
 

 
 

 
 
 

 
 

  

 

 

 

                     
 

 

INCORPORATING PARAMETER UNCERTAINTY 

INTO ATTENUATION RELATIONSHIPS 


Robb Eric S. Moss1 and Armen Der Kiureghian2 

ABSTRACT 

Strong ground motion attenuation relationships estimate the mean and variance of 
ground shaking as it decreases with distance from an earthquake source.  Current 
relationships use “classical” regression techniques that treat the input variables or 
parameters as exact, neglecting the uncertainties associated with the measurement 
of ground acceleration, moment magnitude, site-to-source distance, shear wave 
velocity, etc. This leads to a poorly constrained estimate of the uncertainty of 
strong ground motions.  This paper discusses the work in progress on; a) 
estimating the statistics of parameter uncertainty, and b) incorporating the 
parameter uncertainty into the regression of strong motion attenuation data using 
a Bayesian framework.  The results are an improved understanding of the 
uncertainties inherent in the phenomena of strong ground motion attenuation, a 
reduced and better defined model variance, and better constrained estimates of 
rarer events associated with ground accelerations towards the tail of the 
distribution. 

Introduction 

This paper describes ongoing research into measurement error related to strong ground motion 
parameters and estimated variance related to strong ground motion attenuation predictions.  The 
current statistical method for developing an attenuation relationship is univariate regression on a 
database using a fixed-effects or random-effects model (e.g., Boore et al., 1997; Abrahamson & 
Silva, 1997; Campbell & Bozorgnia, 2003).  This methodology assumes that the input 
parameters are exact. 

There exists, however, measurement error in the input parameters.  For instance, the moment 
magnitude of a particular seismic event is calculated using a non-unique inversion process 
resulting in an unspecified amount of uncertainty.  This can be seen in the differences in reported 
moment magnitudes by seismology labs such as USGS and Harvard (Moss, 2003).  Differences 
in inversion techniques used over time have also led to uncertainty in the moment magnitude 
(Kagan, 2002). 

The geometric mean of the peak ground acceleration is an input parameter that considers both 
horizontal directions of ground shaking. This parameter has measurement error that is a function 
of the orientation of the strong motion seismometer in relation to the geometry of the fault 
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rupture. The horizontal motions can be numerically rotated providing statistical estimates of the 
median and standard deviation as a function of azimuth. 

Measurement errors also exist in the input parameters that define site-to-source distance, site 
class as measured by shear wave velocity in the upper 30 meters, and other input parameters. 

Treating these input parameters as inexact instead of exact leads to a better understanding of the 
sources of uncertainty that propagate through the regression analysis. This also results in 
reduced overall model variance.  A Bayesian framework allows for the treatment of input 
parameters as inexact, and provides the mathematical flexibility to use any type of functional 
model form (Der Kiureghian, 1999; Gardoni et al, 2002; Moss et al., 2003).   

For this study a Bayesian regression methodology has been formulated for estimating strong 
motion attenuation using existing published attenuation equations.  This paper uses Boore et al. 
(1997) for a feasibility study, comparing regression results with and without measurement error 
in the input parameters.  Future goals of this research include; collecting more statistical data on 
the input parameters and evaluating state-of-the-art attenuation equations using a single database 
to measure relative performance. 

Quantifying Measurement Error 

The first step in including measurement error (i.e., parameter uncertainty) into a predictive 
model, in this case a strong motion attenuation relationship, is to evaluate and quantify that 
uncertainty. There are two forms of uncertainty, epistemic and aleatory uncertainty.  Aleatory 
uncertainty is the inherent randomness that is a function of the phenomena that the model strives 
to predict. Aleatory uncertainty is inherent in nature and cannot be influenced by the observer or 
the manner of observation.  This type of uncertainty cannot be reduced. Epistemic uncertainty is 
a function of our lack of knowledge, incomplete description of the phenomena in the model, 
measurement errors, and/or lack of sufficient measurements to fully capture the phenomena.  
Epistemic uncertainty is reducible.  This study aims at reducing the epistemic uncertainty in 
attenuation relationships by incorporating the uncertainty in the input parameters, the 
measurement error, into the regression analysis. 

Peak Ground Acceleration 

Uncertainty in the ground acceleration can be observed in the variability of the peak values in 
orthogonal directions. This is a property of the orientation of the rupture plane, complexity of 
the rupture plane, nature and geometry of the rupture, travel path complexities, surface 
topography, and other site effects. Ground acceleration measurements also contain uncertainty 
that is a function of the orientation of the strong motion seismometer in relation to the geometry 
of the fault rupture. 

To capture the uncertainty in strong ground motions, acceleration time histories for different 
events were evaluated. The motions were rotated through a sweep of 90 degrees, using the 
method described by Penzien & Watabe (1975), and the geometric mean, median, and coefficient 
of variation were measured.  A 90 degree rotation of orthogonal motions provides a full sweep of 
the recorded motion in the horizontal direction. 



  

 
 

 

 

 

 

 

Figure 1 shows three plots of the processed Hayward Bart Station recording from the Loma 
Prieta earthquake. The first shows a 90 degree sweep of the peak acceleration in both horizontal 
directions, the average, the geometric mean, the median geometric mean, and the minimum 
covariance angle. The second plot shows the frequency histogram of the normalized geometric 
mean, that is the geometric mean divided by the median of the geometric mean.  The third plot 
shows the cumulative frequency distribution of the normalized geometric mean.  

Figure 1. 	 Statistical results of Loma Prieta – Hayward Bart Station motion, typical of the 
motions evaluated to date. 

It can be seen in the frequency histogram that the randomness of the recorded motion throughout 
the rotated angles does not follow a common theoretical probability distributions (e.g., normal or 
gaussian distribution). This result is typical of motions evaluated in this study so far.  Plotted for 
comparison is the uniform frequency distribution and the uniform cumulative distribution, 
respectively. 

For this preliminary analysis an average sample median and standard deviation was calculated 
from the motions evaluated so far. This was used as the estimated measurement error in the 
subsequent regression analysis. 



  

 

 

 

 

 

Moment Magnitude 

The uncertainty of the moment magnitude can be attributed mainly to the inversion process used 
to calculate the seismic moment, and thus the moment magnitude.  Moment magnitude is 
reported by seismology laboratories following an event, and iterated on for a week or two until 
the final revised value is reported. Calculating the moment magnitude involves an inverse 
problem to determine the seismic moment.  The uncertainty in these calculations comes from the 
non-uniqueness of the inversion process. 

Uncertainty in moment magnitude has also been shown to be a function of time.  Kagan (2002) 
has estimated the standard deviation of the moment magnitude as a function of the inversion 
technique used to calculate the seismic moment.  The accuracy and compatibility of different 
inversion techniques has improved over time, thereby providing a reduced standard deviation as 
we approach the present. 

Uncertainty in the moment magnitude was quantified for the NGA (Next Generation 
Attenuation) project funded by PEER (Pacific Earthquake Engineering Research).  The standard 
deviation of moment magnitude was estimated from multiple reported magnitudes for each event 
where they existed. The standard deviation reported in the NGA dataset was based on the 
consideration of statistical standard deviation, time, and quality of the data and method used to 
derive magnitude (Chiou, 2005). 

Figure 2. 	 Standard deviation of moment magnitude.  Curves are regressed on the standard 
deviations reported in the NGA dataset. 

Figure 2 shows magnitude versus standard deviation as reported in the NGA dataset.  There is a 
large amount of scatter in the data, but a decrease in uncertainty with an increase in magnitude 
can be observed. This trend was conjectured by Moss (2003) based on the logic that for the 
inversion of seismic moment the dimensions of the fault plane and the amount of slip associated 
with larger magnitude events tend to be easier to define than with smaller magnitude events.  



 
 

 

 

 

 

 

   

   
 

 
 

 

 

  

  

 

Uncertainty also stems from different inversion techniques used: partial or complete waveforms, 
regional or teleseismic recordings, and different Green’s functions.  Bigger magnitude events 
also have more stations recording the event (bigger sample size), generally have a higher signal 
to noise ratio, and different seismology labs may be using some of the same stations resulting in 
correlated results. 

Shown in Figure 2 are a linear regression line, logarithmic regression line, and the equation from 
Moss (2003). All three curves exhibit a similar slope, although the intercepts of the regression 
lines are lower. For this preliminary analysis the logarithmic regression line was used to 
estimate the uncertainty associated with moment magnitude for the subsequent regression 
analysis. 

Other Parameters 

The measurement errors associated with other input parameters have not been evaluated yet, as 
we are still in the preliminary stages of this research.  In particular, uncertainty in the site class 
as measured by VS30 (the shear wave velocity in the upper 30 meters) appears to have some 
impact on the model variance.  Also, measurement errors associated with the site-to-source 
distance, and the rake angle of the rupture plane may be quantified for future analyses.  For 
acceleration, not just the peak acceleration but spectral acceleration values throughout the 
frequency range need to be evaluated.  These are topics that will be covered in subsequent stages 
of this research. 

Regression Analysis 

Predicting strong ground attenuation uses a univariate-type model.  It is univariate because only 
one quantity of interest is to be predicted from a set of measurable variables x=(x1,x2,…xn). The 
quantity of interest in this case is the spectral acceleration. The general univariate model can be 
written as, 

Z = Z (x,Θ)          (1)  
where Θ denotes a set of model parameters used to fit the model to the observed data.  In this 
study various models, based on attenuation relationships proposed previously in the literature, 
will be used. The generalized univariate model can then be written as, 

Z (x,Θ) = ẑ(x,Θ) + ε         (2)  
where ẑ(x,Θ) is the selected attenuation relationship and ε is a random normal variate with zero 
mean and unknown standard deviation that is the model error term.  Aleatory uncertainty is 
found in the measured variables x and partly in the error term ε. Epistemic uncertainty is found 
in the model parameters Θ and partly in the model error term ε. 

Model Uncertainty 

In this model formulation the error term ε captures the imperfect fit of the model to the 
measurements.  The imperfect fit may be due to inexact model form or due to missing variables.  
The missing variables can be considered inherently random and that portion of the model error 
term is aleatory uncertainty.  The portion of the model error term that is from the inexact model 
form is epistemic uncertainty. 



 

 

 

 

 

 

 

   

 

 

 

Measurement Error 

Measurement error tends to comprise a large portion of the epistemic uncertainty in geoscience 
problems.  This uncertainty comes from imprecise measurement of the variables x=(x1,x2,…xn). 
These measurement errors are treated as statistically independent normally distributed random 
variables with zero mean (assuming unbiased measurement errors) and measurable standard 
deviation. The errors are incorporated as xi = x̂i + exi where x̂i xi  is the measured value and exi is 
the measurement error. 

Statistical Uncertainty 

The size of the sample n will influence the accuracy of the model parameters Θ. The larger the 
sample size the less epistemic uncertainty introduced into the model parameters.  In this case, 
there is a limited amount of strong motion recordings for model fitting.  

Parameter Estimation through Bayesian Updating 

A Bayesian framework is used to estimate the unknown model parameters (i.e., regression).  The 
Bayesian approach is useful because it incorporates all forms of uncertainty related to the 
problem of strong ground motion attenuation into the regression analysis. 

Bayes rule is derived from simple rules of conditional probability, yet the simplicity portends 
little of the power of the Bayesian technique. Bayes rule can be written as (Box & Tiao, 1992), 

f (Θ) = c ⋅ L(Θ) ⋅ p(Θ)        (3)  
where; f (Θ) is the posterior distribution representing the updated state of knowledge about Θ, 
L(Θ)  is the likelihood function containing the information gained from the observations of x , 
p(Θ) is the prior distribution containing our apriori knowledge about Θ, and 
c = [ L(Θ) ⋅ p(Θ) ⋅ d (Θ)] 1  is the normalizing constant. ∫ − 

The likelihood function is proportional to the conditional probability of the observed events, 
given the value of Θ. The likelihood function incorporates the objective information that, in this 
case, are the measurements associated with strong ground motion attenuation.  The prior 
distribution can include subjective information known about the distributions of Θ. The 
posterior distribution incorporates both the objective and subjective information into the 
distributions of the model parameters.  The process of performing Bayesian updating involves 
formulating the likelihood function, selecting a prior, calculating the normalizing constant, and 
then calculating the posterior statistics. 

The prior distribution tends to be the most controversial issue for detractors of Bayesian 
methods. Box & Tiao (1992) have shown that the use of a non-informative prior can lead to an 
unbiased, data-driven estimate of the model parameters.  A non-informative prior allows the 
data, through the likelihood function, to dominate the posterior distribution, thereby minimizing 
the role of the subjective information.  A non-informative prior, by definition, has no effect on 
the shape of the posterior distribution and is used when no prior information about the 
parameters is available.  Gardoni et al., (2002) have shown that for a univariate model where the 
unknown parameters Θ are the coefficients in a linear expression and the standard deviations σ 



   

 

 

 

 

   

 

  
 

   

  

   

of ε, the noniformative prior simplifies to , 
1 p(σ ) ∝          (4)  
σ 

The mean vector MΘ and covariance matrix ΣΘΘ can be calculated from the posterior distribution 
of Θ. Computation of these statistics and the normalizing constant is non-trivial, requiring 
multifold integration over the Bayesian kernel.  Importance sampling, a sampling algorithm as 
described in Gardoni (2002), was used to efficiently perform these calculations. 

Likelihood Function 

As defined above the likelihood function is proportional to the conditional probability of 
observing a particular event given a value of Θ. In order to formulate the likelihood function a 
limit-state must be defined to provide a threshold for defining the probability of observation. 

For this feasibility study the attenuation relationship from Boore et al. (1997), is used as a basis 
for the likelihood function. Boore et al. (1997) was chosen because the database used in the 
regression was provided in the paper. The function form of this attenuation relationship is, 

log(Y ) =θ +θ (M − 6) +θ (M − 6)2 −θ ln( R2 
jb +θ5

2 ) −θ6 ln(Vs /θ7 ) (5)1 2 w 3 w 4 

where Y represents the spectral acceleration value, Mw is the moment magnitude, Rjb is the 
Joyner-Boore distance, VS is the shear wave velocity in the upper 30 meters, and the θ’s are the 
model parameters. Boore et al., (1997) determined the parameters of this model by using 
“classical” regression with a two step procedure. 

To present this attenuation relationship as a limit-state function, the equation is rearranged to 
describe the most likely location of a threshold given a value of Θ. This limit-state would be 
where the threshold lies at the zero mean of the error term at a value of Zi for a given xi. This 
thereby minimizes the error on either side of the threshold at that point.  From Equation 2, 
Z = ẑ(x ,θ ) + ε or ε = g (θ ) where g (θ ) = Z − ẑ(x ,θ ) and εi is the model error term at the i i i i i i i i 

ith observation. The attenuation relationship of Campbell et al., (1997), shown in Equation 5, 
then becomes, 

g(Θ) = log(Y ) − [θ +θ (M − 6) +θ (M − 6)2 −θ ln( R2 
jb +θ5

2 ) −θ6 ln(Vs /θ7 )]1 2 w 3 w 4 

            (6)  
The likelihood function for the problem of strong ground motion attenuation is the product of the 
probabilities of observing n values with the limit-state co-located with the zero mean of the error 
term.  Given exact measurements and statically independent observations, the likelihood can be 
written as, 

⎡ n ⎤L(θ ,σ ε )∝ P⎢I{gi (  )  θ = ε i }⎥       (7)  
⎣ i=1 ⎦ 

where σε is the standard deviation of the error term ε. Given that ε is a standard normal variate, 
Equation 7 can be written as, 

n ⎧ 1 ⎡ (θ )⎤⎫L(θ ,σ ε )∝∏⎨ ϕ⎢ 
gi 

⎥⎬       (8)  
i=1 ⎩σ ε ⎣ σ ε ⎦⎭ 



  

   

 

 

 

 

 
 

where ϕ is the standard normal distribution function.  When measurement errors are considered 
the likelihood function becomes, 

n ⎧ 1 ⎡ ˆ (θ ) ⎤⎫
L(θ ,σ ε )∝∏⎨ ϕ⎢ 

gi 
⎥⎬	     (9)  

i=1 σ̂ ε (θ ,σ ε ) ⎣σ̂ ε (θ ,σ ε )⎦⎩ ⎭ 
The above formulation was used to estimate the statistics of the model parameters, Θ, and the 
model error, ε, for the given functional form of the attenuation relationship and the given 
database. These estimated terms are analogous to the coefficients solved for using “classical” 
regression in Boore et al., (1997). The means and standard deviations of the coefficients are 
used to define the predictive model.  The model variance is found using a second order Taylor 
series expansion about the mean point. 

Feasibility Study Results 

The results of the feasibility study, using the functional form of the attenuation relationship and 
the database from Boore et al., (1997), are shown in Figure 3.  This figure shows a comparison 
of Boore et al., versus preliminary results from this study.   

Mw=7.5 VS=750m/s 
Mechanism: unspecified 

Figure 3. 	 Comparison plot of attenuation relationship estimated using “classical” regression 
with exact parameters versus Bayesian regression that incorporates parameter 
uncertainty. The black curves are from Boore et al. (1997), the red curves from this 
study. Plus/minus one standard deviation curves are shown as dashed lines. 



 

 

 

 

 

 

 

 
 

 

There is a slight difference in the limit-states or mean regression curves found using “classic” 
versus Bayesian regression. This is due to the influence of including inexact parameters in the 
Bayesian regression analysis. More important is the reduced model standard deviation found 
using Bayesian regression. The standard deviation is reduced because the parameter uncertainty, 
or measurement error of the input parameters, is quantified and incorporated in the analysis.  By 
including the additional information of parameter uncertainty we achieve an improved (i.e., 
reduced) estimate of the model standard deviation.   

For this preliminary study, Bayesian regression was initially performed without parameter 
uncertainty to confirm that a similar standard deviation was calculated as Boore et al.  Then the 
Bayesian regression was performed including parameter uncertainty, with a coefficient of 
variation (standard deviation divided by the mean) of ~0.10 for moment magnitude and ~0.30 for 
peak acceleration. As shown in Figure 3 the total model standard deviation (the square root of 
the model variance) of the natural log of peak ground acceleration,σlnY, is 0.386, compared to 
0.520 from Boore et al.  The earthquake to earthquake component of the standard deviation, σe, 
is the same for the two studies. 

Summary 

Presented here is a method to incorporate parameter uncertainty, or the measurement error 
associated with the input parameters, into strong ground motion attenuation relationships.  This 
method uses Bayesian regression for incorporating inexact parameters into the regression 
analysis. A feasibility study was carried out using the functional form of the attenuation 
relationship and the database from Boore et al., (1997).  The results of this feasibility study 
demonstrate that a reduced or better-constrained model variance is one benefit of the presented 
methodology.  As part of this ongoing research study; further analysis of the statistics of strong 
ground motion attenuation, exploration of other benefits of using a Bayesian approach such as 
model optimization and correlation analysis, and analysis using other attenuation models will be 
carried out in the future. 
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