified using the k-mean
clustering algorithm. The number of clusters used in this study is 300 to capture the
complexity of patterns present in the study area. A total of 64,000 blocks are simu-
lated with the proposed approach within the study area. Three-dimensional sections
of five simulated realizations of the study area are presented in Fig. 26.
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To assess the performance of the algorithm, histograms, indicator variograms, and
indicator cross-variograms were calculated for the various rock codes. Histograms of
hard data, the training image and five simulated realizations are presented in Fig. 27
and show that the proportion of rock code 0 is well reproduced; however there are
some deviations for other rock codes. The reason is that the proportions of rock codes
are not same in the training image and available hard data. All simulated realization
proportions for these rock codes are in-between the hard data and the training image
proportions. These results demonstrate that if the training image and hard data share
the same proportion of rock codes, the proposed algorithm can reproduce the exact
proportions.

The reproduction of the directional variability is tested by calculating directional
indicator variograms. The directional indicator variograms hard data and simulated
realizations are presented elsewhere (Chatterjee and Dimitrakopoulos 2010). The in-
dicator variograms and cross-variograms show that the directional variability of hard
data for these rock types is reproduced by the simulated realizations.

Similarly to other multi-point simulation techniques, since the patterns are ob-
tained from the training image, the wavesim is also training image driven. Thus, when
conditional simulation is performed, the simulated realization reproduces the statis-
tics of the training image. When the amount of hard data is increased, the effect of
hard data is introduced in the resultant simulated realizations, and a clear conflict
between hard data and training image statistics will be observed in simulated realiza-
tions, similarly to other mp simulation algorithms. As a result, if the statistics of the
hard data and the training image are distinctly different and the conditional simula-
tion is performed using a considerable number of hard data, the simulated realizations
will fail to reproduce the training image or hard data statistics.

6 Conclusions

A pattern-based conditional simulation algorithm, wavesim, is presented. The algo-
rithm uses wavelet basis function for dimensional reduction of patterns. The tech-
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Fig. 25 Training image used
for simulating Olympic Dam
base metal deposit, Australia
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40
40 40

@ Il Rock code 0

[ Rock code 1

e [ Rock code 2

500m I Rock code 3

40
40 40

@— Il Rockcode0
[ Rockcode1
e [] Rockcode 2
600m Il Rockcode 3

nique is based on pattern classification and pattern matching; the dimensional reduc-
tions of the patterns were performed by wavelet decomposition. The pattern classifi-
cation was performed by the k-means clustering algorithm. The algorithm is verified
by two- and three-dimensional conditional and unconditional simulation using differ-
ent data sets like binary and two-class categorical data, continuous complex channels
data. The algorithm reproduced the continuity of the channels for two- and three-
dimensional examples using conditional and unconditional simulation. The compar-
ative study with the filtersim algorithm showed that the wavesim performed better
than the filtersim for reproducing the continuity of the channels for all examples.
The sensitivity of the algorithm to different parameters was also explored. The
study shows that the algorithm is sensitive to the number of clusters, like other
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pattern-based simulation methods, and the orientation of training image. Therefore,
optimal selection of the cluster number may help to improve the performance of the
wavesim algorithm. Moreover, the algorithm is not sensitive to two key parameters
of the wavesim algorithm, that is, the wavelet basis functions and number of wavelet
coefficients. However, this is the case specific observation. It is true that an exten-
sive sensitivity study is required with different levels of complex training image to
show the true effects of wavelet basis functions. That will be considered in our future
study. The case study at Olympic Dam mine was presented for multi-class categori-
cal conditional simulation. The results showed that the proportion of the rock codes
is reasonably reproduced.

The major advantages of the wavesim algorithm are: (a) due to the nature of the
approximate sub-band of the wavelet decomposition, which reduces the dimension-
ality of the pattern and captures most of the data variability, the pattern classification
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of the high dimensional pattern database can be performed successfully with less
computational effort; and (b) since the ccdf is developed for each class for categori-
cal simulation, the pattern drawing from a class is performed based on a probability
law, rather than random drawing, which may help with the reproduction of channels
better.

The limits of this technique are similar to other mp simulation methods: (a) the
algorithm is training image driven, therefore when the statistics of the training image
and hard data are different, the algorithm will reproduce statistics in-between the hard
data and training image; and (b) when the number of categories in the categorical im-
age increases, the dimension of the pattern database will increase considerably, thus
the dimensional reduction technique using the approximate sub-band after wavelet
decomposition of the pattern database may not be computationally efficient.
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