
INTEGRATING SYlVIBOL-ORIENTED AND SUB
SYMBOLIC REASONING METHODS INTO 
HYBRID SYSTEMS 

FRANZ J. KURFESS 
Computer Science Department, California Polytechnic State University 

Knowledge representation and reasoning methods in artificial 
intelligence almost exclusively rely on symbol-oriented methods: Statements 
describing aspects and objects of the system to be modelled are represented 
through symbols (mostly text strings), and these symbols are stored in a 
computer, and manipulated according to the inference rules prescribed by the 
reasoning method. This works reasonably well in situations where 
knowledge is available in explicit form, typically through experts or written 
documents. In situations where knowledge is only available implicitly, e.g. 
in large data sets, other methods, often based on statistical approaches, have 
been used more successfully. Many of these methods are based on neural 
network techniques, which typically represent and process knowledge at a 
level below symbols; this is often referred to as sub-symbolic representation. 
This contribution discusses approaches to integrate symbol-oriented 
reasoning methods with sub-symbolic ones into hybrid systems. 

14.1 INTRODUCTION 

This paper consists of three main section: First, we present the 
foundations by clarifying the terminology used, and by briefly outlining 
important concepts and aspects of knowledge-based systems as 
representatives of the symbol-oriented approach, and neural networks as 
representatives for the sub-symbolic one. Then we discuss general strategies 
for the combination and integration of the two different types of approaches 
into variations of hybrid symbol-oriented/sub-symbolic systems, and fmally 



we present a few specific models for this integration discussed in the 
literature. 

Although artificial intelligence (AI) methods have been applied 
successfully to a large variety of problems, it has become clear over time 
that there are substantial fundamental and practical limitations that inhibit 
their widespread use. Thoughout this paper, we will categorize AI 
approaches into two broad classes: The ones that rely heavily on symbols for 
the representation and processing of knowledge, and the ones that utilize 
methods where the role of symbols in knowledge representation and 
processing is not evident. The first category will be labelled as symbol
oriented or symbolic approaches, and includes expert systems, theorem 
provers, or planning systems as typical examples. The second one is referred 
to as sub-symbolic approaches, with neural networks as their main 
representative. The term sub-symbolic indicates that the basic entity for 
storage and presentation is at a lower abstraction level than a symbol. These 
basic entities sometimes correspond to identifiable properties of an object or 
concept to be represented, and then are often called (micro-) features. At 
other times, however, the correlation between the item to be represented, and 
the entities that contribute to its representation in the model is not clear at all. 

Large quantities of knowledge and information are nowadays available 
through computer systems, but our current methods for organization, 
manipulation, storage, and retrieval are rather tedious. Access to information 
stored on a computer typically relies either on the knowledge of the location 
(such as the directory, file name, or Web page), or on syntax-oriented search 
based on keywords. Whereas more advanced techniques such as the ones 
used by the Google search engine greatly improve the utility of these 

.approaches, much of the effort in identifying, retrieving, and utilizing 

.knowledge still depends on the human user. 

14.1.1 Terminology 

The purpose of this section is to clarify the meaning of terms used in the 
rest of this contribution, in particular the terms data, information, and 
knowledge. Of particular interest in our context here are also the more 
specific terms structured knowledge, symbol, symbol-oriented, sub
symbolic and symbol grounding. 

In this context, the term data frequently describes the input and output 
for computer programs that process these data items in order to provide 
useful information or knowledge to the human ·user. An important aspect of 
data is their rigid, simple, predetermined structure. Typical examples are 
weather data such as temperature and precipitation collected at various 
locations and over a certain period of time, or the data collected by credit 



card companies for transactions between customers and merchants. It is 
important to note that data are typically grouped into sets (or records in data 
base terminology), and that the values stored in such a record can be 
meaningless without knowledge of the meaning of that particular field 
within the record. 

The term information is frequently used as a rather broad and generic 
term, and - even worse - often as synonym for knowledge or data. It has a 
precise meaning in some specific areas, such as information theory, but this 
is not directly applicable to our discussion. The most important aspect for 
our purpose here is the interpretation of data for human consumption by 
associating the individual values of related data items with their intended 
meaning. In the weather example, this is done by converting the set of data 
(time: April 6, 2002, noon; location: San Luis Obispo; temperature: 23°C; 
precipitation: 0) into a statement like "Nice weather today at noon in San 
Luis Obispo". The conversion of data into information typically goes hand in 
hand with a reduction in the quantity of stored items through an elimination 
of items that are not usable or irrelevant in a given context. 

Although the situation for the term knowledge is slightly better than the 
one for information, there is no clear, widely accepted definition useful for 
our purposes. The term is typically used to imply a higher level of 
abstraction than data or information, which again goes together with a 
reduction in the quantity of stored items. Knowledge usually has a flexible, 
irregular structure, and is often presented visually as graph with nodes for 
objects or concepts, and edges for relationships. To emphasize the 
importance of this aspect of knowledge, we will occasionally use the term 
structured knowledge, highlighting the arbitrary, irregular, and dynamic 
relationships between individual knowledge items. This is in contrast to 
relational databases, whose internal structure is expressed through rigidly 
defined tables that apply to all respective records. To distinguish the 
irregular nature of the relationships between entities from the regular ones in 
a database, sometimes the term semi-structured is used. 

The relationship between data, information, and knowledge can also be 
visualized as a "knowledge pyramid" with data as the broad foundation at a 
low level of abstraction, and knowledge as the narrow top with a high level 
of abstraction. Occasionally wisdom is added as an even higher level of 
abstraction, but for our discussion here this is not so relevant. 



Content, 
Level of Abstra on 
Information De ity 

Meta
Knowledge 

knowledge 
about knowledge 

Figure 14.1. Knowledge Pyramid 

The table below highlights important aspects of the different knowledge 
levels from three perspectives: the real world as we perceive it, the 
computational model designed to represent certain parts of the real world 
through a program or computer-based system, and the abstract model as 
captured in a formal specification ofthe computational model. 

With respect to these three perspectives, data are usually binary or 
numerical values obtained through sensors. Initially they are often captured 
as analogue values, and then digitized for computer processing. Information 
in this context refers to filtered and pre-processed data, selected for their 
relevance with respect to a particular model. It roughly corresponds to 
features or properties, and is stored in computational models as the fields of 
a record or data structure, or the slots and fillers of frame-based 
representations. This is also referred to as a representation using <attribute, 
value> pairs. Unless the intended meaning of a value is indicated, e.g. 
through the name of the attribute, slot, or field, the information is not very 
useful. Knowledge is centred around concepts, which can be viewed as sets 



of features that constitute an entity of interest in our model; they may 
correspond to physical objects in the real world, or mental concepts, and 
may have an internal structure. Relations capture interesting relationships 
between concepts. The representation of knowledge in computational models 
can vary substantially, with objects, rules, data structures and records being 
among the most frequently used. In abstract models based on mathematical 
logic, predicates represent the relationships among concepts, and statements 
are expressed through logical sentences involving logical symbols and tenns 
describing the entities to be represented. Meta-knowledge refers to 
statements about knowledge, and describes how to deal with knowledge. In 
the real world, methods to capture, store, and retrieve knowledge are meta
knowledge. Thus, a library is a facility utilizing meta-knowledge in order to 
provide access to knowledge. In computational models, meta-knowledge 
often is not explicitly represented, but it is evident in the structure of 
methods, systems, programs, or algorithms dealing with the treatment of 
knowledge. In the abstract model perspective of mathematical logic, this 
corresponds to higher order logic, where logical sentences are the actual 
objects dealt with at higher levels of abstraction. 

Table 14.1. Knowledge Levels 
Level Real World Computational Abstract Model 

Model 
Meta- statements about programs, algorithms logical theories, 
Knowledge knowledge inference methods 
Knowledge real-world entities, rules, objects, data logical sentences; 

relations between strucOlres, records predicates, logical 
entities, statements symbols, terms 
about entities 

lriformation identifiable properties <attribute, value> features 
of real-world entities pairs, slots and fillers, 

fields 
Data analogue sensor (vectors of) digitized percepts 

readings sensor values 

14.1.2 Knowledge Representation 

One of the critical notions here is the use of symbols for knowledge 
representation. A symbol is a sign or token used to represent an object or 
concept. It provides unambiguous identification for the specific object, is 
localized, may have an arbitrary shape, and often needs an explanation in the 
fonn of a mapping into a set of tenns the user is familiar with. Symbols are 
usually localized; this means that it is possible to uniquely identify the 
storage location where the symbol is held. Symbols can be of arbitrary 
shape, but in connection with computer-based knowledge representation, 



strings of characters arranged as words are frequently used. This allows 
straightforward interpretation by humans. Examples of symbols are 1t (for 
the number pi), or the dollar sign $ to indicate that a number is to be 
interpreted as currency. 

In contrast to a symbol, an icon (also referred to as simile) is a simplified 
picture that possesses an intended and inherent similarity to the object to be 
represented. Icons have an obvious mapping between the pictorial 
representation and the object to be represented. They may be ambiguous, 
although the context usually provides the necessary information to select the 
appropriate interpretation. Examples of icons are stylized figures used to 
mark bicycle paths or parking spaces reserved for disabled people; icons are 
also frequently used in computer programs, e.g. by employing the stylized 
image of a printer to indicate the printing function. 

An index is an indicator that elicits an important feature of an object or 
concept. It is usually unambiguous, uses a localized representation, and 
provides an inherent mapping from the representation used to the feature to 
be represented. Examples are a thermometer (for the temperature), a battery 
or gasoline gauge to indicate the status of a battery or a gas tank in a car, or a 
clock to indicate time. 

14.2 SYMBOLS AND FORMAL SYSTEMS 

Symbols, in the form of human-readable names for variables, constants, 
methods, objects or other entities used for knowledge representation, are 
very important for the use of computers to store and process knowledge. 
They are extremely helpful for the design and construction of computational 
models that capture and simulate relevant aspects of a system. In order to 
relate such a computational model to the real world, a semantic for the 
formal system is needed to help with the interpretation of observations of the 
model. Sometimes symbols are defined only in reference to other symbol 
structures, which often allows for the elegant design and implementation of a 
complex model, but can have the danger of being detached from the real 
system for which it is supposed to stand. The semantics should be based on 
concrete experiences with a real environment, not only in reference to other 
symbol structures. The meaning of symbols is often assigned by the 
programmer or designer, and usually relies on the selection of names based 
on words that convey the intended interpretation of the aspect or concept the 
symbol stands for. Whereas this is a very practical strategy to help with the 
interpretation of the model, it relies on a "parasitic" mapping, where the 
association between the symbol and the corresponding aspect of the real 
world are not intrinsic, but dependent on the interpretation of the chosen 



name. This opens up the possibility of errors due to the interpretation of 
symbols based on the meaning of the words chosen in the string 
representation, rather than the specific concept or aspect they are intended 
for. And of course, unless the language or terminology used is familiar to the 
user of the symbol, an interpretation may become very difficult or 
impossible. This is especially important for computer-based knowledge 
processing: since computers do not perform the implicit interpretations we 
humans do automatically when we read these symbols, the meaning intended 
by the programmer is not accessible to the computer. 

Most computer-based systems for the representation and processing of 
knowledge rely on symbolic representation and the corresponding symbol
oriented access and manipulation methods. Expert systems or more formal, 
logic-based representation schemes clearly fall into this category. As an 
alternative, so-called sub-symbolic representation principles rely on the 
representation of objects or concepts through (micro-) features. Instead of 
representing an entity through a direct mapping onto a unique symbol, an 
entity is represented through a set of features that uniquely identify the 
entity. Representational aspects of knowledge items are then accessible at a 
level below symbols, Le. through features (which capture relevant aspects of 
the entity) or micro-features (which capture aspects that by themselves are 
not particularly meaningful, only in combination with other micro-features). 
These sub-symbolic methods are frequently used in combination with 
distributed representation schemes, where an entity is not mapped to a 
specific location in memory, but distributed over several locations. Such 
schemes are most frequently used in neural networks, where individual 
neurons contribute to the representation of multiple entities, and an 
individual entity's representation is distributed over several neurons. 
Distributed representation enables more flexible access methods based on 
the similarity of entities as expressed through overlaps in the set of features 
that describes them. On the other hand, it causes problems with symbol 
manipulation as knowledge processing mechanism, and it is difficult to 
develop sound and efficient methods for the processing ofknowledge. 

14.2.1 Symbol Grounding 

The establishment of a mapping between the symbol and the object or 
concept it is supposed to represent is sometimes called "symbol grounding," 
implying a close relationship between the symbol and the corresponding 
entity in the real world. In symbol-oriented systems, this relies on human 
interpretation, often based on the "parasitic" mapping through strings of 
characters that have meaning for humans. Unless computers have an 
understanding of the words used in these mappings, it is not sufficient for 



machine-based interpretation. For example, in the design of maps used by 
robots for navigation purposes, designations such as "bathroom-door" may 
be very useful for humans, but of little use to a robot. Symbol grounding is 
often employed in the context of emergent grounding, where the mapping 
between the real world and its representation is not imposed by a designer or 
programmer, but rather arises on its own while the representation for a 
specific entity in the real world is constructed. The mapping is constructed 
together with the acquisition of the respective data or knowledge, and ideally 
should provide a causal correlation between the data reflecting the status of 
the environment and the internal representation of the respective aspects in 
the model. 

14.2.2 Knowledge Representation Formalisms 

Frameworks to describe knowledge items and their relationships, ideally 
with formal underpinnings suitable for some theoretical treatment, provide 
the foundation for the representation manipulation of knowledge via 
computers. The fonnal treatment should enable proofs of critical properties, 
the determination of time and space complexity, and other important aspects 
as indicated in the table below. In addition to the formal perspective, the 
translation of a formalism into a practical system of course must also be 
taken into consideration. 

C'1', hI 1 2 Kn I d a e 4.. ow e l~ e 

Criterion 

.RepresentatlOn ntena 

Issues 
are essential aspects captured? adequate 

comprehensible is the represented knowledge understandable? 

transferable can the knowledge be communicated? 

unifonn is identical information consolidated? 

composite can components be grouped into ensembles? 

reliable belief / truth, consistency 

verifiable objective / subjective, facts, derived knowledge, basic assumptions 

efficient usage of space, execution time for basic operations 

Traditional knowledge-based systems are almost exclusively based on 
symbolic knowledge representation and manipulation methods. The 
availability of expertise, explicit representation of knowledge, ease of 
modification, consistency of answers, and the accessibility of the knowledge 
are important practical considerations for the design and realization of such 
systems. Among their potential disadvantages are limited knowledge (in 
particular the lack of "common-sense" knowledge), the treatment of 



incomplete or inexact data, possibly incorrect answers, low 
comprehensibility, and brittleness. 

Some of these problematic aspects, however, are strong points of 
alternative computational paradigms such as fuzzy logic and neural 
networks. The next section gives a very short overview on neural networks 
and their use for the representation and processing ofknowledge. 

14.2.3 Basic Concepts: Neural Networks 

In most applications of neural networks, they are used for processing of 
elementary data items at a relatively low level in the knowledge pyramid. 
Many popular types of neural networks take vectors or other simple, very 
regular data structures as input, and produce again relatively simple data 
structures as output. Information is stored implicitly through parameters of 
the network, most frequently: interconnection weights, and processing of 
information is achieved through propagation of activities in the network. The 
main activities in a neural network are the storage of information, often 
through "learning," and the recall of the stored information. Usually there is 
no explicit generation of new knowledge, although some learning and recall 
activities include operations like generalization, or recall of similar items if 
there is no exact match. The learning capabilities of neural networks are 
often applied to sets of sample data, which the network can use to generate 
an internal representation that allows it to select the most suitable response 
for new data. 

In the following, we will very briefly review a generic model for artificial 
neural networks, and then discuss interesting aspects of some types ofneural 
networks, particularly with respect to the overall theme of representing and 
processing knowledge. 

14.2.4 Artificial Neural Network 

An artificial neural network (ANN) can be viewed as a collection of 
neuron-like computational elements with weighted connections between the 
elements The nodes perform simple functions like addition, multiplication, 
or threshold comparison, while the weighted connections store information. 
This storage of information is achieved by learning through the adaptation of 
weights in reaction to the presentation of sample data. An individual neuron 
receives input either from outside the network, or from other neurons via 
interconnections. It sums up the weighted inputs affiliated with incoming 
connections, applies the activation function (e.g. threshold or some other 
nonlinear function), and then generates a response propagated through the 
output. Neurons typically have multiple inputs with positive (excitatory) or 



negative (inhibitory) weights, but calculate only a single output (which can 
be propagated to several other neurons, however). 

Within the context of storing and processing knowledge, two approaches 
are most frequently used for neural networks: Local representation and 
distributed representation. A scheme in which an object or concept is 
represented by one single neuron is considered a local representation, where 
conceptual entities correspond to individual neurons, and each neuron is 
affiliated with the representation of only one entity. Relationships can be 
directly expressed by connections between individual neurons, and a neural 
network essentially becomes an implementation vehicle for a semantic 
network, or some similar, graph-based representation. A localist 
representation is relatively explicit and easy to understand, and can be 
generated from other representation methods via systematic transfonnation 
or compilation. Knowledge processing on a localist basis becomes more 
complicated since the variety of relations between the nodes requires 
corresponding inference rules to combine the individual pieces of knowledge 
into new ones. Most localist schemes also have difficulties with learning 
algorithms; in principle, the links between nodes can be associated with 
weights, but the encoding of sample data in such a pre-configured network is 
difficult to achieve. 

In a distributed representation scheme, an entity is represented jointly by 
several neurons, and each neuron contributes to the representation of several 
entities. The representation of relationships between entities is more 
complicated in this scheme; in principle, it can also be achieved through a 
distribution of the links, but this entails a distributed reasoning method for 
knowledge processing. Networks using a distributed scheme are usually 
constructed implicitly through learning, rather than explicitly through 
compilation. Learning in this case is much easier since the distributed nature 
of the network allows for a greater degree of freedom, thus facilitating the 
formulation and use of learning algorithms. 

14.2.5 Feedforward Networks 

In one of the most popular network configurations, the multi-layer 
feedforward network, nodes of the network are arranged in a small number 
of layers, typically two to four. Nodes are only connected to nodes in the 
next layer, not within the same layer. Frequently used interconnection 
patterns between layers are fully connected, where each node in one layer is 
connected to all nodes in the next layer, one-to-one connections between 
nodes in adjacent layers, and partially connected patterns. The flow of 
activity through the directed links is from the input layer through the hidden 
layers to the output layer, and the corresponding interconnection graph 



contains no cycles. This limits the capabilities of such networks, but makes 
their behaviour computationally manageable, with a guaranteed response 
time between the application of an input pattern and the response by the 
network. 

Feedforward networks are often used in combination with the 
backpropagation learning algorithm: For each pair of input pattern and 
desired response, the network calculates the current response according to its 
configuration of weights, and compares the result against the desired 
response. The difference between the two is used to adjust the weights 
between the output layer's nodes, and those of the layer next to it. This can 
be taken as an indication of the desired response at that layer, and be applied 
in the same way to the weights between that layer and the previous one, and 
so on. Although this algorithm can be time-consuming and may require 
adjustments of some parameters, it often results in a network that can 
produce sensible responses to input patterns close enough to the set of 
samples. Feedforward networks are suitable for representing mappings 
between sets of individual pairs of input patterns and desired output patterns. 

14.2.6 Recurrent Networks 

In their most frequent incarnation, recurrent networks are organized in 
layers, just like feedforward networks. In addition to the interconnections 
directed from the layers close to the input towards the output layers, 
recurrent networks also have connections going the other way, e.g. from the 
output layer to the closest hidden layer, or from one hidden layer to a 
previous one, or to the input layer. Due to their more complex internal 

.structure, recurrent networks are capable of more sophisticated internal 
.representation, at the expense of more complicated learning methods, and 
retrieval behaviour that is difficult to analyse. Recurrent networks are 
capable of capturing relationships between individual input patterns, and can 
learn the mapping of sequences of input patterns into sequences of output 
patterns. Methods have also been devised to represent graphs in recurrent 
networks. 

14.2.7 Knowledge Representation and Neural Networks 

Since neural networks typically are used for lower-level data processing 
rather than knowledge representation and manipulation tasks, this section 
will examine important advantages and problems of neural networks for 
such tasks. One of the very basic problems of knowledge representation is to 
store large sets of features or sample data. In conventional systems, this is 
frequently done through vectors, arrays, or records in databases. This is also 



fairly easy with neural networks through the use of vectors; for more 
complex records, it becomes more complicated. Neural networks have two 
important advantages over conventional methods: They typically have a very 
quick, fixed response time, and are capable of generalization: if no vector 
can be found that exactly matches the given input, the closest one is 
automatically chosen. Another very basic task in knowledge representation 
is relating features to specific entities, e.g. by associating descriptors like 
name, height, hair colour, eye colour, etc. to individual persons. In 
conventional systems, this can be achieved fairly easily through records, 
objects, terms or other representation methods that provide internal structure 
to entities. Processing such information and knowledge becomes more 
difficult, essentially requiring variable binding and unification for more 
complex tasks. Neural networks capable of capturing this internal structure, 
and performing appropriate operations on the stored structures, have been 
around for quite a while, frequently under the term connectionist networks. 
The guiding principle behind them is to map the structure of an entity to be 
represented onto a set of nodes with appropriate connections, effectively 
mirroring the original structure in the network. Processing is then performed 
by the propagation of activation through the network. Such networks can 
emulate many of the operations performed by conventional, symbol-oriented 
approaches, and have some advantages due to their massively parallel mode 
of operation. On the other hand, the typical symbol manipulation operations 
would require a reconfiguration of the network on the fly, and the 
development of learning algorithms for such networks is a major challenge. 
From a graph-based perspective, many knowledge representation and 
manipulation tasks can be viewed as the mapping of a general graph onto a 
network with a fixed topology and size. Storing and retrieving the graph, 
together with operations on the stored structures are the main challenges 
here. Some approaches have been devised, mainly based on recurrent 
networks, to fold graphs into a network and subsequently unfold them; these 
efforts are still in an experimental stage. If successful, however, they offer 
very interesting application such as fast retrieval based on structural 
similarity, similarity-based graph matching, or "sloppy" unification of 
complex structures. 

14.3 INTEGRATION OF SYMBOL-ORIENTED AND 
SUB-SYMBOLIC SYSTEMS 

A combination of different approaches to knowledge representation and 
processing, with expert systems as example of symbol-oriented system and 
neural networks as examples of sub-symbolic systems, appears very 



promising due to the duality of the approaches: Symbol~oriented systems 
proceed in a methodical, precise, formal, but sometimes brittle and slow 
manner, whereas neural networks are faster, generality- and similarity
oriented, and employ relatively robust, but not necessarily precise 
operations. In the following we will discuss some approaches to the 
integration of symbol-oriented with sub-symbolic knowledge representation 
and processing methods: stand-alone, transformational, loose coupling, tight 
coupling, and full integration. 

14.3.1 Stand-Alone 

Independent components based on different methods are at the core of 
this approach. The use of pre-existing components, either in software or 
hardware, offers a simple implementation, especially in the most extreme 
case with no direct interaction between the components. Redundancy to 
provide a backup in case of failure, validation where one component is used 
to confirm the other's results, or the utilization of prototypes as quick proof 
of the conceptual approach are reasons to choose this integration method. It 
profits from the different capabilities, such as learning and generalization for 
neural networks, and deduction and explanation for expert systems. 
Although it may be considered a degenerate case of integration, obvious 
benefits like simplicity, ease of development, independence, and redundancy 
can overcome the limitations, which include the lack of transfer of 
information between the components, multiple maintenance (especially if the 
same knowledge is represented in multiple components), no mutual balance 
of the underlying methods, and the possible lack of consistency. 

14.3.2 Transformational 

The transformational approach utilizes the conversion between a 
conventional representation scheme, such as the rules of an expert system, or 
the graph of a semantic network, to a neural network and vice versa. This 
transformation must maintain the essential properties of the source 
representation in the target representation. The conversion of a collection of 
facts and rules in the knowledge base of an expert system into a neural 
network establishes prior knowledge in the network. This can help making 
the learning task easier, and is often used to fine-tune the rules and facts in a 
knowledge base with a set of samples representative for the domain under 
consideration. The transformation into a neural network can also offer 
advantages in the response time of the system, the adaptability through the 
learning algorithm of the network, and higher robustness due to its 
generalization capabilities. 



The transformation of a neural network into a set of rules and facts can be 
used to generate a more explicit, symbol-oriented representation, and is 
usually referred to as rule extraction. This is appropriate when a collection 
of sample cases is available to be used for the training of a neural network, 
but a more explicit representation is desirable, e.g. for reasoning or 
explanation purposes. The idea here is to maintain the learning and 
generalization capabilities of the neural network, while also employing the 
higher-level manipulation methods of symbol-oriented knowledge 
representation schemes. It can be applied to data-intensive problems, where 
neural networks serve as the first filtering and generalization step, but a more 
explicit representation is required for the documentation and verification of 
knowledge. It is also used as an analysis tool for neural networks, providing 
a justification and explanation of their hidden contents via the translation 
into rules that are more amenable to human inspection. 

Systems based on a transformational approach can usually be developed 
quickly, assuming that the source and target representations are already used 
in a component of the system. What is needed then is only a transfOImation 
from one representation to another one. In comparison with two standalone 
systems, knowledge maintenance is necessary only for one system, although 
the two components implementing the neural network and the symbol
oriented representation themselves still remain. A transformation-based 
system also offers a choice of development as well as operation: Depending 
on the most critical factors, knowledge acquisition can be performed via 
learning from samples by the network, or the formulation of rules by 
humans, and the system can operate based on fast and robust responses from 
the neural network, or on the methodical, explicit, but often much slower 
reasoning from the symbol-oriented component. 

The methods available for the transformation between neural networks 
and symbol-oriented approaches are still in their infancy, and no fully 
automated transformations applicable to general problems are available. It is 
often necessary to develop specific approaches for new domains or major 
modifications to a system. The conservation of equivalence for the 
transformation between such different knowledge representation and 
manipulation methods is a major fundamental problem, especially when 
combined with operational limitations. 

14.3.3 Loose Coupling 

In the transformational approach, the whole body of knowledge 
represented in the system is converted from one knowledge representation 
scheme into another. In many circumstances, this approach may not be 
appropriate or impractical, and the exchange of smaller pieces of knowledge 



between specific components may be more desirable. This is often referred 
to as loose coupling between components; communication via files, pre
/post-processing, and the use of front or back ends for special tasks are 
practical examples. This can be done in a sequential way, where one 
component's output constitutes the input for the next one, or through co
processing, where several components are active simultaneously and 
exchange information when needed. This interaction and cooperation can be 
applied to data refinement, problem solving, or decision-making. Another 
domain is user interface design, with the goal of more flexible user 
interactions through speech processing, handwriting recognition, or user 
modelling. 

Similarly to transformational approaches, loosely coupled systems are 
often easy to develop since they tend to rely on existing components, with a 
relatively straightforward system design and implementation. Additional 
work is needed to establish a protocol for the exchange of knowledge 
between components, and to synchronize the activities of the individual 
components. Loosely coupled systems may also exhibit some redundancy 
across their components, and can incur high communication costs. 

14.3.4 Tight Coupling 

Instead of exchanging individual knowledge items through message 
passing or similar mechanisms, tightly coupled systems establish 
communication via shared memory. In this scheme, memory-resident data 
structures of one component are directly accessible to other components, 
allowing quick interaction between components. With respect to knowledge 
processing, such systems are often referred to as blackboard architectures 
with communication via shared data structures stored in a commonly 
accessible memory area, the blackboard. In this approach, components 
exchange information directly. It is used for independent components or 
agents that constitute cooperating systems, or for embedded systems where 
components ofone kind are embedded inside a system of another kind. 

Tightly coupled systems often offer great design flexibility and robust 
integration while achieving a reduced communication overhead, thus leading 
to higher performance than loosely coupled systems. Sometimes it is 
possible to develop a system that conceptually uses loose coupling at the 
design level, but implements the exchange of information through shared 
memory for performance reasons. On the other hand, they typically have an 
increased complexity with higher interdependence among the components, 
and are more difficult to develop. 



14.3.5 Full Integration 

In all of the above approaches, the different components of the system 
may use their own internal representation scheme, and they exchange 
knowledge in different ways. A fully integrated system relies on a shared 
knowledge representation for all of its components. It often exhibits a dual 
nature, enabling symbolic and sub-symbolic interpretation of represented 
items, and the corresponding operations for storage, retrieval, and 
manipulation. In such a system, communication is performed implicitly via a 
shared representation mechanism. From a knowledge representation 
perspective, there may be no separate components for the storage, 
manipulation, and retrieval of knowledge, and the distinction between 
symbol-oriented and sub-symbolic methods becomes superfluous. 

Such fully integrated systems often have increased capabilities in 
comparison with the other approaches. There is no redundancy due to 
replication of features or functions, and in principle, high performance is 
achievable through the efficient shared representation. These systems are 
also prone to high complexity, exaggerated by the lack of methods and tools 
for the design, implementation, validation and verification. The lack of 
redundancy may also cause lower fault tolerance. 

14.3.6 ES + NN Hybrids 

The use of hybrid systems at this time is still rather limited, and mostly 
constrained to research and experimental settings. The most frequently used 
configuration is an architecture with expert system and neural network 
components, and the transformational technique of rule extraction as the 
basis of knowledge sharing between the components. Such systems offer the 
mutual benefits of enhanced capabilities and operational characteristics, 
usually with the goal of better performance and higher fault tolerance. Thus, 
systems can be designed that combine the strengths of the two approaches, 
while their deficiencies are overcome by the other technique. 

14.4 CONCLUDING REMARKS AND OUTLOOK 

Expert systems offer a comprehensible knowledge representation, with tools 
and methods for explanation to humans, and formal methods for validation 
and verification. Their separation of knowledge and inference engine makes 
modifications of the stored knowledge relatively easy, although consistency 
and coherence can become problematic for large collections. Commercial 
tools are available for development and implementation, and a reasonably 



large body of experience has been established. On the other hand, knowledge 
acquisition often constitutes a bottleneck for expert systems, and may require 
the use of domain experts and knowledge engineers with high costs and 
limited availability. In addition to the problems associated with the 
complexity of large systems in general, expert systems also have difficulties 
with common-sense knowledge, learning, and brittleness. 

Neural networks can be helpful with knowledge acquisition due to their 
capability to learn from examples. In some situations, their generalization 
capability allows the design of more robust systems, assuming that the set of 
samples presented to the network for learning is representative for the 
application problem as a whole. For many types of networks~ the generation 
of a response to a query requires one sweep of activation from the input 
layer through hidden layers to the output layer, leading to a very short, 
constant response time. This can be a major performance advantage over a 
rule-based system with its deliberate reasoning with an indeterminate 
response time. Neural networks suffer from an incomprehensible 
representation, requiring elaborate analysis methods and visualization tools 
to offer some insight into their internal representation of knowledge. To 
obtain an explanation of why a particular response was generated is even 
more difficult. The most commonly used types of neural networks have very 
limited reasoning capabilities, essentially restricted to generalization. 
Although elaborate inference mechanisms can be constructed from neural 
components, they are not commonly used at this time. 

The synergy between expert systems as representatives of symbol
oriented and neural networks as representatives of sub-symbolic approaches 
relies on their complementary features: Expert systems work from a logical, 
symbolic, explicit basis, while neural networks rely on numeric, associative, 
and implicit operations. One frequently used approach is to enhance 
knowledge acquisition for expert systems through neural networks, e.g. by 
using collections of samples representing the problem domain. This is also 
used for the modification of knowledge through the adaptation of sets of 
facts and rules to a statistical basis. A collection of facts and rules 
established with the help of an expert, for example, can be augmented by 
combining it with a neural network that was trained with a representative set 
of actual problem cases from the same domain. The same techniques of rule 
extraction are sometimes used for the investigation and explanation of the 
internal representation of knowledge in neural networks. Other approaches 
have used neural networks to learn heuristics for problem solving, essentially 
enabling learning from experience. In this case, important aspects of 
decisions during the problem-solving process are learned by a neural 
network, and applied when a similar situation occurs. In the other direction, 



prior knowledge in the form or rules can be used for "priming" neural 
networks, leading to faster learning and better generalization. 

Many problems could benefit from the combination of symbol-oriented 
and sub-symbolic methods for representation and processing of knowledge. 
Since the two approaches are complementary with respect to their 
computational properties, the design and development of hybrid systems 
combining both seems promising from a conceptual perspective. To date, 
most applications of such hybrid systems are still experimental in their 
nature, but there is a growing interest outside the research community. 
Depending on the underlying representational structures, a loose or tight 
coupling between the individual components can be achieved. Examples of 
domains and applications where hybrid systems seem suitable are molecular 
biology, retrieval and organization of structured documents (such as texts, 
drawings and diagrams), or component-based software systems. Respective 
examples of entities to be represented and manipulated are molecular 
structures, hyperlinked documents containing knowledge in various formats, 
handwritten characters or natural language constructs. 

It is clear that substantial work is needed before hybrid systems will be 
widely used in practical applications. Whereas symbol-oriented methods and 
technologies have been in use for quite a while, mainly in the fonn of expert 
systems, the use of neural networks for knowledge-related tasks does not 
have a rich history. Thus, in addition to the technical problems of integrating 
different components, some fundamental methods to improve the knowledge 
representation and manipulation capabilities of neural networks must be 
investigated more deeply. This includes the evaluation of different 
approaches to represent and process structured knowledge with neural 
networks, especially concerning expressiveness, complexity, learning 
methods, and performance. Such networks should be capable of representing 
general graphs, with (approximate) graph matching as one of the very 
essential manipulation methods. From a more practical perspective, the 
identification and selection of candidates for a test suite enabling meaningful 
comparisons between different approaches is very important. 




