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Trapped modes in zigzag graphene nanoribbons

V. A. Kozlov, S. A. Nazarov and A. Orlof

Abstract. We study the scattering on an ultra-low potential in zigzag graphene nanoribbon. Using a mathematical framework
based on the continuous Dirac model and the augmented scattering matrix, we derive a condition for the existence of a
trapped mode. We consider the threshold energies where the continuous spectrum changes its multiplicity and show that
the trapped modes may appear for energies slightly less than a threshold and that its multiplicity does not exceeds one. We
prove that trapped modes do not appear outside the threshold, provided the potential is sufficiently small.
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1. Introduction

The problem of disorder in graphene nanoribbons has been studied extensively. The main purpose of
those studies is to eliminate disorder completely and produce pure high-quality graphene nanoribbons
[7]. As we are approaching the goal of graphene nanoribbons free of impurities and other defects, we can
focus on the design of disorder for the use in electronic devices. One of the desired features for graphene
is to have the possibility of electron localization. Such localization is difficult to achieve due to the Klein
tunneling [10]. As graphene electrons behave like massless particles, they undergo tunneling through
barriers. However, due to interference between the continuous states of the nanoribbon and the localized
state of the disorder, a trapped mode can be produced. There are several types of disorder, including
short range and long range. Impurities such as vacancies and adatoms are classified as short-range type
and can be described by a sharp potential that varies on a scale shorter than the graphene lattice constant
(0.246 nm) [2]. On the other hand, electric or magnetic fields, interactions with the substrate, Coulomb
charges [13], ripples and wrinkles can lead to long-range disorder described by a smooth potential (a
Gaussian for example). In the present studies, we assume that graphene is free of short-range defects and
the potential is modeled as a long-range one.

There are two groups of graphene nanoribbons that differ by the edge type and they are called zigzag
and armchair [4,5]. In this paper, we formulate a condition for the existence and a choice of ultra-low
potential that produces a trapped mode in zigzag graphene nanoribbon. We work within the continuous
Dirac model, where graphene is isotropic and its electrons dynamics can be described by a system of 4
equations [5] ⎛

⎜⎜⎝
0 i∂x + ∂y 0 0

i∂x − ∂y 0 0 0
0 0 0 −i∂x + ∂y

0 0 −i∂x − ∂y 0

⎞
⎟⎟⎠ + δP

⎛
⎜⎜⎝

u′

v′

u
v

⎞
⎟⎟⎠ = ω

⎛
⎜⎜⎝

u′

v′

u
v

⎞
⎟⎟⎠ , (1)

where ω = E
�νF

is a scaled energy (with E denoting energy and νF ≈ 106 m
s Fermi velocity), the potential

P is a real-value function with a compact support such that sup |P| ≤ 1, and δ is a real-value small
parameter.
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Fig. 1. Dispersion with energy thresholds

The number of equations is a consequence of the discrete description of the graphene lattice and the
low-energy approximation, which leads to the continuous model [5,16]. In the discrete model, graphene
is described as a composition of two triangular interpenetrating lattices of carbon atoms (called A and
B) [5]. Then, the low-energy approximation can be done in a twofold way, close to two different energy
minima (called K and K ′) in the graphene dispersion relation. Consequently, in the continuous model, we
have two waves that describe an electron in any single point of the ribbon (A or B) coupled in two different
ways, close to K (first two equations in (1)) or K ′ point (last two equations in (1)). A nanoribbon is
modeled as an unit strip Π = (0, 1)×R due to rescaling. The zigzag boundary of the nanoribbon requires
one wave (A) to disappear specifically at one edge and the other (B) at the other one [4]

u′(0, y) = 0, u(0, y) = 0, v′(1, y) = 0, v(1, y) = 0. (2)

As our potential P is assumed to be of long-range type, it can be described by a diagonal matrix with
equal elements [2]. As neither the potential nor the boundary conditions couples K and K ′ valleys, the
system of 4 equations can be split into two systems of 2 equations where only intravalley scattering is
allowed. We consider one of them (two last equations in (1))(

0 −i∂x + ∂y

−i∂x − ∂y 0

) (
u
v

)
+ δP

(
u
v

)
= ω

(
u
v

)
(3)

supplied with the boundary conditions:

u(0, y) = 0, v(1, y) = 0. (4)

The Nth energy threshold ω = ωN > 1, N = 2, 3, . . . is defined by the Nth maximum in the zigzag
dispersion relation ω−2 = κ−2 sin2 κ and it reads d

dκ

(
κ−2 sin2 κ

)
= 0 (see Fig. 1). The index N defines

a threshold energy ωN as it indicates the change of the multiplicity of the continuous spectrum from
2N − 3 to 2N − 1 for N ≥ 2. A trapped mode is defined as a vector eigenfunction (from L2 space) that
corresponds to an eigenvalue embedded in the continuous spectrum. The main result of the paper is the
following theorem about the existence of trapped modes in zigzag graphene nanoribbon for energies close
to one of the thresholds that can be chosen arbitrary.

Theorem 1.1. For every N = 2, , 3, ..., there exists εN > 0 such that for each ε ∈ (0, εN ), there exists
δ ∼ √

ε and a potential P such that problem (3), (4) has a trapped mode solution for ω−1 = ω−1
N + ε.

The second result shows that trapped modes may appear only for an energy slightly smaller than the
threshold and that a spectrum far from the threshold is free of embedded eigenvalues. Moreover, their
multiplicity does not exceed one.
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Theorem 1.2. There exist positive numbers ε0 and δ0, which may depend on N , such that if
(i) ω ∈ [ωN , ωN + ε0] and |δ| < δ0, then problem (3), (4) has no trapped modes;
(ii) ω ∈ [ωN − ε0, ωN ) and |δ| < δ0, then the multiplicity of a trapped mode to problem (3), (4) does

not exceed 1.
(iii) For every ε1 > 0 and C1 > 0, there exist δ1 > 0 such that if 0 ≤ ω < C1 and |ω − ωN | > ε1 for

all N = 2, . . . satisfying ωN ≤ C1 and |δ| < δ1, then problem (3), (4) has no trapped modes.

Those results come from the analysis of the trapped modes in the K ′ valley (system (3), (4)); however,
the analysis in the K valley (first two equations in (1) with boundary conditions (2)) is analogous and
requires a complex conjugation only.

The continuous spectrum of problem (3), (4) with P = 0 covers the whole real axis, and hence, its
eigenvalues, if existing, possess a natural instability, that is, a small perturbation may lead them out from
the spectrum and turn them into points of complex resonance, cf. [3,22] and the review paper [14]. A few
approaches have been proposed to compensate for this instability and to detect the eigenvalues embedded
into the continuous spectrum. First of all, a simple but very elegant trick was developed in [8] for scalar
problems. Namely, under a symmetry assumption on waveguide’s shape an artificial Dirichlet condition is
imposed on the mid-hyperplane of the waveguide which shifts the lower bound of the spectrum above and
allows to apply the variational or asymptotic method to find out a point in the discrete spectrum of the
reduced problem. At the same time, the odd extension of the corresponding eigenfunction through the
Dirichlet hyperplane gives an eigenfunction of the original problem so that it remains to verify that the
eigenvalue falls into the original continuous spectrum. In other words, the problem operator is restricted
into a subspace where it may get the discrete spectrum which becomes a part of the point spectrum in
the complete setting. For vectorial problems, the existence of such invariant subspaces usually demands
very strong conditions on physical and geometrical properties of waveguides, and therefore, the trick
works rather rarely or needs supplementary ideas, cf. [9,19,25]. Unfortunately, the Dirac equations do
not possess the necessary properties and we are not able to find a way to apply this trick in our problem.

Another approach accepting formally self-adjoint elliptic systems but employing much more elaborated
asymptotic analysis is based on the concept of enforced stability of embedded eigenvalues [21–23]. In this
way, having an eigenvalue in the continuous spectrum of a waveguide with N open channels for wave
propagation, one can select a small perturbation of the problem by means of tuning N parameters such
that although the eigenvalue enjoys a perturbation, it remains sitting on the real axis and does not move
into the complex plane. It is remarkable that, as it was shown in different situations [6,20–22] and others,
it is possible to take as an “initiator” of a trapped mode a particular standing wave at the threshold value
of the spectral parameter and by an appropriate choice of the perturbation parameters to construct an
eigenvalue which is situated near but only on one side of the threshold so that it belongs to the continuous
spectrum. This method was introduced and developed in [21–23]. Aiming to apply it for the detection
of eigenvalues for the zigzag graphene nanoribbon, we unpredictably observed that the corresponding
boundary value problem in whole is not elliptic (see “Appendix A”). As a result, many steps of the
detection procedure require serious modifications.

The paper is organized as follows. In Sect. 2, we analyze the Dirac model without any potential. For
each nonzero energy, we construct all bounded solutions and identify thresholds where the dimension
of the space of such solution changes. We construct also unbounded solutions near the threshold and
introduce a symplectic form, which will play an important role in the study of the scattering problem.
These unbounded solutions are studied in Sects. 2.4, 2.8 and 2.9. In Sect. 2.10, we present a solvability
result for the non-homogeneous problem. In Sect. 3, we add a potential to the model and consider the
scattering problem with the use of the artificial augmented scattering matrix introduced in Sect. 3.2. In
Sect. 4, we analyze trapped modes, providing in Sect. 4.1 a necessary and sufficient condition for their
existence, from which in Sect. 4.2, we extract the potential description and prove Theorem 1.1. Finally,
in the last section, Sect. 4.3, we analyze the multiplicity of trapped modes proving Theorem 1.2.
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2. The Dirac equation

2.1. Problem statement

We consider problem (3) without potential (P = 0)

D
(

u
v

)
= ω

(
u
v

)
, D = D(∂x, ∂y) :=

(
0 −i∂x + ∂y

−i∂x − ∂y 0

)
(5)

supplied with the boundary conditions (4). Our goal is to find solutions to this problem, especially
bounded ones, and therefore describe the continuous spectrum of the operator corresponding to (5), (4).

Let us introduce the spaces

X = {u ∈ L2(Π) : (i∂x + ∂y)u ∈ L2(Π), and u(0, y) = 0}1

and

Y = {v ∈ L2(Π) : (−i∂x + ∂y)v ∈ L2(Π), and v(1, y) = 0}.

Then, D is a self-adjoint operator in L2(Π) × L2(Π) with the domain X × Y .
We note that for ω = 0, we have (−i∂x + ∂y)v = (−i∂x − ∂y)u = 0; therefore, u = u(−x + iy) and

v = v(x + iy) what together with u(0, y) = 0, v(1, y) = 0 give u = 0, v = 0. There are no non-trivial
solutions to (5), (4) for ω = 0.

Now, assume that ω �= 0, then problem (5), (4) can be written as the system

− Δu = ω2u, v =
1
ω

(−i∂x − ∂y)u, u(0, y) = 0, v(1, y) = 0. (6)

We are looking for non-trivial solutions which are exponential (or possibly power exponential) in y, i.e.,

(u(x, y), v(x, y)) = e−iλy(U(x),V(x)), (7)

λ is a component of a wave vector parallel with the nanoribbons edge. Then, insertion into (6) gives
{

−Uxx = (ω2 − λ2)U , U(0) = 0, Ux(1) = λU(1),
V = 1

ω (−iUx + iλU).
(8)

Lemma 1. If (7) is a non-trivial solution to (5), (4) with a certain complex λ, then: (i) 	λ = 0 or (ii)
	λ �= 0 and 
λ > 0.

Proof. Multiplying the first equation in (8) by U and integrating in x ∈ (0, 1), we have

1∫

0

(ω2 − λ2)UUdx = −
1∫

0

UxxUdx =

1∫

0

UxUxdx − λU(1)U(1)

Taking the imaginary part of this equation, we get

2
λ 	λ

1∫

0

U Udx = 	λU(1)U(1).

Therefore, if 	λ �= 0, then 
λ must be positive provided U �= 0. �

1If u ∈ L2(Π) and (i∂x + ∂y)u ∈ L2(Π), then u ∈ L2(0, 1; L2(R)), ∂xu ∈ L2(0, 1; H−1(R)) and using the Trace result

from Theorem 3.1 in [15], we have that u ∈ C([0, 1]; H−1/2(R)). Therefore, u(0, ·), u(1, ·) ∈ H−1/2(R).
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Consider the case λ2 = ω2. Then, there exists an exponential solution only for λ = 1 and it has the
following form

U(x) = x, V(x) = i
1
ω

(x − 1). (9)

Let λ2 �= ω2. Then, the solution to (8) is given by

U(x) = sin(κx), V(x) = ±i sin(κ(x − 1)), (10)

where κ satisfies
sin κ

κ
= ± 1

ω
(11)

and λ can be evaluated from:
λ = κ cot κ. (12)

One can verify that κ2 + λ2 = ω2. The relations (10) can be written also as

(U(x), V (x)) =
(

sin(κx), iω−1(−κ cos(κx) + λ sin(κx)
)

,
sin κ

κ
= ± 1

ω
. (13)

2.2. Symmetries

One can verify that if κ solves (11), then −κ is also a solution to (11). Moreover, if (u, v) is a solution
to problem (5), (4), then replacing κ by −κ in (13) we obtain the linearly dependent solution −(u, v).
Thus, it suffices to take only one value of κ satisfying (11) and we assume that arg(κ) ∈ [0, π).

In what follows we look only at a positive ω. If ω is negative, then according to the second formula
(13), it can be obtained from the corresponding solution (u, v) with positive ω by taking the second
component v with the minus sign.

Finally, if (u, v) is a solution, then (u(x,−y),−v(x,−y)) is also a solution together with (v(1 −
x, y),−u(1 − x, y)).

2.3. Solutions of the form (7) with real wave vector λ

Here we construct all the solutions to (5), (4) of the form (7) with real λ. According to Sect. 2.2, it is
sufficient to consider ω > 0 in (5). Let us divide the analysis in three cases: 0 < ω < 1, ω = 1 and ω > 1.

(1) 0 < ω < 1. Equation (11) has a solution κ = iτ where τ is real and satisfies
sinh τ

τ
= ± 1

ω
.

Then, λ = τ coth τ and

U(x) = i sinh(τx), V(x) = ∓ sinh(τ(x − 1))

(2) ω = 1. The solution to (11) is κ = 0, λ = 1 and the vector (U,V) is given by (9).
(3) ω > 1. Then, κ is real and satisfies (11) and the corresponding λ is evaluated by (12). In order to

describe the solutions of (11), the real numbers κj are introduced as the maximum of κ−2 sin2 κ on the
interval [(j − 1)π, jπ), j = 1, 2, . . . (see Fig. 2). We put

1
ω2

j

=
sin2 κj

κ2
j

, and note that
d
dκ

( sin2 κ

κ2

)∣∣∣
κ=κj

= 0.

Then, λj = 1 and κj =
√

ω2
j − 1. From (11), it follows that ωj satisfies

ω2 − 1
ω2

= sin2(
√

ω2 − 1). (14)
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Fig. 2. Dependence of κ on ω
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Fig. 3. Energy bands for zigzag graphene nanoribbon. Dependence of wave vector λ on energy ω

One can verify that κj < (2j − 1)π/2 and κ1 = 0, ω1 = 1. (a) If ω ∈ (ωN−1, ωN ), N = 2, 3 . . ., then there
are 2N − 3 solutions with real λ, which can be labeled as follows (see Figs. 2 and 3)

λ±
j = κ±

j cot(κ±
j ), j = 2, 3, . . . , N − 1,

where κ±
j ∈ ((j − 1)π, jπ) satisfies

sinκ±
j

(κ±
j )

=
(−1)j+1

ω
and κ+

j < κj < κ−
j .

The corresponding solutions to (5) are given by

w±
j (x, y) = e−iλ±

j y(U±
j (x),V±

j (x)), (15)

where
(U±

j (x),V±
j (x)) = (sin(κ±

j x), (−1)j+1i sin(κ±
j (x − 1))). (16)
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Fig. 4. Bifurcation of λ from the threshold

There is only one solution of (11) labeled by a negative index “−′′ on the interval (0, π), which we
denote by κ−

1 and the corresponding value of λ by λ−
1 . The corresponding solution (U ,V) is given by

w−
1 (x, y) = e−iλ−

1 y(U−
1 (x),V−

1 (x)), where U−
1 and V−

1 are evaluated by (16) with j = 1. (b) The case
ω = ωN , N ≥ 2, is called the threshold case. Here we have 2N − 3 solutions, described already in the
case (a). In addition, there are two solutions with λ = 1 and κ = κN , which have the form

w0
N (x, y) = e−iy(sin(κNx), (−1)N+1i sin(κN (x − 1))) (17)

and

w1
N (x, y) = yw0

N (x, y) − κ−1
N e−iy(ix cos(κNx), (−1)N+1(1 − x) cos(κN (x − 1))), (18)

where the last solution has a linear growth in y.
Thus, for each ω ∈ (0,∞), there exists a bounded solution to (5), (4) of the form (15). Hence, the

continuous spectrum of the Dirac operator D is the whole real line, i.e.,

σc = R.

2.4. Solutions of the form (7) with non-real wave vector λ

Later we will show that trapped modes may be generated by solutions to (5), (4) with non-real λ. In this
section, we describe such solutions with λ close to the real axis.

Consider the case when ω is close to ωN , N = 2, 3, . . . We introduce a small positive parameter ε and
denote by ωε the energy satisfying ω−1

ε = ω−1
N + ε. Then, the double root λ = 1 of (12) with ω = ωN

bifurcates into two roots λ± = λ±(ε) (see Fig. 4). These roots can be found from the equation

g(λ, ε) =
(−1)N+1

ωε
, g(λ, ε) =

sin
√

ω2
ε − λ2

√
ω2

ε − λ2
. (19)

From the definition (19), it follows that g(λ, ε) is an analytic function of (ω2
ε − λ2). Using the Taylor’s

formula for the function g near the point (λ, ε) = (1, 0), we get

g(λ, ε) − (−1)N+1

ωN
= (−1)N

(
ε +

(λ − 1)2

2ωN (ω2
N − 1)

+
ω2

N (λ − 1)ε
ω2

N − 1

+
(2 + 3ω2

N )(λ − 1)3

6ωN (ω2
N − 1)2

)
+ O(|λ − 1|4 + |λ − 1|2ε + ε2). (20)
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By means of (20), one can find the expansions

λ± = 1 ± √
ελ1i + ελ2 + O(ε3/2), (21)

where λ1 =
√

2ωN (ω2
N − 1) and λ2 = 2ωN/3. Since g(λ, ε) = g(λ, ε), it follows that λ+ = λ−. Then, from

the energy relation λ2
± + κ2

± = ω2
ε , we find

κ± = κN ∓ √
εκN1i + O(ε) (22)

where κN =
√

ω2
N − 1 and κN1 = 2

√
ωN . Now, solutions to (5), (4) of the form (7) with λ± are given by

w±
N (x, y) = e−iλ±y

(
sin(κ±x)

(−1)N+1i sin(κ±(x − 1))

)
(23)

and by (21) and (22) it can be written in terms of wN
0 and wN

1 (see (17) and (18)) as

w±
N (x, y) = wN

0 ± √
ε
√

2ωN (ω2
N − 1)wN

1 + O(ε). (24)

Waves (23) are not analytic in ε. Consider instead their linear combinations

wε+
N (x, y) =

1
2πi

∫

|λ−1|=a

e−iλy

g(λ, ε) − (−1)N+1ω−1
ε

(
sin(κ(λ)x)

(−1)N+1i sin(κ(λ)(x − 1))

)
dλ

= γε
+w+

N + γε
−w−

N , (25)

and

wε−
N (x, y) =

1
2πi

∫

|λ−1|=a

(λ − 1)e−iλy

g(λ, ε) − (−1)N+1ω−1
ε

(
sin(κ(λ)x)

(−1)N+1i sin(κ(λ)(x − 1))

)
dλ

= γε
+(λ+ − 1)w+

N + γε
−(λ− − 1)w−

N , (26)

where κ(λ) =
√

ω2 − λ2 and

γε
± =

(∂g

∂λ
(λ±, ε)

)−1

, (27)

one can verify that γε
− = γε

+. Here a is such that the disk {|λ− 1| ≤ a} contains exactly two solutions λ+

and λ− to (19). Above waves are analytic in ε because the function (g(λ, ε)− (−1)N+1ω−1
ε )−1 is analytic

in ε for λ satisfying |λ − 1| = a.
Now let us consider waves (25) and (26) in the limit case ε = 0. First from (20) we obtain the following

expansion ∂g
∂λ near the point (λ, ε) = (1, 0)

∂g

∂λ
(λ, ε) = (−1)N

(
λ − 1

ωN (ω2
N − 1)

+
ω2

Nε

(ω2
N − 1)

+
(2 + 3ω2

N )(λ − 1)2

2ωN (ω2
N − 1)2

)
+ O(|λ − 1|3 + |λ − 1|ε). (28)

From (27) and (28) combined with (21), we get the following expansion

γε
± = (−1)N

√
ωN (ω2

N − 1)√
ε
√

2i

(
± 1 + i

√
ε

√
ωN (−3ω2

N + ωN − 4
3 )√

2(ω2
N − 1)

)
+ O(

√
ε). (29)

Finally, combining (24) with (29), we get

wε+
N = ÃwN

0 − iB̃wN
1 + O(ε)

and
wε−

N = B̃wN
0 + O(ε),

where Ã and B̃ are real constants given by

Ã = (−1)N+12ω2
N (ω2

N − 1)
(

2ω2
N +

4
3

)
, B̃ = (−1)N2ωN (ω2

N − 1).
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2.5. Location of the wave number λ

The forthcoming analysis, which is based on the Laplace transform of problem (5), (4) with respect to y,
requires the knowledge of the location of the roots to equation (11), (12) or equivalently of the equation

cos κ − λ
sinκ

κ
= 0, κ2 = ω2 − λ2. (30)

Let us denote the left-hand side of (30) by F(λ), which is analytic with respect to λ. One can verify that

d
dλ

F(λ) =
λ2

κ2
F(λ) +

ω2(λ − 1)
κ2

sin κ

κ
, κ =

√
ω2 − λ2.

We collect the required properties of the roots in the following

Proposition 1. (i) All roots λ of (30) are simple except of the case ω > 1 and ω is at the threshold—it is
a root of (14). In this case, the root λ = 1 is double and all the other roots are simple.

(ii) Let ω > 1. Then, there exists an absolute constant c0 such that the set S = {λ = a + ib : |a| ≥
c0ω, |b| ≤ |a|} contains no roots of (30).

(iii) Let ω−1
ε = ω−1

k + ε for a certain k = 2, 3, . . ., then there exist γk > 0 and εk > 0 such that for
ε ∈ (0, εk] all solutions to (30) which are located in the strip |	λ| ≤ γk are real described in Sect. 2.3 and
complex described in Sect. 2.4.2

Proof. (i) Assume that F (λ) = d
dλF(λ) = 0. Consider two cases λ �= 1 and λ = 1. In the first case, κ �= 0

and sinκ = 0, which due to the first equation in (30) leads to cos κ = 0 what is impossible. Consider the
second case λ = 1. Then, F(1) = 0, κ2 = ω2 − 1 and ω > 1 solves (14).

(ii) Let λ = a + bi ∈ S. Then, κ = iλ(1 + O(ω2 |λ|−2)). Since | sin κ|2 = cosh2 	κ − cos2 
κ, we have

| sin κ|2 − 1
ω2

|κ|2 ≥ cosh2 	κ − 1 − (1 + |a|)2 − |a|2,
which implies the required assertion.

(iii) Due to (ii), it is sufficient to prove that there are no roots on the intervals where λ = a ± iγ and
|a| ≤ C, where C is a certain positive constant. We can assume that γ ≤ 1. First, we note that

sinκ

κ
− (−1)k+1

ωε
= g(λ, ε) − (−1)k+1

ωε
=

(
g(a, 0) − (−1)k+1

ωk

)
± iγ

∂g

∂λ
(a, 0) + O(γ2 + ε).

If a ∈ [−C, 1 − δ] ∪ [1 + δ, C], then
(
g(a, 0) − (−1)k+1

ωk

)
and ∂g

∂λ (a, 0) are real and

c(δ, C) = max
[−C,1−δ]∪[1+δ,C]

(∣∣∣g(a, 0) − (−1)k+1

ωk

∣∣∣ +
∣∣∣∂g

∂λ
(a, 0)

∣∣∣
)
| > 0.

Furthermore, ∣∣∣∣g(λ, ε) − (−1)k+1

ωε

∣∣∣∣ ≥ |γ|c(δ, C) − C1(γ2 + ε).

Consider λ close to 1. More exactly, let |	λ| = δ and |a−1| ≤ δ. Noting that g(1, 0)− (−1)k+1

ωk
= ∂g

∂λ (1, 0) =
0 and using representation (20), we get

g(λ, ε) − (−1)k+1

ωε
= (−1)N (λ − 1)2

2ω2
k(ωk − 1)

+ O(δ3 + ε).

Since |λ − 1|2 ≥ δ2, we conclude from the last estimate that there are positive constants c1 and c2

depending only on k such that, if δ ≤ c1 and ε ≤ c2δ
2, then g(λ, ε) − (−1)k+1

ωε
does not vanish on the

intervals |	λ| = δ, |a − 1| ≤ δ. �

2If ε ∈ [−εk, 0] then all such solutions are real, see Fig. 3.
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2.6. Symplectic form

There is a natural symplectic structure on the set of solutions to problem (5), (4), cf. [18, Ch. 5]. It will
play important role in the study of the scattering matrix.

For this two solutions w = (u, v) and w̃ = (ũ, ṽ) of problem (5), (4), let us define the quantity

qa(w, w̃) = −
1∫

0

(u(x, a)ṽ(x, a) − v(x, a)ũ(x, a))dx. (31)

Since

0 =
∫

Πa,b

(
ũ
ṽ

)
· (D − ωI)

(
u
v

)
dxdy −

∫

Πa,b

(
u
v

)
· (D − ωI)

(
ũ
ṽ

)
dxdy = qb(w, w̃) − qa(w, w̃),

where Πa,b = (0, 1) × (a, b), a < b, we see that qa does not depend on a and we will use the notation q
for this form.

The form q is sesquilinear

q(α1w1, α2w2) = α1α2q(w1, w2)

and anti-Hermitian

q(w1, w2) = −q(w2, w1)

hence, it is symplectic.

2.7. Biorthogonality conditions

Here we discuss the biorthogonality conditions for the solutions to (5), (4). Since we are interested mostly
in the case when ω = ωε, where ω−1

ε = ω−1
N + ε , we will consider this case here. We introduce the

solutions to (5), (4) as follows
wτ

j (x, y) = e−iλτ
j y(Uτ

j (x),Vτ
j (x)), (32)

where τ stands for + or − and j = 1, . . . , N (if j = 1, then only τ = − is admissible). Furthermore, if
j = 1, . . . , N − 1, then the functions Uτ

j and Vτ
j are given by (16) and in the case j = N , they are given

by (23). Since

qa(wτ
j , wθ

k) = e−i(λτ
j −λθ

k)aCτθ
jk ,

where Cτθ
jk is a constant, and since the form q is independent of a, we conclude that

q(wτ
j , wθ

k) = 0 if (j, τ) �= (k, θ) and q(wτ
j , wτ

j ) = i
ω (λτ

j − 1).

Therefore,

q(wτ
j , wθ

k) =
i

ω
(λτ

k − 1)δj,kδτ,θ (33)

for j, k = 1, . . . , N − 1 and τ, θ = ±.
Let us start with the oscillatory waves. We put

wτ
k =

√
ω√|λτ

k − 1|w
τ
k , k = 1, . . . , N − 1.

Then, by (33)
q(wτ

j ,wθ
k) = τiδj,kδτ,θ, τ, θ = ±. (34)
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In the case ω = ωN , we have

q(w0
N , w0

N ) = 0, q(w0
N , w1

N ) =
1

2ωN
, q(w1

N , w1
N ) =

i

6ωN (ω2
N − 1)

,

for waves (17), (18).

2.8. Biorthogonality conditions for the complex wave vector λ

Let us check if the waves wε±
N fulfill orthogonality conditions. For waves w±

N , we have

q(w±
N , w±

N ) = 0, q(w+
N , w−

N ) =
i

ω
(λ+ − 1), q(w−

N , w+
N ) =

i

ω
(λ− − 1). (35)

We put
aε := iq(wε+

N ,wε+
N ), bε := −iq(wε+

N ,wε−
N ), cε := −iq(wε−

N ,wε−
N ) (36)

Then, using (35) together with (25), (26) and (29), we obtain

aε → a0 := 2ωN (ω2
N − 1)

5 + 9ω2
N

3
, (37)

bε → b0 := 2ωN (ω2
N − 1)2, (38)

cε = ε4ωN (ω2
N − 1)2

9ω2
N − 3ωN + 7

3
+ O(ε2) as ε → 0

The functions aε, bε and cε are real and analytic, and aε, bε, cε > 0 for small ε > 0.
From the above evaluations, we see that waves wε+

N and wε−
N do not fulfill the biorthogonality condi-

tions. That is why we consider their linear combinations

w+
N =

wε+
N + αεwε−

N

Nε
1

, w−
N =

wε+
N

Nε
2

(39)

where αε is an unknown constant and Nε
1 and Nε

2 are normalizing factors.
Our aim is to fulfill the biorthogonality relations

q(wτ
N ,wθ

N ) = τiδτ,θ, τ, θ = ±, (40)

which implies, in particular, that

q(wε+
N ,wε+

N ) + αεq(wε−
N ,wε+

N ) = 0.

Therefore, using (36), (37) and (38), we get

αε =
aε

bε
=

a0

b0
+ O(ε).

From (40) and (36), we find also the normalization factors Nε
1 and Nε

2

Nε
1 =

√
a0 + O(ε) Nε

2 =
√

aε =
√

a0 + O(ε)

By (25), (26) and (39), we have
w+

N = α1w
+
N + β1w

−
N (41)

and
w−

N = α2w
+
N + β2w

−
N , (42)

where

α1 =
γε
+(1 + αε(λ+ − 1))

Nε
1

, β1 =
γε

−(1 + αε(λ− − 1))
Nε

1

(43)

and
α2 =

γε
+

Nε
2

, β2 =
γε

−
Nε

2

. (44)
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Then, biorthogonality conditions take the form (40).

2.9. Properties of coefficients (43) and (44)

According to definitions (43) and (44), one can check that

β1 = α1, β2 = α2. (45)

In the next proposition, we collect some more properties of coefficients (43) and (44), which will play an
important role in the sequel.

Proposition 2. The following relations hold

α1

α2
=

β2

β1
,

∣∣∣α1

α2

∣∣∣ = 1. (46)

Proof. From (40), it follows

α1β1(λ+ − 1) + β1α1(λ− − 1) = ω, α2β2(λ+ − 1) + β2α2(λ− − 1) = −ω, (47)

and
α1β2(λ+ − 1) + β1α2(λ− − 1) = 0, (48)

Eliminating ω from (47), we get

λ− − 1
λ+ − 1

= −α1β1 + α2β2

β1α1 + β2α2
= −α2

1 + α2
2

α2
1 + α2

2

where the last equality follows form (45). Inserting it into (48), we arrive at

α1α2 − α1α2
α2

1 + α2
2

α2
1 + α2

2

= 0. (49)

Dividing (49) by α2(α2)2 and multiplying by α2
1 + α2

2, we obtain

α1

α2
+

α1

α2

(
α1

α2

)2

− α1

α2

(
α1

α2

)2

− α1

α2
= 0.

Defining d = α1/α2 , this relation can be written as

(d − d)(1 − dd) = 0.

Here d �= d because otherwise λ+ would be real; this follows from the definitions of α1 and α2. Conse-
quently

(1 − dd) = 0, |d| = 1, (50)

which implies the second equality in (46). To prove the first equality in (46), we note that d = α1/α2 =
β1/β2 by (45). This together with (50) gives

1 − α1

α2

β1

β2
= 0,

α1

α2
=

β2

β1
.

The proof is completed. �

The following quantity will play an important role

d = d(ε) :=
α1

α2
=

β2

β1
, (51)
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where the last equality is borrowed from Proposition 2. By (50), the absolute value of d is equal to 1.
Moreover, the function d(ε) depends on ε ∈ [0, ε0] and by definitions of
α1 and α2, see (43) and (44)

d(ε) = 1 + i
(5 + 9ω2

N )
3

√
2ωN

ω2
N − 1

√
ε + O(ε). (52)

We note also that
w+

N = Aw0
N + iBw1

N + O(ε) (53)
and

w−
N = Cw0

N + iBw1
N + O(ε) (54)

where

A = (−1)N
(−6ω5

N + 2ω3
N + 9ω2

N + 4ωN + 5
)
√

2ωN (ω2
N − 1)

3(9ω2
N + 5)

,

B = (−1)N+1

√
6ωN (ω2

N − 1)
9ω2

N + 5
, C = (−1)N+12ωN (3ω2

N + 2)

√
2ωN (ω2

N − 1)
3(9ω2

N + 5)
.

2.10. The non-homogeneous problem

Here, we consider the non-homogeneous problem

(−i∂x + ∂y)v − ωu = g in Π, (55)
(−i∂x − ∂y)u − ωv = h in Π, (56)

supplied with the boundary conditions

u(0, y) = 0 and v(1, y) = 0, y ∈ R. (57)

To study the solvability of this system, we introduce some spaces. The space L±
σ (Π), σ > 0, consists of

all functions g such that e±σyg ∈ L2(Π). Furthermore,

X±
σ = {u ∈ L±

σ (Π) : (i∂x + ∂y)u ∈ L±
σ (Π), u(0, y) = 0},

Y ±
σ = {v ∈ L±

σ (Π) : (−i∂x + ∂y)v ∈ L±
σ (Π), v(1, y) = 0}.

The norms in the above spaces are defined by ||g;L±
σ (Π)|| = ||e±σyg;L2(Π)||,

||u;X±
σ || =

(
||u;L±

σ (Π)||2 + ||(i∂x + ∂y)u;L±
σ (Π)||2

)1/2

and

||v;Y ±
σ || =

(
||v;L±

σ (Π)||2 + ||(−i∂x + ∂y)v;L±
σ (Π)||2

)1/2

respectively.
The main solvability result is the following assertion

Theorem 2.1. Let ω > 0 and let σ > 0 be such that the line 	λ = ±σ contains no roots of (30). Then,
the operator3

D − ωI : X±
σ × Y ±

σ → L±
σ (Π) (58)

is isomorphism.

3For the simplicity of the notation, we will be writing L±
σ (Π) for both spaces of functions and vectors. Here for example

we write L±
σ (Π) instead of L±

σ (Π) × L±
σ (Π). This notation will be applied to the other spaces introduced later as well.
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Even if the problem we are dealing with is not elliptic, the proof of this assertion is more or less
standard and we present it in “Appendix C.”

In what follows, we assume that an integer N ≥ 2 is fixed, ωN =
√

κ2
N + 1, where κN is defined in

Sect. 2.3, and ω = ωε = ωN/(1 + εωN ). Then, we have the following waves

w−
1 ,w±

2 , . . . ,w±
N−1,w

±
N ,

where w−
1 corresponding to λ−

1 and w±
j , j = 2, . . . , N − 1 are oscillatory and w±

N are of exponential
growth.

Theorem 2.2. Let γ = γN and εN be the same positive numbers as in Proposition 1 and also (g, h) ∈
L+

γ (Π) ∩ L−
γ (Π). Denote by (u±, v±) ∈ X±

γ × Y ±
γ the solution of problem (55), (56), (57), which exist

according to Theorem 2.1. Then,

(u+, v+) = (u−, v−) +
N∑

j=2

C+
j w+

j +
N∑

j=1

C−
j w−

j , (59)

where
−iC+

j =
∫

Π

(g, h) · w+
j dxdy, iC−

j =
∫

Π

(g, h) · w−
j dxdy.

The proof of this Theorem is presented in “Appendix D.” Results similar to Theorems 2.1 and 2.2 are
well known for elliptic problems and can be found, for example, in [11,12,18], but we remind that our
problem is not elliptic, see “Appendix A.”

3. The Dirac equation with a potential

3.1. Problem statement

Here we examine the problem with a potential and prove solvability results and asymptotic formulas for
solutions.

Consider a nanoribbon with a potential:

D
(

u
v

)
+ δP

(
u
v

)
= ω

(
u
v

)
, (60)

u(0, y) = 0, v(1, y) = 0, (61)

where D is the same as in (5), P = P(x, y) is a bounded, continuous and real-valued function with
compact support in Π and δ is a small parameter. We assume in what follows that

suppP ⊂ [−R0, R0] × [0, 1] and sup
(x,y)∈Π

|P(x, y)| ≤ 1, (62)

where R0 is a fixed positive number.
We assume that the positive numbers γ and εN are fixed such that

ω = ωε where
1
ωε

=
1

ωN
+ ε, N = 2, 3, . . . , (63)

ε ∈ [0, εN ] and γ = γN is from Proposition 1(iii), i.e.,
(1) the lines 	λ = ±γ contain no roots of (30) with ω given by (63),
(2) the strip |	λ| < γ contains roots of (30), which are real and complex described in Sects. 2.3 and

2.4, respectively.
Since the norm of the multiplication operator δP in L2(Π) is less than δ, we derive from Theorem 2.1

the following assertion.
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Theorem 3.1. The operator
D + (δP − ωε)I : X±

γ × Y ±
γ → L±

γ (Π) (64)
is isomorphism for |δ| ≤ δ0, where δ0 is a positive constant depending on the norm on the inverse operator
(D − ωεI)−1 : L±

γ (Π) → L±
γ (Π).

We introduce two new spaces

H+
γ =

{
(u, v) : u ∈ X+

γ ∩ X−
γ , v ∈ Y +

γ ∩ Y −
γ

}

and

H−
γ =

{
(u, v) : u ∈ X+

γ ∪ X−
γ , v ∈ Y +

γ ∪ Y −
γ

}
.

The norms in these spaces are defined by

||(u, v);H±
γ ||2 =

∫

Π

e±2γ|y|
(
|u|2 + |v|2 + |D(u, v)t|2

)
dxdy.

Let also L±
γ , γ > 0, be two L2 weighted spaces in Π with the norms

||(u, v);L±
γ ||2 =

∫

Π

e±2γ|y|
(
|u|2 + |v|2

)
dxdy.

We define two operators acting in the introduced spaces

A±
γ = A±

γ (ε, δ) = D + (δP − ω)I : H±
γ → L±

γ .

Some important properties of these operator are collected in the following

Theorem 3.2. The operators A±
γ are Fredholm and dim kerA+

γ = 0, dim coker A−
γ = 0. Moreover,

dim cokerA+
γ = dim kerA−

γ = 2N − 1,

where N is the same as in (63).

Proof. By Theorem 3.1, the operator (64) is isomorphic. This implies that the operator A−
γ is surjective

for such δ and its index and the dimension of its kernel do not depend on δ and hence equals 2N − 1 as
it is in the case δ = 0. �

In the next theorem and in what follows, we fix four smooth functions, χ± = χ±(y) and η± = η±(y)
such that χ+(y) = 1, χ−(y) = 0 for y > R0 and χ+(y) = 0, χ−(y) = 1 for y < −R0. Then, let η±(y) = 1
for large positive ±y, η±(y) = 0 for large negative ±y and χ±η± = χ±.

Let us derive an asymptotic formula for the solution to the perturbed problem (60), (61).

Theorem 3.3. Let f ∈ L+
γ and let w = (u, v) ∈ H−

γ be a solution to

(D + (δP − ω)I)w = f. (65)

satisfying (61).Then,

w = η+

N∑
j=1

∑
τ=±

Cτ
j wτ

j + η−
N∑

j=1

∑
τ=±

Dτ
j w

τ
j + R, (66)

where R ∈ H+
γ .

Proof. We write (65) as

(D + ωI)w = f − δPw =: F

Then,
(D + ωI)η±w = η±F + [D, η±]w. (67)
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According to Theorem 2.2 solutions to (67) are w∓ := (u∓, v∓) ∈ X∓
γ × Y ∓

γ , so

η+w = w−, η−w = w+. (68)

Applying relation (59)–(68), then multiplying the obtained equations by χ±, respectively, and summing
them up, we get

w = χ−
N∑

j=1

∑
τ=±

C
′τ
j wτ

j + χ+

N∑
j=1

∑
τ=±

D
′τ
j wτ

j + R′ (69)

where R′ = χ+w+ +χ−w− +(1−χ+ −χ−)w ∈ Hγ
+. Equation (69) can be written in the form (66) with

R ∈ Hγ
+. �

3.2. The augmented scattering matrix

The scattering matrix is our main tool for the identification of trapped modes [21–23]. Using the q-form, we
define the incoming/outgoing waves. The scattering matrix is defined via coefficients in this combination
of waves. It is important to point out that this matrix is often called augmented as it contains coefficients
of the waves exponentially growing at infinity as well. Finally, by the end of the section we define a space
with separated asymptotics and check that it produces a unique solution to the perturbed problem.

Let
QR(w, w̃) = qR(w, w̃) − q−R(w, w̃).

If w = (u, v) and w̃ = (ũ, ṽ) are solutions to (5) for |y| ≥ R0, then using the Green’s formula one can
show that this form is independent of R, R ≥ R0.

We introduce two sets of waves with a cutoff close to ±∞, which we will call outgoing and incoming
(for physical interpretation see “Appendix B”)

W∓
k = W∓

k (x, y; ε) = χ±(y)w∓
k (x, y) (70)

and
V ±

k = V ±
k (x, y; ε) = χ±(y)w±

k (x, y) (71)
with k = 2, . . . , N for the sign + and k = 1, . . . , N for the sign −. The reason for introducing these sets
of waves is the following property

QR(W τ
k ,W θ

j ) = −iδk,jδτ,θ, QR(V τ
k , V θ

j ) = iδk,jδτ,θ (72)

where k, j = 2, . . . , N , τ, θ = ± and k, j = 1, τ, θ = −. Moreover,

QR(W τ
k , V θ

j ) = 0. (73)

Thus, the sign of the Q-form distinguishes among W and V waves.
In the next lemma, we give a description of the kernel of the operator A−

γ , which will be used in the
definition of the scattering matrix.

Theorem 3.4. There exists a basis in ker A−
γ of the form

zτ
k = V τ

k + S1−
kτ W−

1 +
∑
θ=±

N∑
j=2

Sjθ
kτW θ

j + z̃τ
k , (74)

where z̃τ
k ∈ H+

γ . Moreover, the coefficients Sjθ
kτ = Sjθ

kτ (ε, δ) are uniquely defined.4

4As before we assume that for k = 1 the only admissible sign is τ = − and a similar agreement is valid for j = 1;
for simplicity, in what follows we often write summations over all indices τ = ± and j = 1, 2, . . . , N even though the sign
τ = + should be omitted for j = 1.
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Proof. Let z ∈ ker A−
γ . Since

(D − ω)(χ±z) = −δPχ±z + [D, χ±]z,

applying Theorem 2.2, we get

χ±z =
N∑

j=1

∑
τ=±

a±
jτw

τ
j + R±, R± ∈ X±

γ × Y ±
γ .

Multiplying these equalities by χ± and summing them up, we get

z =
N∑

j=1

∑
τ=±

a±
jτχ±wτ

j + R, R = χ+R+ + χ−R− + (1 − χ− − χ+)z ∈ H+
γ .

We write the last relation in the form

z =
N∑

j=1

∑
τ=±

C1
jτW τ

j +
N∑

j=1

∑
τ=±

C2
jτV τ

j + R, R ∈ H+
γ

and consider the map

ker A−
γ � z �→ {C2

jτ} ∈ C
2N−1,

which is linear and is denoted by J . Let us show that its kernel is trivial. Indeed, if all C2
jτ vanish, then

∫

ΠR

z(D + (δP − ω)I)zdxdy = QR(z, z) �→ −i
∑

|C1
jτ |2 as R → ∞,

where ΠR = (−R,R) × (0, 1). Hence, C1
jτ = 0, which leads to z ∈ H+

γ and therefore z = 0. This shows
that the mapping J is invertible, and we obtain the existence of a basis in the form (74) together with
uniqueness of coefficients Sjθ

kτ . �

The matrix of coefficients Sjθ
kτ in (74) is called the scattering matrix (see the footnote on the previous

page concerning k = 1 and j = 1).

3.3. Block notation

We shall use a vector notation

W = (W•,W†), V = (V•,V†),

where

W• = (W−
1 ,W+

2 ,W−
2 , . . . ,W+

N−1,W
−
N−1), W† = (W+

N ,W−
N )

and

V• = (V −
1 , V +

2 , V −
2 , . . . , V +

N−1, V
−
N−1), V† = (V +

N , V −
N ).

Equation (74) in the vector form reads5

z = V + SW + r. (75)

with

z = (z•, z†) = (z−
1 , z+

2 , z−
2 , . . . , z+

N−1, z
−
N−1, z

+
N , z−

N ) ∈ H−
γ ,

r = (r•, r†) = (r−
1 , r+

2 , r−
2 , . . . , r+

N−1, r
−
N−1, r

+
N , r−

N ) ∈ H+
γ

5In this format z, V, W and r are column vectors. Such notation will follow through the paper.
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here both vectors z and r has 2N − 1 elements. Matrix S = S(ε, δ) is written blockwise

S =
(

S•• S•†
S†• S††

)
.

Relations (72) and (73) take the form

Q(W,W) = −iI, Q(V,V) = iI Q(W,V) = O. (76)

where I is the identity matrix and O is the null matrix.

Proposition 3. The scattering matrix S is unitary.

Proof. Since zτ
k satisfies the homogeneous equation (61), by using the Green formula one can show that

Q(z, z) = 0. Therefore,

0 = Q(z, z) = Q(V + SW,V + SW) = Q(V,V) + Q(SW,SW) = iI − iS∗S

which proves the result. �

Consider the non-homogeneous problem (65) with f ∈ L+
γ (Π). This problem has a solution w ∈ H−

γ

which admits the asymptotic representation

w =
N∑

j=1

∑
τ=±

C1
jτW τ

j +
N∑

j=1

∑
τ=±

C2
jτV τ

j + R, R ∈ H+
γ (77)

which is a rearrangement of representation (66) This motivate the following definition of the space Hout
γ

consisting of vector functions w ∈ H−
γ which admits the asymptotic representation (77) with C2

jτ = 0.
The norm in this space is defined by

||w;Hout
γ || =

⎛
⎝||R;H+

γ ||2 +
N∑

j=1

∑
τ=±

|C1
jτ |2

⎞
⎠

1/2

.

Now, we note that the kernel in Theorem 3.4 can be equivalently spanned by

Zτ
k = W τ

k + S̃1−
kτ V −

1 +
∑
θ=±

N∑
j=2

S̃jθ
kτV θ

j + Z̃τ
k , Z̃τ

k ∈ H+
γ , (78)

Z̃τ
k ∈ H+

γ , where the incoming and outgoing waves are interchanged (compare with (74)) and S̃ is a
scattering matrix corresponding to that exchange.

Theorem 3.5. For any f ∈ L+
γ (Π), problem (65) has a unique solution w ∈ Hout

γ and the following
estimate holds

||w;Hout
γ || ≤ c||f ;L+

γ (Π)||, (79)
where the constant c is independent of ε ∈ [0, ε0] and |δ| ≤ δ0. Moreover,

− iC1
jτ =

∫

Π

f · Zτ
j dxdy. (80)

Proof. Existence. According to Theorem 3.3, there exists a solution to (65) of the form (77). Subtracting
a linear combination of the elements z±

j , we obtain a solution from Hout
γ .

Uniqueness is proved in the same way as the isomorphism property of the mapping J in Theorem 3.4.
To prove (80), we multiply equation (65) by Zτ

j and integrate over ΠR = (−R,R) × (0, 1) that leads
to ∫

ΠR

f · Zτ
j dxdy = QR(w,Zτ

j ),
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where integration by parts is applied. Now using relation (78) and (76) and sending R to infinity we
arrive at (80). From representation (80), it follows that

|C1
jτ | ≤ Cγ ||f ;L+

γ (Π)||. (81)

Now estimate (79) follows from (81) combined with (77) where C2
jτ = 0. From (77), the remainder R ∈ H+

γ

satisfies
(D + (δP − ω)I)R = F,

where F := f − δP ∑N
j=1

∑
τ=±

(
C1

jτχτw−τ
j

)
− ∑N

j=1

∑
τ=±

(
C1

jτ [D, χτ ]w−τ
j ). Therefore, we get

||F ;L+
γ (Π)|| ≤ ||f ;L+

γ (Π)|| +
N∑

j=1

∑
τ=±

(
C1

jτ ||δPχτw−τ
j ||

)

+
N∑

j=1

∑
τ=±

(
C1

jτ ||[D, χτ ]w−τ
j ||

)
≤ c||f ;Lγ

+(Π)||, (82)

where the last inequality follows from (81). Moreover, it follows from Theorem (3.1) that

||R;L±
γ (Π)|| ≤ c1||F ;L±

γ (Π)||. (83)

Combining (83) with (82), we get the estimate

||R;H+
γ (Π)|| ≤ c||f ;L+

γ (Π)||,
�

which together with (81) leads to (79).

3.4. Analyticity of the scattering matrix

We represent S as
S = I + s, or, equivalently, Skθ

jτ = δk,jδτ,θ + skθ
jτ . (84)

Theorem 3.6. The scattering matrix S(ε, δ) depends analytically on the small parameters ε ∈ [0, ε0] and
δ ∈ [−δ0, δ0]. Moreover,

skθ
jτ = −iδ

∫

Π

Pwτ
j · wθ

kdxdy + O(δ2). (85)

Proof. Consider the operator

Aout
γ (ε, 0) : Hout

γ → L+
γ (Π).

Then, it is isomorphism and

w =
(
Aout

γ (ε, 0)
)−1

f =
N∑

j=1

∑
τ=±

C1
jτW τ

j + R =: U + R

is given by

C1
jτ (ε) = i

∫

Π

f · wτ
j dxdy, R =

(
A+

γ (ε, 0)
)−1

(f − (D − ω)U).

We note that the vector function (D−ω)U has a compact support in Π and is analytic in ε. The coefficients

Cjτ (ε) depend also analytically on ε. Thus, the inverse operator
(
Aout

γ (ε, 0)
)−1

analytically depends on
ε.
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Let ζτ
j = zτ

j − wτ
j . Then, this vector function satisfies

(D + (δP − ω)I)ζτ
j = −δPwτ

j in Π and ζτ
j ∈ Hout

γ .

One can check that the solution to this problem is given by the following Neumann series

ζτ
j =

∞∑
k=1

(−(Aout
γ (ε, 0))−1δP

)k
wτ

j ,

which represents an analytic function with respect to ε and δ.
Furthermore,

(D − ω)ζτ
j = −δP

∞∑
k=0

(−(Aout
γ (ε, 0))−1δP)kwτ

j .

According to (76) and (84)

skθ
jτ = −iδ

∫

Π

P
∞∑

k=0

(−(Aout
γ (ε, 0))−1δP)k

wτ
j · wθ

kdxdy,

which implies (85). �

4. Trapped modes

4.1. Necessary and sufficient conditions for the existence of trapped modes solutions

In this section, we present a necessary and sufficient condition for the existence of a trapped mode in
terms of the scattering matrix.

As before we consider problem (60), (61) assuming that |δ| ≤ δ0 and ε ∈ (0, ε0].

Theorem 4.1. Problem (60), (61) has a non-trivial solution in H0 (a trapped mode), if and only if the
matrix

S†† + d(ε)Υ, Υ =
(

0 1
1 0

)
,

is degenerate. Here d is the quantity defined by (51).

Proof. If w ∈ H0 is a solution to (61), then certainly w ∈ ker A−
γ and hence6

w = a(V + SW + r),

where a = (a•, a†) ∈ C
2N−2 and V, W and r are the vector functions from the representation of the

kernel of A−
γ in (3.3). Using the splitting of vectors and the scattering matrix in the • and † components,

we write the above relation as

w = a•(V• + S••W• + S•†W† + r•) + a†(V† + S††W† + S†•W• + r†).

The first term in the right-hand side contains waves oscillating at ±∞, and to guarantee the vanishing
of this term, we must require a• = 0. Since r vanishes at ±∞ the requirement w ∈ H0 is equivalent to
the following demand:

a†(V† + S††W† + S†•W•) vanishes at ±∞. (86)
Using that S is unitary and a• = 0, we get

|a†|2 = |a|2 = |Sa|2 = |a†S†•|2 + |a†S††|2 = |a†S†•|2 + |da†|2.

6As before V+SW+r is a column vector.
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Since |d| = 1 this implies a†S†• = 0 and the relation (86) takes the form

a†(V† + S††W†) vanishes at ±∞. (87)

Taking into account representations (41) and (42) and equating the coefficients for increasing exponents
at ±∞, we arrive at the relations

a1α2 + (a1, a2)S††(0, α1)T = 0, a2β1 + (a1, a2)S††(β2, 0)T = 0,

where a† = (a1, a2). Due to the definition of d, this is equivalent to a†(S†† +dΥ) = 0 and then expression
(87) decays exponentially at ±∞. �

4.2. Proof of Theorem 1.1

To prove Theorem 1.1, it is sufficient to construct a potential P (subject to certain conditions) which
produces a trapped mode. According to Theorem 4.1, we must find a solution to the equation

det(S†† + dΥ) = 0. (88)

To analyze this equation, we write

d(ε) = eiσ, S = I + s, s =: −iδs, (89)

where σ is a real number close to 0 and according to (85) s is of order δ, then a newly introduced matrix
s is of order 1. To get a relation between σ and ε, we can use (52) which gives

cos σ = 1 + O(ε), sin σ =
√

ελ1
a0

b0
+ O(ε3/2) =:

√
εCd(1 + O(ε)).

We will seek for P and small δ > 0 that fulfill the relations

s†• = 0 and sN+
N− = 0. (90)

Since SS∗ = S∗S = I, we have that s•† = 0, sN+
N− = 0 and

|1 − iδsN−
N−| = |1 − iδsN+

N+| = 1.

Thus, (88) becomes
(
1 − iδsN+

N+

) (
1 − iδsN−

N−
)

= d2.

Since the norm of these vectors is 1 and both of them close to 1, this equation is equivalent to

	 (
1 − iδsN+

N+

) (
1 − iδsN−

N−
)

= 	d2. (91)

Now to solve this equation, we fix δ = sin σ, that according to expansion (90) gives δ =
√

εCd(1 + O(ε))
and (91) becomes

− 
 (
sN+

N+ + sN−
N−

) − δ	 (
sN+

N+sN−
N−

)
= 2 cos σ = 2 + O(ε). (92)

Let us proceed and write equations (90) and (92) as a system, using the following asymptotic formula

skθ
jτ (δP) =

∫

Π

wθ
kPwτ

j dxdy + O(δ). (93)

which follows from (85) and (89). We obtain the system of 4(2N − 3) + 3 equations


s†•(δP) = 0, 	s†•(δP) = 0, (94)


sN+
N−(δP) = 0, 	sN+

N−(δP) = 0, (95)

and
2 cos σ + 
(sN+

N+(δP) + sN−
N−(δP)) + δ	(sN+

N+(δP)sN−
N−(δP)) = 0. (96)
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To change those equations from a vector to a scalar notation, we introduce a set of 4(2N − 3)+3 indices:

I =
{

α = (j, τ, θ,Ξ):

j = 1; τ = −; θ = {+,−}; Ξ = {
, 	};

j = 2, . . . , N − 1; τ, θ = {+,−}; Ξ = {
, 	};

j = N ; τ = +; θ = −; Ξ = {
, 	};

j = N ; τ = +; θ = +; Ξ = 

}

.

The indices with j = 1, . . . , N − 1 are related to equation (94); the indices with j = N, τ = +, θ = −
correspond to (95) and the last index (N,+,+,
) corresponds to (96).

From the number of equations, it follows that the potential can be chosen to have the following form:

P(x, y) = Φ(x, y) +
∑
α∈I

ηαΨα(x, y)

where the functions Φ, {Ψα}α∈I are continuous, real-valued with compact support in [−R0, R0] × [0, 1].
The functions are assumed to be fixed and are subject to a set of conditions that is presented later on in
this section. The unknown coefficients can be chosen from the Banach fixed point theorem. Using indices
I and (93), we define

sα := ΞsNθ
jτ , α �= (N,+,+,
); sα := 
 (

sN+
N+ + sN−

N−
)

+ δ	 (
sN+

N+ · sN−
N−

)
), α = (N,+,+,
)

and

υα := Ξ
(
wτ

j · wθ
N

)
, α �= (N,+,+,
); υα :=

(
w+

N · w+
N + w−

N · w−
N

)
, α = (N,+,+,
).

Now we write (93) as

sα

(
δ
(
Φ +

∑
β∈I

ηβΨβ
))

=
∫

Π

(
Φ +

∑
β∈I

ηβΨβ
)
υαdxdy − δμα(δ,η) = 0,

α �= (N,+,+,
),

sα

(
δ
(
Φ +

∑
β∈I

ηβΨβ
))

= 2(1 − cos σ) +
∫

Π

(
Φ +

∑
β∈I

ηβΨβ
)
υαdxdy

− δμα(δ,η), α = (N,+,+,
)

Then, (94), (95), (96) are combined to

M(δ,η) := Φ + Aη − δμ(δ,η) = −2δα
(N,+,+,�), (97)

with a vector M = {Mα}α∈I , a vector Φ = {Φα}α∈I with the elements

Φα =
∫

Π

Φυαdxdy, (98)

a matrix A ={Aβ
α}α,β∈I with elements given by

Aβ
α =

∫

Π

Ψβυαdxdy,

a vector η = {ηα}α∈I with real unknown coefficients and a vector μ = {μα}α∈I that depends on δ and
η analytically (analyticity follows form Theorem 3.6).

Now our goal is to solve system (97) with respect to η. We will reach it in three steps. First, we
eliminate the constant −2 in the right-hand side in (97) by an appropriate choice of the function Φ.
Secondly, we choose the functions {Ψα}α∈I in such a way that A is a unit and our system becomes
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nothing but η = f(η) (with a certain small function f) and is solvable according to the Banach fixed
point theorem. The choice of the function Φ is the following

Φα = 0, α �= (N,+,+,
); Φα = −2, α = (N,+,+,
) (99)

and it is possible due to the following Lemma.

Lemma 2. Functions


wθ
N · wτ

j , 	wθ
N · wτ

j , 
w−
N · w+

N , 	w−
N · w+

N ,
(
w+

N · w+
N + w−

N · w−
N

)
(100)

with k = 1, 2, . . . , N − 1, τ, θ = ± and as before for k = 1 there is only τ = −, are linearly independent.

Proof. We first note that function (100) continuously depends on ε, so for the proof of linear independence,
it is enough to consider the limit case, i.e., ε = 0. From (17), (18), (32), (53), (54), it follows that

wθ
N · wτ

j = e−iy(1−λτ
j )(aτj

1θ(x) + iyaτj
2 (x)).

Hence,


wθ
N · wτ

j = aτj
1θ(x) cos(y(1 − λτ

j )) + aτj
2 (x)y sin(y(1 − λτ

j )), (101)

	wθ
N · wτ

j = aτj
2 (x)y cos(y(1 − λτ

j )) − aτj
1θ(x) sin(y(1 − λτ

j )), (102)


w−
N · w+

N = b1(x) + b2(x)y2, (103)

	w−
N · w+

N = C1b2(x)y, (104)

w+
N · w+

N + w−
N · w−

N = C2b2(x) + 2b1(x) + 2b2(x)y2, (105)

where aτj
1θ , aτj

2 , b1 and b2, with θ = ±, are real, non-trivial functions and C1 and C2 are nonzero constants.
Now, as functions cos(y(1 − λτ

j )), y cos(y(1 − λτ
j )), sin(y(1 − λτ

j )), y sin(y(1 − λτ
j )), 1 , y, y2 are linearly

independent, then functions (101), (102), (103), (104) and (105) are linearly independent provided that
(i) aτj

1+(x) �= aτj
1−(x), (ii) (103) and (105) are linearly independent. The claim in (i) follows from the linear

independence of functions w+
N and w−

N (see (53) and (54)). Then, (ii) is true if 2
w−
N ·w+

N − (w+
N ·w+

N +
w−

N · w−
N ) is nonzero and that follows from direct calculation

2
w−
N · w+

N −
(
w+

N · w+
N + w−

N · w−
N

)
= −C2b2(x)

=
ωN (9ω2

N + 5)
3(ω2

N − 1)

(
cos(2κNx) + cos(2κN (x − 1)) − 2

)
.

�

By Lemma 2, all the multiplicands of Φ in (98) are linearly independent. It follows that it is possible
to choose Φ so that (99) holds and equation (97) is

Aη − δμ(δ,η) = 0. (106)

Now we set the matrix A to be a unit, that is, its elements fulfill the conditions

Aβ
α = δα,β , α, β ∈ I. (107)

Again using Lemma 2, it is possible to choose functions {Ψα}α∈I so that condition (107) is fulfilled and
(106) reads

η = δμ(δ,η). (108)

Now, as δ is small, the operator on the right-hand side of equation (108) is a contraction operator;
moreover, μ is analytic in δ and η, so the Banach fixed point theorem assures that equation (108) is
solvable for η.
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Fig. 5. Sketch of an example potential P producing a trapped mode with energy close to ω2. The nanoribbon lies along

the y-axis

A numerical example of a potential (leading therm Φ) that produces a trapped mode is

P(x, y) ≈ Φ(x, y) = e−( x−0.5
0.2 )2

(
0.4512e−(y+65.6273)2 − e−y2

+ 0.4512e−(y−65.6273)2
)

and is sketched in Fig. 5.

4.3. Proof of Theorem 1.2

This section is devoted to the proof of the second main result formulated in Theorem 1.2 in the intro-
duction. It concerns the multiplicity of trapped modes, and it states that (i) there are no trapped modes
solutions for energies slightly larger than threshold, (ii) the multiplicity of trapped modes with energies
slightly smaller than threshold does not exceed 1, and (iii) the spectrum far from the threshold is free of
trapped modes.

Consider problem (60), (61). As previously, P is a continuous potential with compact support and
subject to (62).

Proof. (i) Assume the contrary: there exist a trapped mode solution, i.e., a solution (u, v) of (61) belonging
to H1 = {(u, v) : u ∈ X0, v ∈ Y0} ( X0 = {u ∈ L2(Π) : (i∂x + ∂y)u ∈ L2(Π), u(0, y) = 0}, Y0 = {v ∈
L2(Π) : (−i∂x + ∂y)v ∈ L2(Π), v(1, y) = 0}). Now, from Theorem 3.3 and Proposition 1 (iii), which
assets that all λ in the strip {|Imλ| ≤ γ}, in the exponential part of the solutions w = (u, v) = e−iλy(U ,V)
are real, it follows that (u, v) ∈ H+

γ . Moreover, from Theorem 3.1 operator D+(δP −ω)I : X±
γ ×Y ±

γ →
L±

γ (Π) is an isomorphism, so the only solution to (D + (δP − ω)I)w = 0 is w = 0.
(ii) There exist at least one trapped mode, and it can be constructed through conditions given in the

previous section, Sect. 4.2. Assume now that there are two trapped modes. According to Theorem 3.3
and Proposition 1 (iii), which assets that there are exactly two solutions w = (u, v) = e−iλy(U ,V) with
complex λ in the strip {|	λ| ≤ γ}, it follows that the trapped mode is of the form

wj = Cje
−iλ−y

(U−
N (x),V−

N (x)
)

+ Dje
−iλ+y

(U+
N (x),V+

N (x)
)

+ Rj (109)

with Rj ∈ H+
γ , j = 1, 2. Now, consider the following linear combination of trapped modes (109)

w3 = w1 − C1

C2
w2 =

(
D1 − C1

C2
D2

)
e−iλ+y

(U+
N (x),V+

N (x)
)

+
(

R1 − C1

C2
R2

)
, w3 ∈ X−

γ × Y −
γ (110)

which is a solution to problem (61) as well. From Theorem 3.1, it follows that operator D + (δP − ω)I :
X−

γ × Y −
γ → L−

γ (Π) is an isomorphism and hence w3 = 0. From (110) we get w1 = Cw2.
(iii) First we choose γ such that the strip |	λ| ≤ γ contains only real roots of (30) for all ω described in
Proposition (iii). Then, we note that the supremum with respect to such ω of the quantity sup	λ=±γ ||(D−
ω)−1||L2(Π)→L2(Π) is bounded; then, reasoning as in (i), we obtain the estimate for δ1. �
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Appendices

Appendix A: Ellipticity

According to the general ellipticity theory [1], it is necessary to check a few simple properties. To this
end, we write three different tables of the Agmon-Douglis-Nirenberg indices (ADN-indices):

T 0 :
1 1

0 1 1
0 1 1

T v :
0 1

0 0 1
1 1 2

Tu :
1 0

1 2 1
0 1 0

Note that the numbers inside the tables are obtained as the sum of the numbers standing at the cor-
responding rows and columns outside the tables. They indicate orders of differential operators composing
the principal part of system (5)

D0 := D, Dv := D +
(−ω 0

0 0

)
, Du := D +

(
0 0
0 −ω

)
(111)

where Dα = Dα(∂x, ∂y) for α = 0, v, u. We have det Dα(−iη,−iξ) = |η|2 + |ξ|2, and hence, the operator
matrix (111) is elliptic with α = 0, u, v. However, it is also necessary to verify the Shapiro–Lopatinskii
condition at both sides of the strip Π. For example, for the right edge 0×R of the nanoribbon, the Cauchy
problem

Dα(∂x,−iξ)
(

u
v

)
= 0 in R+, u(0, ξ) = 1

must have only one solution decaying as y → ∞.
If α = 0, we have u(x, ξ) = eξx without decay for ξ > 0. In the case, α = v the general solution takes

the form

v(x, ξ) = Ce−|ξ|y, u(x, ξ) = Cω−1(−|ξ| + ξ)e−|ξ|y.

But again the Cauchy problem has no solution for ξ > 0. Finally, fixing α = u we obtain the desired
solution

v(x, ξ) = e−|ξ|y, u(x, ξ) = iω−1(|ξ| + ξ)e−|ξ|y

for any ξ ∈ R\{0}.
A similar calculation shows that the Cauchy problem serving for the left edge of the nanoribbon

Dα(∂x,−iξ)
(

u
v

)
= 0 in R−, v(0, ξ) = 1

gets the necessary property for the case α = v only.
Reviewing the situation, we see that any of the three ADN-tables is suit inside Π, but none serves

simultaneously at both sides of the nanoribbon. This means that our problem is not included into the
standard elliptic theory.

http://creativecommons.org/licenses/by/4.0/
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It also should be mentioned that, if there exists an ADN-table fitting everywhere in Π and on ∂Π,
then according to [18, Ch. 5], the numbers of incoming and outgoing waves must coincide in each outlet
to infinity. The latter, as we have verified in (70) and (71), is not true.

Appendix B: The Mandelstam radiation condition

Here we want to clarify the division of waves in the two classes outgoing/incoming according to the
appearance of the ±i in (34). To do so, we employ the Mandelstam radiation conditions which defines
the classification into outgoing and incoming waves by the direction of the energy transfer [17,24,26].

Let us write the initial system (5) in the form

(−i∂x + ∂y)v = i∂tu,

(−i∂x − ∂y)u = i∂tv, (112)

with
u = e−iωtu , v = e−iωtv , w = (u,v). (113)

The energy transfer from area Ω is defined as

− d
dt

∫

Ω

|∂tw|2dxdy.

Using relations (112), (113) and performing a partial integration, we get

− d
dt

∫

Ω

|∂tw|2dxdy = −|ω|2
∫

Ω

w∂tw + w∂twdxdy

= −i|ω|2
∫

Γ

(
i(uv + vu),uv − vu

)
· (nx, ny)ds,

where Γ is the boundary of the domain Ω. Consider the energy transfer along the nanoribbon (along the
y-axis) from −∞ to +∞, that is choose (nx, ny) = (0, 1), then the last formula is equal to

− d
dt

∫

Ω

|∂tw|2dxdy = −i|ω|2
1∫

0

(uv − vu)dx = i|ω|2q(w,w),

where the last equality comes from the definition of q-form (31). Accordingly, the energy transfer along
the nanoribbon is proportional to iq, which is ±1 for q = ∓i. It follows that the value of q-form defines
the direction of wave propagation, namely q = −i describes the waves propagating from −∞ to +∞ and
q = +i those from +∞ to −∞. This leads to the definition of the outgoing/incoming waves (70), (71) as
those traveling to ±∞ and from ±∞.

Appendix C: Proof of Theorem 2.1

Proof. We prove the Theorem for the sign “−” in (58), the proof for the sign “+” is the same if we put
−σ instead of σ in the sequel.

Using the Fourier transform with respect to y

ĝ(λ) =

∞∫

−∞
g(y)eiλydy,
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with λ = ξ + iσ, we transform problem (55), (56), (57)

(−i∂x − iλ)v̂ − ωû = ĝ, (114)

(−i∂x + iλ)û − ωv̂ = ĥ in (0, 1) (115)

with the boundary conditions û(0, λ) = 0 and v̂(1, λ) = 0. If λ satisfies the condition of the theorem, then
this problem has a unique solution for every ξ ∈ R. Let us obtain estimates for u and v.

We begin with the case h = 0. Then, v̂ = ω−1(−i∂x + iλ)û and

(−∂2
x + λ2 − ω2)û = ĝω on (0, 1) (116)

with boundary conditions
û(0, λ) = 0, ∂xû(1, λ) = λû(1, λ). (117)

Consider the case when |ξ| is large. We are looking for a solution to the above problem in the form
û = w + R, where w solves (116) with the Dirichlet boundary condition: w(0, λ) = w(1, λ) = 0 and

R(x, λ) =
∂xw(1, λ) sin κx

κ cos κ − λ sin κ
,

where κ2 = ω2 − λ2. Direct calculations show that

w(x, λ) = ω

1∫

0

L(x, z)ĝ(z, λ)dz,

where

L(x, z) =
1

κ sin κ

{
sin κx sinκ(1 − z) if z > x

sin κ(1 − x) sin κz if x > z
.

Since κ = iτ , τ = λ − ω2λ−1/2 + O(|λ|−3) and λ = ξ + iσ, therefore,

|L(x, z)| ≤ C

|ξ|e
−|ξ| |x−z|.

This implies the estimate
1∫

0

(|ξ|4|w|2 + |ξ|2|∂xw|2 + |∂2
xw|2)dx ≤ C

1∫

0

|ĝ|2dz. (118)

As a consequence, we get

|∂xw(1, λ)|2 ≤ C|ξ|−1

1∫

0

|ĝ|2dz. (119)

Now, from trigonometric function properties

κ cos κx − λ sin κx = iτ cosh τx − iλ sinh τx

= i
(

− ω2

4λ
+ O(|λ|−3)

)
eτx + i

(
λ + O(|λ|−1)

)
e−τx. (120)

Therefore,
1∫

0

|(∂x − λ)R|2dx =

1∫

0

|κ cos κx − λ sin κx|2dx

≤ C
|∂xw(1, λ)|2

|κ cos κ − λ sin κ|2
( |e2ξ − 1|

|ξ|3 + |e−2ξ − 1| |ξ|
)
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and using again (120) with x = 1, we get
1∫

0

|(∂x − λ)R|2dx ≤ C
|∂xw(1, λ)|2

|ξ|
and

1∫

0

|R|2dx ≤ C|ξ| |∂xw(1, λ)|2.

The last two estimates together with (118) and (119) give
1∫

0

(|û|2 + |v̂|2)dx ≤ C

1∫

0

|ĝ|2dx (121)

for large ξ. Estimate (121) for ξ from a certain bounded interval can be obtained directly by analyzing
problem (116), (117), since it is elliptic and generates an isomorphic operator due to the assumption
on λ. Thus, estimate (121) is valid for all real ξ. Using (114), (115), we can estimate also L2-norms of
(−i∂x + iλ)v̂ and (−i∂x − iλ)û. Now reference to Parseval’s theorem gives

||u;L−
σ (Π)|| + ||(i∂x + ∂y)u;L−

σ (Π)|| + ||v;L−
σ (Π)|| + ||(−i∂x + ∂y)v;L−

σ (Π)|| ≤ C||g;L−
σ (Π)||

in the case h = 0. The change of variables x → 1 − x and (u, v) → (−v, u) reduces the case g = 0 to the
previous one. The theorem is proved. �

Appendix D: Proof of Theorem 2.2

Proof. From Theorem 2.1, we know that (u+, v+) can be expressed as follows

(u+, v+)T =
1
2π

∫

	λ=−γ

e−iλy(D(∂x,−iλ) − ωI)−1(ĝ, ĥ)T dλ

where D = D(∂x, ∂y) was defined in (5). Now choose a positive value ρ sufficiently large so that all
eigenvalues λτ

j described in Proposition 1 (iii) are contained in the set {λ ∈ C : |	λ| < γ, |
λ| < ρ}
(Fig. 6). This is possible according to Proposition 1. Applying the Cauchy’s formula, we get

(u+, v+)T =
1
2π

ρ−iγ∫

−ρ−iγ

e−iλy(D(∂x,−iλ) − ωI)−1(ĝ, ĥ)T dλ

=
1
2π

( ρ+iγ∫

−ρ+iγ

. . . dλ +

ρ+iγ∫

ρ−iγ

. . . dλ −
−ρ+iγ∫

−ρ−iγ

. . . dλ
)

+ i
∑
τ=±

N∑
j=1

Res
(
e−iλy(D(∂x,−iλ) − ωI)−1(ĝ, ĥ)T

)
|λ=λτ

j
(122)

The first integral on the right-hand side tends to (u−, v−) with ρ → ∞. Moreover, the last two integrals
tend to zero for smooth functions (g, h) with compact support. It is enough to prove the theorem for such
functions as they are dense in L+

γ (Π) ∩ L−
γ (Π).

The residua in (122) belong to the kernel of (D(∂x, ∂y) − ωI). Therefore, the last sum is a linear
combination of solutions wτ

k , with τ = ± and k = 1, . . . , N and we obtain (59) with certain coefficients.
Now, we want to find expressions for those coefficients.
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λ−
1 λ−

2 λ+
2

λ+

λ−

γ

−γ

−ρ ρ

λ

λ

Fig. 6. Schematic figure showing a region that contains all the eigenvalues λτ
j (red dots) described in Proposition (1 iii)

with blue contour used in the integration (122)

Let us define a smooth function η− = η−(y) such that η−(y) = 1 in the neighborhood of −∞ and
η−(y) = 0 in the neighborhood of +∞. Using the biortogonality conditions for functions w∓

j in (34), we
get ∫

Π

w+
j (D − ωI)

(
η−(u+, v+)T − η−(u−, v−)T

)
dxdy = −iC+

j . (123)

Now note that

η−(u−, v−), (1 − η−)(u+, v+) ∈ L+
γ (Π) ∩ L−

γ (Π).

Applying integration by parts, it follows that∫

Π

w+
j (D − ωI)

(
(1 − η−)(u+, v+)T

)
dxdy = 0

and ∫

Π

w+
j (D − ωI)

(
η−(u−, v−)T

)
dxdy = 0

so from (123), we get ∫

Π

w+
j · (g, h)dxdy = −iC+

j .

In a similar way, we obtain ∫

Π

w−
j · (g, h)dxdy = iC−

j .

This furnishes the assertion. �
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