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Abstract The MultiScale Finite Volume (MSFV) method
is known to produce non-monotone solutions. The causes of
the non-monotone solutions are identified and connected to
the local flux across the boundaries of primal coarse cells
induced by the basis functions. We propose a monotone
MSFV (m-MSFV) method based on a local stencil-fix that
guarantees monotonicity of the coarse-scale operator, and
thus, the resulting approximate fine-scale solution. Detec-
tion of non-physical transmissibility coefficients that lead
to non-monotone solutions is achieved using local informa-
tion only and is performed algebraically. For these ‘critical’
primal coarse-grid interfaces, a monotone local flux approx-
imation, specifically, a Two-Point Flux Approximation
(TPFA), is employed. Alternatively, a local linear bound-
ary condition can be used for the dual basis functions to
reduce the degree of non-monotonicity. The local nature of
the two strategies allows for ensuring monotonicity in local
sub-regions, where the non-physical transmissibility occurs.
For practical applications, an adaptive approach based on
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normalized positive off-diagonal coarse-scale transmissibil-
ity coefficients is developed. Based on the histogram of
these normalized coefficients, one can remove the large
peaks by applying the proposed modifications only for
a small fraction of the primal coarse grids. Though the
m-MSFV approach can guarantee monotonicity of the solu-
tions to any desired level, numerical results illustrate that
employing the m-MSFV modifications only for a small
fraction of the domain can significantly reduce the non-
monotonicity of the conservative MSFV solutions.

Keywords Multiscale finite volume method · Iterative
multiscale methods · Algebraic multiscale solver · Scalable
linear solvers · Monotone flux approximation schemes ·
Multipoint flux approximation · Porous media

1 Introduction

Increasing demand for efficient and accurate simulation of
multiphase flow in large-scale heterogeneous porous media
has motivated the development and extension of the Mul-
tiScale methods [1–9]. Among the proposed multiscale
methods, the Mixed MultiScale Finite-Element (MMSFE)
[5, 7, 8] and the multiscale finite volume (MSFV) [6] meth-
ods provide locally mass-conservative solutions, which is
a crucial property for solving coupled flow and transport
problems. Compared to MMSFE, MSFV has the advan-
tage of solving the flow problems with less unknowns and
is quite applicable to reservoir simulation practices. Recent
developments of the MSFVmethod allow for compositional
effects and complex wells, making it a promising approach
for the next-generation of reservoir flow simulators [10–20].

For a wide range of heterogeneous test cases, the MSFV
results are shown to be in good agreement with reference
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Fig. 1 Illustration of the MSFV primal- and dual-coarse grids
imposed on the given 2D computational domain �. The figure also
shows the detail of a primal-coarse �̆k (coarse control volume) and a

dual-coarse �̃h (local domain) cells, respectively. A coarse node, xk ,
here chosen the central cell inside �̆k , is also shown. Boundary cells
of local domains (dual-coarse cells) are also highlighted in gray

fine-scale solutions, however, come with strong sensitivity
to large contrasts in the local permeability and anisotropy
in the transmissibility. To improve the quality of the
reconstructed fine-scale solution, iterative MSFV (i-MSFV)
strategies have been developed [21–23]. In the develop-
ment of the Algebraic Multiscale Solver (AMS) [23], the
coarse-scale symmetric-positive-definite system of MSFE
is used to reduce the error norm to arbitrarily small val-
ues, while MSFV is employed only at the final stage
to obtain a conservative velocity field. Having a conser-
vative velocity field is a critical requirement for solving
the nonlinear transport equations accurately and efficiently.
Moreover, local mass conservation allows for adaptive com-
putations and the use of relatively loose tolerances as a
function of time [20, 21, 24]. Thus, in the context of a
multiscale linear solver, the final step of using MSFV to
ensure local conservation must be performed in a man-
ner that minimizes the degree of nonmonotonicity in the
reconstructed fine-scale pressure solution. To improve the
quality of the MSFV solutions for slightly heterogeneous
and grid-aligned anisotropic coefficients, a Compact-MSFV
(C-MSFV) operator was proposed [25]. While the C-MSFV
was effective for many grid-aligned anisotropic problems,
it does not overcome the problem with nonmonotonicity for
highly heterogeneous anisotropic fields. For heterogeneous
problems, some improvements were observed by chang-
ing the boundary conditions (BC) for all local problems
[26].

In this work, the cause of the non-physical peaks asso-
ciated with the MSFV operator for highly heterogeneous
problems is identified clearly and resolved. The peaks are
associated with the discretization stencil of coarse nodes
that are surrounded by low-permeability regions. It is shown
that for these critical coarse nodes, integration of the flux
induced by the dual basis functions can result in nega-
tive transmissibilities for the coarse-scale pressure system.
A monotone MSFV (m-MSFV) method is devised on the
basis of a local stencil-fix approach, which guarantees the

monotonicity of the MSFV solution. The critical interfaces
with non-physical transmissibility values for the coarse-
scale system are detected algebraically. Then, a local Two-
Point-Flux-Approximation (TPFA) scheme is used to cal-
culate the coarse-scale entries for the critical coarse faces
only. In addition, the Linear Boundary Condition (LBC) can
be employed for the basis function calculations of the crit-
ical regions. The LBC-based m-MSFV reduces the norm
of non-physical peaks (reducing nonmonotonicity). In con-
trast to the TPFA-based approach, however, the LBC-based
m-MSFV cannot remove all the negative (non-physical)
transmissibilies from the coarse-scale system.

The local nature of m-MSFV allows it to be employed
adaptively in space and time. In this paper, a histogram
of the critical interfaces is calculated based on a normal-
ized value of the non-physical transmissibility coefficients.
Then, based on a threshold value, only critical interfaces
with large values are detected and fixed. This threshold-
based approach allows for a reasonable trade-off between
the accuracy and monotonicity of the solutions.
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Fig. 2 Illustration of the basis function �h
1 solved on dual-coarse cell

�̃h subject to the reduced boundary condition. Note that the basis func-
tions are always monotone and satisfy 0 ≤ �h

k ≤ 1, provided that the
mobility tensor λ is positive definite
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Fig. 3 (left): Illustration of a 3 × 3 coarse- and 21 × 21 fine- grid
domain. The coarse cell i is highlighted in red, neighboring k and j on
its South and South-West sides. Also shown are the induced fluxes by

the �j (middle) and �k (right). Note that only the overlapping part of
the basis functions are plotted, and that for simplicity of the illustration
a homogeneous problem is used

The paper proceeds as follows. After a short review of
the MSFV method, in Section 2, the MSFV coarse-scale
operator (system) is described in detail. In Section 3, the
m-MSFV method is presented. Numerical results are shown
in Section 4, followed by Section 5 where the paper is
concluded.

2 Multiscale finite volume method

The elliptic equation for pressure, p, can be written as

−∇ · (λ · ∇p) = q, (1)

where the highly heterogeneous mobility (assumed diago-
nal) tensor and the source terms are denoted with λ and
q, respectively. The problem (1) is well posed for a d-
dimensional computational domain � ⊂ �d , subject to
proper boundary condition at ∂� ⊂ �d−1. The discrete
form of Eq. 1 at the given fine-scale (denoted here on by
superscript f ), where the coefficients λ are computed using
a finite-volume TPFA scheme [27], can be written as

Af pf = qf , (2)

where entries of the transmissibility matrix Af are

a
f
ij |i �=j = − λ̄ij ·nij

δxij
·nij δAij . Here, λ̄ij , δAij , and δxij are the

harmonically averaged permeability, differential element
cross section area and the distance between the computa-
tional nodes i and j , respectively. Also, the normal unit
vector nij points out of volume i at its cross section with

cell j . Note that a
f
ij = a

f
ji and a

f
ii = − ∑Nf

j=1,j �=i a
f
ij ,

where Nf is the number of fine-scale finite volumes. In our
implementation, the positive definite mobility tensor leads
to non-positive off-diagonal (af

ij |i �=j ≤ 0) and non-negative

diagonal (af
ii ≥ 0) entries for the transmissibility matrix.

The MSFV method employs primal- (�̆c) and dual- (�̃h)
coarse grids superimposed on the given fine grid (Fig. 1).
The fine-scale pressure field is constructed as follows:

pf ≈ pMS =
Nc∑

k=1

�kp̆k, (3)

where Nc represents the number of coarse-scale control vol-
umes. The locally computed basis functions �k are used to
prolong the coarse-scale solution p̆k onto the fine-scale res-
olution. Basis functions are first computed on dual-coarse
cells, �̃h, as illustrated in Fig. 2, and then assembled for all
dual cells, Nd , i.e., �k = ∑Nd

h=1 �h
k . Note that the precom-

puted correction term at the fine-scale, �, can be used to
improve this approximation, leading to pf ≈ p′ = pMS +
�. The correction term is an independent stage to improve
the multiscale solution, pMS . Note that the correction term
does not modify the coarse-scale system matrix; hence, we
do not consider it in our analysis. For more detailed analysis
of the correction term, we refer to [23].

The basis functions are local solutions of the governing
Eq. 1, i.e.,

− ∇ · (λ · ∇�h
k) = 0 on �̃h (4)

�h
k(xi) = δki ∀xi, (5)

Fig. 4 Logarithm of
permeability field for SPE 10
bottom layer [28]. The domain
consists of 220 × 60 fine- (not
shown) and 20 × 12 coarse-
(shown) grid cells. Two
subdomains of the size 3 × 3
coarse cells are highlighted
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Fig. 5 (top-left): Logarithm of
permeability field with coarse
grid and coarse nodes, extracted
from Fig 4. (top-right): part of
the basis function �k

overlapping with coarse cell i
(coarse cell (10,3) in Fig. 4).
(bottom-left): basis function �i ;
(bottom-right): superimposed
MSFV pressure field,
pMS = ∑

�kp̆k , obtained for
�h1
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where δki is the Dirac delta function, i.e., δki |k=i = 1 and
δki |k �=i = 0. Equation 4 subject to Eq. 5 at the corner ver-
tices is solvable if a proper BC is imposed on ∂�̃h. The
reduced-dimensional problem condition can be stated as

−∇⊥ · (λ · ∇�h
k)⊥ = 0 at ∂�̃h, (6)

which has been widely used in the multiscale literature.
The subscript ⊥ denotes the normal projection (operator
or vector) with respect to the boundary. Alternatively, if
one ignores the mobility variation along the boundary, i.e.,
λ = I at ∂�̃h, the formulation reduces to the LBC. Note that
the basis functions computed with either of the two local
BC are monotone with numerical values between 0 and 1,
i.e., 0 ≤ �k(x) ≤ 1 ∀x ∈ �, k = {1, 2, ..., Nc}, pro-
vided that the fine-scale mobility coefficients λ are positive
definite. Therefore, in the superposition pMS = ∑

�kp̆k ,
pMS would violate the monotonicity property if and only

if the p̆k violates this property. Hence, all the non-physical
peaks are associated with non-physical p̆k values. This
important fact guides us to the cause of the non-physical
peaks in the MSFV solution, pMS . That is, the proper-
ties of the coarse-scale system control the monotonicity
behavior.

The superposition expression is substituted into Eq. 1
and integrated over coarse-control volume boundaries. After
applying the Gauss integral rule, one obtains the coarse-
scale system as

Acp̆ =
∫

�̆

q d�, (7)

where the coarse-scale transmissibility matrix entries ac
ij are

ac
ij = −

∫

∂�̆i

(λ · ∇�j) · ni d�. (8)

Fig. 6 (top-left): Logarithm of
permeability field with coarse
grid and coarse nodes, extracted
from Fig 4, �h2. (top-right):
part of the basis function �k

overlapping with coarse cell i
(coarse cell (5,6) in Fig. 4).
(bottom-left): basis function �i ;
(bottom-right): superimposed
MSFV pressure field,
pMS = ∑

�kp̆k , obtained for
�h2. Note that a non-physical
positive off-diagonal value of
ac
ik = 222.5 and small positive
value of ac

ii = 0.65 are
calculated for coarse-system
entries, which also clearly
shows the i-th coarse-system
row is not diagonally dominant
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Fig. 7 Fine-scale reference
(left) and MSFV (right)
solutions for the SPE 10 bottom
layer heterogeneous test case.
There exist 220 × 60 fine- and
20 × 12 coarse- grid cells. Note
that the MSFV superimposed
solution (right) entails several
non-physical peaks. The
permeability field is also partly
shown in the plots under the
pressure solution 0
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Here, ni is the unit normal vector pointing out of the control
volume (coarse-cell) i. Note that �j = ∑Nd

h=1 �h
j . Mass

conservation leads to

ac
ii = −

Nc∑

j=1,i �=j

ac
ij = −

∫

∂�̆i

(λ · ∇�i) · ni d�, (9)

since
∑Nc

j=1 �h
j = 1. Note that the coarse-scale system in

MSFV is not guaranteed to be symmetric, i.e.,

ac
ij =−

∫

∂�̆i

(λ·∇�j)·ni d� �= ac
ji =−

∫

∂�̆j

(λ·∇�i)·nj d�,

(10)

since the coefficients are integrals of different functions
over different control volume boundaries. This is in con-
trast to the symmetric-positive-definite MSFE coarse-scale
operator. A coarse-scale system that has positive-definite
mobility tensors at the fine scale is expected to yield neg-
ative off-diagonal, ac

ij ≤ 0, and positive diagonal, ac
ii ≥

0 values. Next, we study the integrals (8) and (9) and
investigate the situations that may violate these conditions.

1 2 … … …
2

…
…

…
…

Fig. 8 Automatically detected critical interface (shown in bold red)
where ac

ik �≤ 0. The highlighted region with a pink rectangle shows the
local domain, where the transmissibility is calculated using summation
of harmonically averaged values to replace with ac

ik and ac
ki

2.1 Coarse-scale Transmissibility Coefficients

In order to study the coarse-scale transmissibility coeffi-
cients, a 3 × 3 coarse-grid problem in 2D is considered and
shown in Fig. 3. We study the transmissibility coefficients
between cell i and two of its neighboring cells j and k.

For the South-West neighboring cell, j , the flux induced
by the basis function �j , ac

ij , satisfies the physical property
of ac

ij ≤ 0 because both boundary segments of control vol-
ume i experience incoming fluxes. Note that the net induced
flux (for any heterogeneous field) from j to i is always non-
negative. On the other hand, the fluxes induced by the basis
function �k must be computed along many (four in 2D)
overlapping segments. For cell i, some of these fluxes are
incoming and some others are outgoing. For many hetero-
geneous cases, the net incoming flux to the control volume
i is positive, leading to a negative off-diagonal entry, which
is desirable.

Figure 4 shows the SPE 10 bottom layer permeability
field which consists of 220×60 fine cells. TheMSFV coarse

Fig. 9 Critical coarse node i and its neighboring faces Fij (indicated
by red solid lines) and edges Eij (indicated by yellow dash lines), j =
1, 2, 3, 4 for 2D domain. The black lines indicate the coarse volumes
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Fig. 10 Natural logarithm of the permeability (a) and fine-scale reference pressure (b) for the SPE 10 bottom layer

grid is also shown in the figure for a coarsening ratio of
11 × 5. Figure 5 shows an extracted rectangular subdomain
from Fig. 4, �̃h1, between (88, 5) ≤ (x, y) ≤ (121, 20).
Figure 5 also shows that the central coarse cell (10, 3) of
this subdomain has a net incoming flux induced by the basis
function of its southern neighboring cell (10, 2), together
with the interpolated pressure field only for the associated
local domain, i.e., pMS in �̃h1. To obtain this interpolated
solution, a test case is solved subject to no-flow Neumann
condition on all boundaries and Dirichlet condition of p = 1
and p = 0 at fine cells (1, 60) and (220, 1), respectively.
Note that due to the positive diagonal and negative off-
diagonal coarse-system entries corresponding to this local
subregion, the interpolated solution is physical.

If for a heterogeneous field, the net incoming flux to the
cell i is negative, then off-diagonal entries ac

ik become posi-
tive. This situation happens when the coarse node xi lies in a
low-permeability region, compared with the other boundary
cells between i and k. There are other scenarios that would
cause the same situation, e.g., if a shale layer (with very
low permeability) crosses the boundary cells between i and
k. Note that in such cases, the reduced-problem local BC,

between the cells i and k, would lead to a solution with a
constant value of one. This constant unity solution, which is
then used as a Dirichlet condition for the internal cells, leads
to a non-physical outgoing induced flux from the control
volume. An example of such a case is illustrated in Fig. 6,
where the domain �h2 is extracted again from (and high-
lighted in) Fig. 4 for cells belonging to (33, 20) ≤ (x, y) ≤
(66, 35) interval. The integral incoming flux induced by �k

over the faces of the control volume i is negative, which
leads to a positive off-diagonal value of ac

ik = 222.5 for
the coarse-scale system. The total outgoing fluxes induced
by the basis function �i , over its own control volume is too
small (ac

ii = 0.65), which indicates that the corresponding
row in the coarse-scale system is not diagonally dominant.
This is closely related to the fact that the coarse node lies
in a region with very low permeabilities. Note that the other
cells (especially the boundary cells) have higher permeabil-
ity values. As a result, the superimposed MSFV solution
entails non-physical peaks (as shown in Fig. 6).

Figure 7, which is for the SPE 10 bottom layer, indicates
that the original MSFV strategy leads to non-physical solu-
tions at several locations. From this figure, it is clear that the
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Fig. 11 Original MSFV and m-MSFV pressure solutions for the SPE 10 bottom layer, and the relative errors ep . The coarse-scale grids are
indicated by black lines
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Fig. 12 Streamline plots based on velocity fields reconstructed by fine-scale reference, original and m-MSFV pressure solutions for the SPE 10
bottom layer. The coarse-scale grids are indicated by black lines

peaks are located in regions with high contrasts in the per-
meability between the neighboring cells. In the next section,
we describe a monotone MSFV method.

3 Monotone MSFV (m-MSFV) method

In this section, to ensure the monotonicity of the MSFV
solution, two approaches are proposed.

3.1 Local TPFA approach

This approach is based on local utilization of a physical flux
calculation only for critical faces to ensure monotonicity
of the MSFV solution. First, the coarse cell interfaces with
negative transmissibility values, i.e., ac

ik �≤ 0, are detected.
Then, instead of using the basis functions to provide the
ac
ik values from Eq. 8, the transmissibility field between

the cells i and k is calculated with TPFA which guarantees

Fig. 13 Histogram of ηij of the
coarse-scale system Ac for
original MSFV (a), the
reconstructed coarse-scale
system for m-MSFV (TPFA)
(b), and m-MSFV (LBC) (c),
respectively
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Fig. 14 Pressure surface plots for fine-scale reference (a), original MSFV (b), m-MSFV (TPFA) with ε = 0 (c) and ε = 0.7 (d), respectively

that ac
ik ≤ 0. Figure 8 shows the highlighted pink region

used to obtain an effective transmissibility coefficient at
the interface between i and k. The procedure to calculate
TPFA-based coarse-scale transmissibility T c

ik is as follows.
First, harmonically averaged transmissibility factors among
columns of the highlighted pink cells are calculated. Then,
the values are summed to compute T c

ik . Therefore,

T c
ik =

Nx∑

i=1

1
Ny∑

j=1

1

kij

�x

�y
, (11)

where kij , �x, and �y represent fine-scale permeability,
gridblock size in x and y directions, respectively.

To ensure conservation, the symmetric entry ac
ki is also

updated with the same value as for the ac
ik . Here, the new

coarse-scale transmissibilities for the critical faces are com-
puted based on averaging the fine-scale permeability field.
Other options such as flow-based upscaling are also pos-
sible and can be incorporated into our monotone strategy,
provided that they guarantee ac

ik <= 0. In this paper, we
focus on our permeability-based strategy.

In fact, a slightly positive value ac
ij does not necessar-

ily lead to non-monotone solutions, and only the ac
ij with

relatively large positive values matter and have to be mod-
ified. In order to quantify the critical ac

ij , an indicator ηij

for each positive off-diagonal entry ac
ij of the coarse-scale

coefficients matrix Ac is used. We defined ηij = ac
ij /ωi ,

where ωi represents the maximum absolute value of all the
negative off-diagonal ac

ij in row i. The coarse node with
an interface with ηij > ε is considered critical, where ε is
a user-specified threshold value. Then, all the neighboring
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interfaces associated with the critical coarse node are
replaced by TPFA stencils. Algorithm 1 summarizes how
the local TPFA approach is integrated in the MSFV proce-
dure.

Algorithm 1 local TPFA approach integrated with MSFV
classical procedure

1: Construct coarse and dual-coarse grids
2: Compute basis functions �i

3: Construct coarse-scale system, Eq. 7
4: Specify a threshold value ε

5: for i = 1 to Nc do
6: if ηij > ε then
7: Cancel the coarse-scale flux through all Fij ,

j = 1, 2, 3, 4 faces (see Fig. 9)
8: Calculate T c

ij , i.e., TPFA transmissibilities for
the faces Fij

9: Modify the coarse system entries as following:
10: ac

ij ← ac
ij − T c

ij

11: ac
ii ← ac

ii + T c
ij

12: ac
ji ← ac

ji − T c
ij

13: ac
jj ← ac

jj + T c
ij

14: end if
15: end for
16: Solve this modified coarse-scale system
17: Obtain prolongated solution using Eq. 3
18: Reconstruct conservative fine-scale velocity field con-

sistently

3.2 Local linear BC approach

In addition to the local TPFA approach, the non-
monotonicity of the MSFV pressure solution can be miti-
gated by locally using a Linear Boundary Condition (LBC)
instead of the reduced BC. For the LBC approach, once the
critical interface (i.e., the one with ηij > ε) is detected,
a linear BC is used for the corresponding dual coarse grid
boundary crossing the detected interface. For the remaining
boundaries, the reduced BC is used. Then, the basis func-
tions affected by the linear BC are recomputed, and the
coarse-scale system is reconstructed. Afterwards, the fine-
scale solution is obtained by interpolating the coarse-scale
solution with the modified basis functions. Finally, the con-
servative fine-scale velocity field can be constructed similar
as in the classical MSFV method.

The local TPFA approach guarantees monotonicity of
the solution, since the TPFA flux is used over the coarse
interfaces. The local LBC approach reduces the degree of
non-monotonicity; however, it cannot guarantee a monotone
solution. In addition, the choice of the threshold value, ε,

is a trade-off between the computational effort, quality of
the solution, and the degree of monotonicity in the pressure
field.

4 Numerical results

In this section, several test cases are solved to illustrate the
proposed m-MSFV method. To quantify the accuracy of m-
MSFV, relative errors of pressure, velocity, and residuals,
in terms of L2 and L∞ norms, are used. These norms are
defined as

‖ep‖= ‖pm − pf ‖/‖po − pf ‖, (12)

‖ev‖= ‖vm − vf ‖/‖vo − vf ‖, (13)

‖er‖= ‖rm‖/‖ro‖, (14)

where pm, vm, and rm denote the pressure, velocity, and
residual from m-MSFV; po, vo, and ro denote pressure,
velocity, and residual from original MSFV; pf and vf rep-
resent the fine-scale reference pressure and velocity. All the
pressure plots are scaled by the boundary pressure condi-
tion. The local TPFA and LBC approaches are referred to as
“m-MSFV(TPFA)” and “m-MSFV(LBC)”, respectively.

4.1 Case 1: SPE 10 bottom layer

The first example is the SPE 10 bottom layer case with
220 × 60 fine cells and 22 × 6 coarse cells. The pressure is
fixed at (220, 0) and (0, 60) with the non-dimensional values
of 1 and 0, respectively, and no-flow BC are specified on all
the boundaries. The permeability and fine-scale reference
pressure solution are shown in Fig 10. Since the problem
is elliptic, the pressure should be bounded by the pressure
values at boundaries (i.e., 0 and 1). However, as shown in
Fig 11a, the original MSFV pressure exceeds these bounds
at several locations, which indicates that the obtained solu-
tion is nonmonotone. A strictly monotone MSFV pressure
can be obtained by using m-MSFV(TPFA), as shown in
Fig 11b. In this case, the m-MSFV(LBC) can also reduce the
level of nonmonotonicity significantly as shown in Fig. 11c;
however, this approach does not guarantee that the solution
is monotone. Figure 12 shows the streamlines associated
with fine-scale pressure obtained using the original and
monotone MSFV methods. As shown in Fig 12b, the non-
physical MSFV pressure leads to circulations in the velocity
field, which can decrease the stability of the entire nonlin-
ear simulation procedure. On the contrary, there exist no
circulations in the velocity field reconstructed by the mono-
tone MSFV pressure. In addition, as seen from the pressure
errors, the m-MSFV method can deliver a monotone pres-
sure solution without sacrificing accuracy.
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Fig. 15 Error measurements in pressure (a), velocity (b), residual (c), and the computational complexity (d) with different threshold ε for the
SPE 10 bottom layer

Figure 13 shows the histogram of ηij corresponding
to the coarse-scale systems Ac of the original MSFV, m-
MSFV(TPFA), and m-MSFV(LBC) methods. Note that the
original coarse-scale system Ac (Fig. 13a) has many pos-
itive indicators which span a wide range. These positive
values lead to severely non-monotone pressure solution.
With the modifications of m-MSFV(TPFA), the positive
indicators are reduced to a limited range with small val-
ues, which are acceptable to obtain a monotone solution.

If zero indicators are desired, additional loops of detec-
tion and modification can be performed as described in
Algorithm 1. On the other hand, with the modification
of m-MSFV (LBC), even though this approach can elimi-
nate some positive indicators, many areas with long-range
indicator values still remain. These values may result in a
non-monotone solution. Note that the remaining indicators
cannot be eliminated by additional modification loops. That
is the reason why m-MSFV(LBC) can reduce the level of
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Fig. 16 Permeability and fine-scale pressure solution for the SPE 10 top layer with stretched grids
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Fig. 17 Original MSFV and m-MSFV pressure solutions for the SPE 10 top layer with stretched grids, and the relative errors ep

non-monotonicity, but cannot guarantee to fully resolve the
issue for all the problems.

For practical purposes, strictly monotone pressure may
not be required; therefore, the threshold value ε provides
a way to balance the degree of monotonicity and the com-
putational cost of the m-MSFV method. Figure 14 shows
that m-MSFV (TPFA) with ε = 0 guarantees that the
pressure solution is strictly monotone. When the thresh-
old is loosened to ε = 0.7, the pressure solution still
does not encounter severe non-monotone regions, while the
computational effort is reduced by 50 % compared with
the ε = 0 case. Figure 15 shows the accuracy of the
m-MSFV method with respect to different strategies and
indicates that both m-MSFV(TPFA) and m-MSFV(LBC)
have comparable error norms for pressure and velocity.
The m-MSFV(LBC) approach results in slightly better
residual estimates, since it preserves the MPFA stencil at

coarse-scale, and just simplifies the heterogeneous field at
the dual coarse cell boundaries.

4.2 Case 2: SPE 10 layers with stretched grid

In this case, both SPE 10 top and bottom layers with
stretched grid are examined. The fine-scale and coarse-scale
grids are 220 × 60 and 22 × 6, respectively. The global
BC are the same as in Case 1. The fine-scale grid has an
aspect ratio of 10, i.e., �x = 10�y. First, for SPE 10
top layer, the permeability field, fine-scale reference, orig-
inal MSFV, and m-MSFV pressure solutions are shown
in Figs. 16 and 17. Even though there are no significant
peaks in the original MSFV pressure solution, the result-
ing streamlines of the original MSFV still have circulations.
Also, in this case, the m-MSFV (TPFA) approach is using
TPFA for almost the entire domain. Therefore, the pres-
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Fig. 18 Streamline plots based on velocity fields reconstructed by fine-scale reference, original and monotone MSFV pressure solutions
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Fig. 19 Histogram of ηij of the
coarse-scale system Ac for
original MSFV (a) and the
reconstructed coarse-scale
system for m-MSFV (LBC) (b),
respectively, for the SPE 10 top
layer with stretched grids. Note
that m-MSFV (TPFA)
eliminates all the positive
indicators, therefore the
histogram is not shown
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sure solution is not accurate. However, m-MSFV (TPFA)
can guarantee monotonicity of the pressure distribution,
which can be indicated by the circulation-free streamlines
(Fig. 18c). Circulations can be observed in the streamlines
of m-MSFV (LBC) as shown in Fig. 18d, which implies that

m-MSFV (LBC) cannot guarantee a monotone solution in
this case. Moreover, the non-monotone solution for original
MSFV and m-MSFV (LBC) can be identified by Fig. 19,
which indicates that the long-range positive indicators of the
coarse-scale system may lead to unphysical multiscale solutions.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

ε

 

 

m−MSFV (TPFA) L2−norm

m−MSFV (LBC) L2−norm

m−MSFV (TPFA) L∞−norm

m−MSFV (LBC) L∞−norm

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

ε

 

 

m−MSFV (TPFA) L2−norm

m−MSFV (LBC) L2−norm

m−MSFV (TPFA) L∞−norm

m−MSFV (LBC) L∞−norm

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

3.5

4

ε

 

 

m−MSFV (TPFA) L2−norm

m−MSFV (LBC) L2−norm

m−MSFV (TPFA) L∞−norm

m−MSFV (LBC) L∞−norm

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

ε

P
er

ce
nt

ag
e 

of
 m

od
ifi

ca
tio

n 
%

 

 

critical coarse−scale nodes
critical coarse−scale interfaces
critical dual grid edges

Fig. 20 Error measurements in pressure (a), velocity (b), residual (c) and computational complexity (d) with different threshold ε for the SPE 10
top layer with stretched grids
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Fig. 21 Original MSFV and m-MSFV pressure solutions for the SPE 10 bottom layer with stretched grids, and the relative errors ep

Similarly, as shown in Fig. 21, the original MSFV is
severely nonmonotone for the SPE 10 bottom layer with
stretched grids, and the m-MSFV (LBC) mitigates the issue.
However, it cannot fully resolve it. The m-MSFV (TPFA)
becomes a global TPFA scheme; therefore, it loses accu-
racy as indicated in the streamline plots shown in Fig. 22.
In addition, Figs. 20 and 23 show the accuracy of the
m-MSFV method with respect to different strategies and
indicate that both m-MSFV(TPFA) and m-MSFV(LBC)
have comparable error norms for pressure and velocity.

Note that the streamlines given by m-MSFV(LBC) honor
the fine-scale reference quite well for the region where
no circulations occur. Therefore, it is beneficial to apply
m-MSFV(LBC) first, then employ m-MSFV(TPFA) for
the places where m-MSFV(LBC) fails to resolve non-

physical peaks. Hence, combining both m-MSFV(LBC)
and m-MSFV(TPFA) can achieve circulation-free and con-
servative fine-scale velocity fields without losing accu-
racy for anisotropic problems. For the SPE 10 top layer
with stretched grids, m-MSFV(LBC) is applied first result-
ing the pressure and velocity distributions as shown in
Fig. 17c and 18d. From Fig. 18d, m-MSFV(LBC) cannot
fully resolve the circulations for some particular regions
but results in streamlines that are quite close to fine-scale
reference in most regions. In order to remove the circula-
tions, the m-MSFV(TPFA) approach can be employed for
the regions where m-MSFV(LBC) is not adequate. With the
combination of both approaches, we can obtain the fine-
scale pressure and velocity fields shown in Figs. 24 and 25.
In additional, the pressure, velocity, and residual errors with

Fig. 22 Streamline plots based on velocity fields reconstructed by fine-scale reference, original and m-MSFV pressure solutions for the SPE 10
bottom layer with stretched grids. The coarse-scale grids are indicated by black lines
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Fig. 23 Error measurements in pressure (a), velocity (b), residual (c), and computational complexity (d) with different threshold ε for the SPE
10 bottom layer with stretched grids
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Fig. 24 Pressure distributions for fine-scale reference (a) and obtained by hybrid m-MSFV method (b) for the SPE 10 top layer with stretched
grids, i.e.,�x = 10�y

Fig. 25 Velocity distributions for fine-scale reference (a) and obtained by hybrid m-MSFV method (b) for the SPE 10 top layer with stretched
grids, i.e.,�x = 10�y
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Table 1 Relative errors of hybrid m-MSFV, m-MSFV(TPFA), m-
MSFV(LBC), and original MSFV for the SPE 10 top layer with
stretched grids, i.e., �x = 10�y. In addition, the last two columns

represent the amount of TPFA coarse-scale interfaces and dual-grid
boundaries using LBC for all the methods

Error ‖ep‖2 ‖ep‖∞ ‖ev‖2 ‖ev‖∞ ‖er‖2 ‖er‖∞ interfaces LBC

Hybrid m-MSFV 0.034 0.187 0.926 0.585 0.059 0.019 14% 33%

m-MSFV(TPFA) 0.252 0.407 8.165 8.816 0.309 0.052 95% –

m-MSFV(LBC) 0.034 0.169 3.349 8.119 0.051 0.017 – 52%

original MSFV 0.015 0.148 8.115 7.507 0.122 0.022 – –

respect to the fine-scale reference are given in Table 1,
where we can see that the hybrid m-MSFV delivers the most
accurate velocity field.

5 Conclusions

In this paper, a monotone MultiScale Finite Volume (m-
MSFV) method was proposed. The m-MSFV is based on
automatic detection of the local interfaces with negative
coarse-scale transmissibilities obtained from the integra-
tion of fluxes induced by the dual basis functions. Two
approaches were developed to fix the non-physical coarse-
scale transmissibility, namely, local TPFA and local linear
BC approaches. For the first approach, a local TPFAmethod
for the critical interfaces only is used to calculate a positive
transmissibility and replace the original MPFA stencils on
the coarse-scale system. For the second approach, a linear
BC is employed as the local boundary assumption to solve
the basis function only for the dual-coarse cells associated
with the critical coarse nodes. Then, the coarse-scale sys-
tem is reconstructed and solved. The local TPFA approach
can guarantee monotonicity of the reconstructed fine-scale
solution. The local linear BC can mitigate the level of non-
monotonicity, but without a guarantee to remove all local
pressure oscillations. Therefore, a hybrid strategy that com-
bines both approaches may be effective, whereby the local
linear BC approach is used to reduce the degree of non-
monotonicity and local TPFA approach is used to achieve
the monotonicity for the regions where the linear BC cannot
help. Since this m-MSFV method only employs a local fix
for critical coarse-cell interfaces that lie in low-permeability
regions, the transmissibility values have a small impact on
the flow activity. This helps the m-MSFV solution be quite
accurate with respect to the fine-scale reference. Moreover,
the m-MSFV method is able to optimize the efficiency-
monotonicity tradeoff. Finally, using the m-MSFV method
is expected to improve the overall efficiency of sequential
fully implicit simulations, which is the focus of our current
research.
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