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Abstract To enhance the approximation and generalization
ability of classical artificial neural network (ANN) by em-
ploying the principles of quantum computation, a quantum-
inspired neuron based on controlled-rotation gate is pro-
posed. In the proposed model, the discrete sequence input
is represented by the qubits, which, as the control qubits of
the controlled-rotation gate after being rotated by the quan-
tum rotation gates, control the target qubit for rotation. The
model output is described by the probability amplitude of
state |1〉 in the target qubit. Then a quantum-inspired neural
network with sequence input (QNNSI) is designed by em-
ploying the quantum-inspired neurons to the hidden layer
and the classical neurons to the output layer. An algorithm of
QNNSI is derived by employing the Levenberg–Marquardt
algorithm. Experimental results of some benchmark prob-
lems show that, under a certain condition, the QNNSI is ob-
viously superior to the ANN.

Keywords Quantum computation · Quantum rotation
gate · Controller-rotation gate · Quantum-inspired neuron ·
Quantum-inspired neural network

1 Introduction

Over the last few decades, many researchers and publica-
tions have been dedicated to improve the performance of
neural networks. Useful models to enhance the approxima-
tion and generalization abilities include: local linear radial
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basis function neural networks, which replaced the connec-
tion weights of conventional radial basis function neural net-
works by a local linear model [1]; selective neural networks
ensemble with negative correlation, which employed the hi-
erarchical pair competition-based parallel genetic algorithm
to train the neural networks forming the ensemble [2]; poly-
nomial based radial basis function neural networks [3]; hy-
brid wavelet neural networks, which employed rough set
theory to help in decreasing the computational effort needed
for building the networks structure [4]; simultaneous opti-
mization of artificial neural networks, which employed GA
to optimize multiple architectural factors and feature trans-
formations of ANN to relieve the limitations of the conven-
tional back propagation algorithm [5].

Many neurophysiological experiments indicate that the
information processing character of the biological nerve sys-
tem mainly includes the following eight aspects: the spatial
aggregation, the multi-factor aggregation, the temporal cu-
mulative effect, the activation threshold characteristic, self-
adaptability, exciting and restraining characteristics, delay
characteristics, conduction and output characteristics [6].
From the definition of the M–P neuron model, classical
ANN preferably simulates voluminous biological neurons’
characteristics such as the spatial weight aggregation, self-
adaptability, conduction and output, but it does not fully in-
corporate temporal cumulative effect because the outputs of
ANN depend only on the inputs at the moment regardless
of the prior moment. In the process of practical information
processing, the memory and output of the biological neu-
ron not only depend on the spatial aggregation of each in-
put information, but also are related to the temporal cumu-
lative effect. Although the ANNs in Refs. [7–10] can pro-
cess temporal sequences and simulates delay characteristics
of biological neurons; in these models, the temporal cumu-
lative effect has not been fully reflected. Traditional ANN
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can only simulate point-to-point mapping between the input
space and output space. A single sample can be described
as a vector in the input space and output space. However,
the temporal cumulative effect denotes that multiple points
in the input space are mapped to a point in the output space.
A single input sample can be described as a matrix in the
input space, and a single output sample is still described as
a vector in the output space. In this case, we claim that the
network has a sequence input.

Since Kak [11] firstly proposed the concept of quantum-
inspired neural computation in 1995, quantum neural net-
work (QNN) has attracted a great attention by the interna-
tional scholars during the past decade, and a large number
of novel techniques have been studied for quantum com-
putation and neural network. For example, Purushothaman
et al. [12] proposed the model of quantum neural network
with multilevel hidden neurons based on the superposition
of quantum states in the quantum theory. In Ref. [13], an
attempt was made to reconcile the linear reversible struc-
ture of quantum evolution with nonlinear irreversible dy-
namics of neural network. Michiharu et al. [14] presented a
novel learning model with qubit neuron according to quan-
tum circuit for XOR problem and describes the influence to
learning by reducing the number of neurons. In Ref. [15],
a new mathematical model of quantum neural network was
defined, building on Deutsch’s model of quantum compu-
tational network, which provides an approach for building
scalable parallel computers. Fariel Shafee [16] proposed the
neural network with the quantum gated nodes, and indi-
cates that such quantum network may contain more advan-
tageous features from the biological systems than the reg-
ular electronic devices. In our previous work [17], we pro-
posed a quantum BP neural network model with learning
algorithm based on the single-qubit rotation gates and two-
qubits controlled-rotation gates. In Ref. [18], we proposed
a neural network model with quantum gated nodes and a
smart algorithm for it, which shows superior performance in
comparison with a standard error back propagation network.
Adenilton et al. [19] proposed a weightless model based on
quantum circuit. It is not only quantum-inspired but is actu-
ally a quantum NN. This model is based on Grover’s search
algorithm, and it can perform both quantum learning and
simulate the classical models. However, all the above QNN
models, like M–P neurons, it also does not fully incorporate
temporal cumulative effect because a single input sample is
either irrelative to time or relative to a moment instead of a
period of time.

In this paper, in order to fully simulate biological neu-
ronal information processing mechanisms and to enhance
the approximation and generalization ability of ANN, we
proposed a qubit neural network model with sequence input
based on controlled-rotation gates, called QNNSI. It’s worth
pointing out that an important issue is how to define, config-
ure and optimize artificial neural networks. Refs. [20, 21]

make a deep research into this question. After repeated ex-
periments, we opt to use a three-layer model with a hidden
layer, which employs the Levenberg–Marquardt algorithm
for learning. Under the premise of considering approxima-
tion ability and computational efficiency, this option is a rel-
atively ideal. The proposed approach is utilized to predict
the year mean of sunspot number, and the experimental re-
sults indicate that, under a certain condition, the QNNSI is
obviously superior to the common ANN.

2 The qubit and quantum gate

2.1 Qubit

What is a qubit? Just as a classical bit has a state-either 0
or 1—a qubit also has a state. Two possible states for a
qubit are the state |0〉 and |1〉, which as you might guess
correspond to the states 0 and 1 for a classical bit. Notation
like | 〉 is called the Dirac notation, and we will see it often
in the following paragraphs, as it is the standard notation
for states in quantum mechanics. The difference between
bits and qubits is that a qubit can be in a state other than
|0〉 or |1〉. It is also possible to form linear combinations of
states, often called superposition

|ϕ〉 = cos
θ

2
|0〉 + eiφ sin

θ

2
|1〉, (1)

where 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2π .
Therefore, unlike the classical bit, which can only be

set equal to 0 or 1, the qubit resides in a vector space
parametrized by the continuous variables θ and φ. Thus,
a continuum of states is allowed. The Bloch sphere rep-
resentation is useful in thinking about qubits since it pro-
vides a geometric picture of the qubit and of the transfor-
mations that one can operate on the state of a qubit. Ow-
ing to the normalization condition, the qubit’s state can be
represented by a point on a sphere of unit radius, called
the Bloch Sphere. This sphere can be embedded in a three-
dimensional space of Cartesian coordinates (x = cosφ sin θ ,
y = sinφ sin θ , z = cos θ ). By definition, a Bloch vector is a
vector whose components (x, y, z) single out a point on the
Bloch sphere. We can say that the angles θ and φ define a
Bloch vector, as shown in Fig. 1(a), where the points cor-
responding to the following states are shown: |A〉 = [1,0]T,
|B〉 = [0,1]T, |C〉 = |E〉 = [ 1√

2
,− 1√

2
]T, |D〉 = [ 1√

2
, 1√

2
]T,

|F 〉 = [ 1√
2
,− i√

2
]T, |G〉 = [ 1√

2
, i√

2
]T. For convenience, in

this paper, we represent the qubit’s state by a point on a cir-
cle of unit radius as shown in Fig. 1(b). The corresponding
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Fig. 1 A qubit description

relations between Figs. 1(a) and 1(b) can be written as

⎧
⎪⎪⎨

⎪⎪⎩

α : 0 −→ π/2 ⇐⇒ φ = 0 and θ : π/2 −→ 0,

α : π/2 −→ π ⇐⇒ φ = π and θ : 0 −→ π/2,

α : π −→ 3π/2 ⇐⇒ φ = π and θ : π/2 −→ π,

α : 3π/2 −→ 2π ⇐⇒ φ = 0 and θ : π −→ π/2.

(2)

At this time, any state of the qubit may be written as

|ϕ〉 = cosα|0〉 + sinα|1〉. (3)

A n qubits system has 2n computational basis states. For
example, a 2 qubits system has basis |00〉, |01〉, |10〉, |11〉.
Similar to the case of a single qubit, the n qubits system may
form the superpositions of 2n basis states

|φ〉 =
∑

x∈{0,1}n
ax |x〉, (4)

where ax is called probability amplitude of the basis
states |x〉, and {0,1}n means the set of strings of length two
with each letter being either zero or one. The condition that
these probabilities can sum to one is expressed by the nor-
malization condition

∑

x∈{0,1}n
|ax |2 = 1. (5)

2.2 Quantum rotation gate

In the quantum computation, the logic function can be real-
ized by applying a series of unitary transform to the qubit
states, which the effect of the unitary transform is equal to
that of the logic gate. Therefore, the quantum services with
the logic transformations in a certain interval are called the
quantum gates, which are the basis of performing quantum
computation.

The definition of a single qubit rotation gate is written as

R(θ) =
[

cos θ − sin θ

sin θ cos θ

]

. (6)

Let the quantum state |φ〉 = [ cos θ0
sin θ0

]
, then |φ〉 can be trans-

formed by R(θ) as follows

R(θ)|φ〉 =
[

cos(θ0 + θ)

sin(θ0 + θ)

]

. (7)

It is obvious that R(θ) shifts the phase of |φ〉.

2.3 Unitary operators and tensor products

A matrix U is said to be unitary if (U∗)T U = I , where the ∗
indicates complex conjugation, and T indicates the trans-
pose operation, I indicates the unit matrix. Similarly an op-
erator U is unitary if (U∗)T U = I . It is easily checked that
an operator is unitary if and only if each of its matrix repre-
sentations is unitary.

The tensor product is a way of putting vector spaces
together to form larger vector spaces. This construction is
crucial to understanding the quantum mechanics of multi-
particle system. Suppose V and W are vector spaces of di-
mension m and n respectively. For convenience we also sup-
pose the V and W are Hilbert spaces. Then V ⊗ W (read
‘V tensor W ’) is an mn dimensional vector space. The ele-
ments of V ⊗W are linear combinations of ‘tensor products’
|v〉 ⊗ |w〉 of elements |v〉 of V and |w〉 of W . In particular,
if |i〉 and |j 〉 are orthonormal bases for the spaces V and W

then |i〉 ⊗ |j 〉 is a basis for V ⊗ W . We often use the abbre-
viated notations |v〉|w〉, |v,w〉 or even |vw〉 for the tensor
product |v〉 ⊗ |w〉. For example, if V is a two-dimensional
vector space with basis vectors |0〉 and |1〉 then |0〉⊗ |0〉 and
|1〉 ⊗ |1〉 is an element of V ⊗ V .
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Fig. 2 Multi-qubits
controlled-rotation gate

2.4 Multi-qubits controlled-rotation gate

In a true quantum system, a single qubit state is often af-
fected by a joint control of multi-qubits. A multi-qubits
controlled-rotation gate Cn(R) is a kind of control model.
The multi-qubits system is also described by the wave func-
tion |x1x2 · · ·xn〉. In a (n + 1)-bits quantum system, when
the target bit is simultaneously controlled by n input bits,
the input/output relationship of the system can be described
by multi-qubits controlled-rotation gate in Fig. 2.

In Fig. 2(a), suppose we have n + 1 qubits, and then we
define the controlled operation Cn(R) as follows

Cn(R)|x1x2 · · ·xn〉|φ〉
= |x1x2 · · ·xn〉Rx1x2···xn |φ〉, (8)

where x1x2 · · ·xn in the exponent of R means the product of
the bits x1, x2, . . . , xn. That is, the operator R is applied to
last a qubit if the first n qubits are all equal to one; otherwise,
nothing is done.

Suppose that the |xi〉 = cos(θi)|0〉 + sin(θi)|1〉 are the
control qubits, and the |φ〉 = cos(ϕ)|0〉 + sin(ϕ)|1〉 is the
target qubit. From Eq. (8), the output of Cn(R) is written by
equation

Cn(R)|x1x2 · · ·xn〉|φ〉
= |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 ⊗ |φ〉

+
n∏

i=1

sin(θi)
(
cos(ϕ + ϕ) − cos(ϕ)

)|
n

︷ ︸︸ ︷
11 · · ·1 0〉

+
n∏

i=1

sin(θi)
(
sin(ϕ + ϕ) − sin(ϕ)

)|
n

︷ ︸︸ ︷
11 · · ·1 1〉. (9)

We say that a state of a composite system having the
property that it can’t be written as a product of states of its
component systems is an entangled state. For reasons which
nobody fully understands, entangled states play a crucial
role in quantum computation and quantum information. It
is observed from Eq. (9) that the output of Cn(R) is in the
entangled state of n + 1 qubits, and the probability of the

target qubit state |φ′〉, in which |1〉 is observed, equals to

P =
n∏

i=1

sin2(θi)
(
sin2(ϕ + ϕ) − sin2(ϕ)

)+ sin2(ϕ). (10)

In Fig. 2(b), the operator R is applied to last a qubit if the
first n qubits are all equal to zero, and otherwise, nothing is
done. The controlled operation Cn(R) can be defined by the
equation

Cn(R)|x1x2 · · ·xn〉|φ〉 = |x1x2 · · ·xn〉Rx1+···+xn |φ〉. (11)

By a similar analysis with Fig. 2(a), the probability of the
target qubit state |φ′〉, in which |1〉 is observed, equals to

P =
n∏

i=1

cos2(θi)
(
sin2(ϕ + ϕ) − sin2(ϕ)

)+ sin2(ϕ). (12)

At this time, after the joint control of the n input bits, the
target bit |φ′〉 can be defined as follows

|φ′〉 = √
1 − P |0〉 + √

P |1〉. (13)

3 The QNNSI model

3.1 The quantum-inspired neuron based on
controlled-rotation gate

In this section, we first propose a quantum-inspired neu-
ron model based on controlled-rotation gate, as shown in
Fig. 3. This model consists of quantum rotation gates and
multi-qubits controlled-rotation gate. The {|xi(tr )〉} defined
in time domain interval [0,T] denote the input sequences,
where tr ∈ [0,T]. The |y〉 denotes the spatial and temporal
aggregation results in [0,T]. The output is the probability
amplitude of |1〉 after measuring |y〉. The control param-
eters are the rotation angles θi(tr ), ϕ(tr ), i = 1,2, . . . , n,
r = 1,2, . . . , q , n denotes the number of input space dimen-
sion, q denotes the length of input sequence.

Unlike classical neuron, each input sample of quantum-
inspired neuron is described as a matrix instead of a vector.
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Fig. 3 The model of
quantum-inspired neuron based
on controlled rotation gate

For example, a single input sample can be written as

⎡

⎢
⎢
⎣

{|x1(tr )〉}
{|x2(tr )〉}

· · ·
{|xn(tr )〉}

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

|x1(t1)〉 |x1(t2)〉 · · · |x1(tq)〉
|x2(t1)〉 |x2(t2)〉 · · · |x2(tq)〉

· · · · · · · · · · · ·
|xn(t1)〉 |xn(t2)〉 · · · |xn(tq)〉

⎤

⎥
⎥
⎦ .

(14)

Suppose |xi(tr )〉 = cos θi(tr )|0〉 + sin θi(tr )|1〉, |φ(t1)〉 =
|0〉. Let

hr =
{∏n

i=1 sin(θi(tr ) + θi(tr )), for Fig. 3(a),
∏n

i=1 cos(θi(tr ) + θi(tr )), for Fig. 3(b).
(15)

According to the definition of quantum rotation gate and
multi-qubits controlled-rotation gate, the |φ′(t1)〉 is given by

∣
∣φ′(t1)

〉 =
√

1 − (
h1 sinϕ(t1)

)2|0〉 + h1 sinϕ(t1)|1〉. (16)

Let t = tr , r = 2,3, . . . , q , from |φ(tr )〉 = |φ′(tr−1)〉, the ag-
gregate results of quantum neuron in [0,T] is finally written
as

|y〉 = ∣
∣φ′(tq)

〉 = cosϕ(tq)|0〉 + sinϕ(tq)|1〉, (17)

where ϕ(tq) = arcsin({(hq)2(sin2(ϕ(tq−1) + ϕ(tq)) −
sin2(ϕ(tq−1))) + sin2(ϕ(tq−1))}1/2).

In this paper, we define the output of the quantum neuron
as the probability amplitude of the corresponding state, in
which |1〉 is observed. Let h(tr ) denote the probability am-
plitude of the state |1〉 in |φ′(tr )〉. Using some trigonometry,
the output of the quantum neuron is rewritten as

y = h(tq) =
√

(hq)2Uq + (
h(tq−1)

)2
, (18)

where Uq = h(tq−1)

√

1 − (h(tq−1))2 sin(2ϕ(tq)) +
(1 − 2(h(tq−1))

2) sin2(ϕ(tq)), h(t1) = h1 sin(ϕ(t1)).

3.2 The QNNSI model

In this paper, the QNNSI model is shown in Fig. 4, where
the hidden layer consists of p quantum-inspired neurons

based on controlled-rotation gate (Type I is employed for
odd serial number, and type II is employed for even serial
number), {|x1(tr )〉}, {|x2(tr )〉}, . . . , {|xn(tr )〉} denote the in-
put sequences, h1, h2, . . . , hp denote the hidden output, the
activation function in hidden layer employs the Eq. (18),
the output layer consists of m classical neurons, wjk denote
the connection weights in output layer, y1, y2, . . . , ym de-
note the network output, and the activation function in out-
put layer employs the Sigmoid function.

For the lth sample, suppose |xl
i (tr )〉 = cos θ l

i (tr )|0〉 +
sin θ l

i (tr )|1〉, 0 = t1 < t2 < · · · < tq = T denote the discrete
sampling time points, set |φl

j (t1)〉 = |0〉, j = 1,2, . . . , p. Let

h
l

jr =
{∏n

i=1 sin(θ l
i (tr ) + θij (tr )), j = 1,3,5, . . . ,

∏n
i=1 cos(θ l

i (tr ) + θij (tr )), j = 2,4,6, . . . .
(19)

According to the input/output relationship of quantum neu-
ron, the output of the j th quantum neuron in hidden layer
can be written as

hl
j = hl

j (tq) =
√
(
h

l

jq

)2
Ul

jq + (
hl

j (tq−1)
)2

, (20)

where Ul
jq = hl

j (tq−1)
√

1 − (hl
j (tq−1))2 sin(2ϕj (tq)) +

(1 − 2(hl
j (tq−1))

2) sin2(ϕj (tq)), hl
j (t1) = h

l

j1 sin(ϕ(t1)).
The kth output in output layer can be written as

yl
k = 1

1 + e
−∑p

j=1 wjkh
l
j

, (21)

where i = 1,2, . . . , n, j = 1,2, . . . , p, k = 1,2, . . . ,m,
l = 1,2, . . . ,L, L denotes the total number of samples.

4 The learning algorithm of QNNSI

4.1 The pretreatment of the input and output samples

Set the sampling time points 0 = t1 < t2 < · · · < tq = T.
Suppose the lth sample in n-dimensional input space

{Xl
(tr )} = [{xl

1(tr )}, . . . , {xl
n(tr )}]T, where r = 1,2, . . . , q ,
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Fig. 4 The model of
quantum-inspired neural
network with sequence input
based on controlled-rotation
gate

l = 1,2, . . . ,L. Let
{

Maxi,r = max(x1
i (tr ), x

2
i (tr ), . . . , x

L
i (tr )),

Mini,r = min(x1
i (tr ), x

2
i (tr ), . . . , x

L
i (tr )),

i = 1,2, . . . , n, (22)

θ l
i (tr ) =

⎧
⎪⎪⎨

⎪⎪⎩

xl
i (tr )−Mini,r

Maxi,r −Mini,r

π
2 , if Maxi,r > Mini,r ,

π
2 , if Maxi,r = Mini,r �= 0,

0, if Maxi,r = Mini,r = 0.

(23)

These samples can be converted into the quantum states as
follows

{∣
∣Xl(tr )

〉} = [{∣
∣xl

1(tr )
〉}

,
{∣
∣xl

2(tr )
〉}

, . . . ,
{∣
∣xl

n(tr )
〉}]T

, (24)

where |xl
i (tr )〉 = cos(θ l

i (tr ))|0〉 + sin(θ l
i (tr ))|1〉.

It is worth pointing out that although a n-qubit system has
2n computational basis states, this n-qubit system may form
the superpositions of 2n basis states. Although the number
of these superpositions is infinite, in our approach, the su-
perposition can be uniquely determined by the method of
converting input samples into quantum states. Hence, the
difference between our approach and a single input, zero-
hidden layer, and one neuron ANN output, where input = n

nodes, is embodied in the following two aspects. (1) For the
former, the input sample is a specific quantum superposition
state, and for the latter, the input sample is a specific real
value vector. (2) For the former, the activation functions are
designed through quantum computing principle, and for the

latter, the classical Sigmoid functions are used as the activa-
tion functions.

Similarly, suppose the lth output sample {Y l} = [{yl
1},

{yl
2}, . . . , {yl

m}]T, where l = 1,2, . . . ,L. Let

{
Maxk = max(y1

k, y
2
k, . . . , y

L
k ),

Mink = min(y1
k, y

2
k, . . . , y

L
k ),

(25)

then, these output samples can be normalized by the follow-
ing equation

yl
k =

⎧
⎪⎪⎨

⎪⎪⎩

yl
k−Mink

Maxk −Mink
, if Maxk > Mink,

1, if Maxk = Mink �= 0,

0, if Maxk = Mink = 0,

(26)

where k = 1,2, . . . ,m.

4.2 The adjustment of QNNSI parameters

The adjustable parameters of QNNSI include: (1) the rota-
tion angles of quantum rotation gates in hidden layer: θij (tr )

and ϕj (tr ); (2) the connection weights in output layer: wjk .
Because the number of parameters is greater and gradi-

ent calculation is more complicated, the standard gradient
descent algorithm is not easy to converge. Hence we em-
ploy the Levenberg–Marquardt algorithm in Ref. [22] to
adjust the QNNSI parameters. Suppose yl

1, y
l
2, . . . , y

l
m de-

note the normalized desired outputs of the lth sample, and
yl

1, y
l
2, . . . , y

l
m denote the corresponding actual outputs. The
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evaluation function is defined as follows

E = max
1≤1≤L

max
1≤k≤m

∣
∣el

k

∣
∣ = max

1≤l≤L
max

1≤k≤m

∣
∣yl

k − yl
k

∣
∣. (27)

Let p denote the parameter vector, e denote the error vec-
tor, and J denote the Jacobian matrix. p, e and J are respec-
tively defined as follows

pT = [
θ1,1(t1), . . . , θn,p(tq), ϕ1(t1), . . . , ϕp(tq),

w1,1, . . . ,wpm

]
, (28)

eT(p) = [
e1

1, e
1
2, . . . , e

1
m, e2

1, e
2
2, . . . , e

2
m, . . . ,

eL
1 , eL

2 , . . . , eL
m

]
, (29)

J(p) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂e1
1

∂θ1,1(t1)
· · · ∂e1

1
∂θn,p(tq )

∂e1
1

∂ϕ1(t1)
· · · ∂e1

1
∂ϕp(tq )

∂e1
1

∂w1,1
· · · ∂e1

1
∂wp,m

... · · · ...
... · · · ...

... · · · ...
∂e1

m

∂θ1,1(t1)
· · · ∂e1

m

∂θn,p(tq )

∂e1
m

∂ϕ1(t1)
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, (30)

where the gradient calculations in J(p) see to the Appendix.
According to Levenberg–Marquardt algorithm, the iter-

ative equation of adjusting QNNSI parameters is written as
follows

pt+1 = pt − (
JT(pt )J(pt ) + μt I

)−1JT(pt )e(pt ), (31)

where t denotes the iterative steps, I denotes the unit ma-
trix, and μt is a small positive number to ensure the matrix
JT(pt )J(pt ) + μt I is invertible.

4.3 The stopping criterion of QNNSI

If the value of the evaluation function E reaches the prede-
fined precision within the preset maximum number of iter-
ative steps, then the execution of the algorithm is stopped,
else the algorithm is not stopped until it reaches the prede-
fined maximum number of iterative steps.

4.4 Learning algorithm description

The structure of QNNSI is shown in the following.
Procedure QNNSI
Begin

t ← 0
(1) The pretreatment of the input and output samples.
(2) Initialization of QNNSI, including

(a) the predefined precision ε,
(b) the predefined maximum number of iterative

steps N ,
(c) the parameter of Levenberg–Marquardt algo-

rithm μt ,
(d) the parameters of QNNSI {θij (tr ), ϕj (tr )} ∈

(−π
2 , π

2 ), {wjk} ∈ (−1,1).
(3) While (not termination-condition)

Begin
(a) computing the actual outputs of all samples by

Eqs. (19)–(21),
(b) computing the value of the evaluation function E

by Eq. (27),
(c) adjusting the parameters {θij (tr )}, {ϕj (tr )}, {wjk}

by Eq. (31).
(d) t ← t + 1,

End
End

4.5 Diagnostic explanatory capabilities

Finally, we briefly give the diagnostic explanatory capabili-
ties of QNNSI, namely, given the complex model, how can
one explain a given prediction, inference, or classification
based on QNNSI. We believe that any given prediction, in-
ference, or classification can be seen as an approximation
problem from the input space to the output space. In this
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sense, the above problem is converted into the design prob-
lem of multi-dimension sequence samples. Our approach is
below. For a n-dimension sample X of classical ANN, if n is
a prime number, then extend the dimensions of this sample
X to m = n+ 1 by setting X(m) equal X(n), and otherwise,
nothing is done. We decompose m into the product of m1

and m2 and make these two numbers as close as possible. At
this time, a n-dimension sample X of ANN is converted into
a m1 dimension sequence sample of QNNSI where the se-
quence length equals m2, or a m2 dimension sequence sam-
ple of QNNSI where the sequence length equals m1.

5 Simulations

In order to experimentally illustrate the effectiveness of the
proposed QNNSI, four examples are used to compare it with
the ANN with a hidden layer in this section. In these ex-
periments, we perform and evaluate the QNNSI in Matlab
(Version 7.1.0.246) on a Windows PC with 2.19 GHz CPU
and 1.00 GB RAM. Our QNNSI has the same structure and
parameters as the ANN in these experiments, and the same
Levenberg–Marquardt algorithm in Ref. [22] is applied in
two models. Some relevant concepts are defined as follows.

Approximation error Suppose [yl
1, y

l
2, . . . , y

l
m] and [yl

1, y
l
2,

. . . , yl
m] denote the lth desired output and the corresponding

actual output after training, respectively. The approximation
error is defined as

E = max
1≤l≤L

max
1≤k≤m

∣
∣yl

k − yl
k

∣
∣, (32)

where L denotes the number of the training samples, and m

denotes the dimension of the output space.

Average approximation error Suppose E1,E2, . . . ,EN

denote the approximation error over N training trials, re-
spectively. The average approximation error is defined as

Eavg = 1

N

N∑

i=1

Ei. (33)

Convergence ratio Suppose E denotes the approximation
error after training, and ε denotes the target error. If E < ε,
the network training is considered to have converged. Sup-
pose N denotes the total number of training trials, and C

denotes the number of convergent training trials. The con-
vergence ratio is defined as

λ = C

N
. (34)

Iterative steps In a training trial, the number of times of
adjusting all network parameters is defined as iterative steps.

Average iterative steps Suppose S1, S2, . . . , SN denote the
iterative steps over N training trials, respectively. The aver-
age iterative steps are defined as

Savg = 1

N

N∑

i=1

Si. (35)

Average running time Suppose T1, T2, . . . , TN denote the
running time over N training trials, respectively. The aver-
age running time is defined as

Tavg = 1

N

N∑

i=1

Ti. (36)

5.1 Time series prediction for Mackey–Glass

Mackey–Glass time series can be generated by the following
iterative equation

x(t + 1) − x(t) = a
x(t − τ)

1 + x10(t − τ)
− bx(t), (37)

where t and τ are integers, a = 0.2, b = 0.1, τ = 17, and
x(0) ∈ (0,1).

From the above equation, we may obtain the time se-
quence {x(t)}1000

t=1 . We take the first 800, namely {x(t)}800
t=1,

as the training set, and the remaining 200, namely
{x(t)}1000

t=801, as the testing set. Our prediction schemes is
to employ n data adjacent to each other to predict the next
one data. Namely, in our model, the sequence length equals
to n. Therefore, each sample consists of n input values and
an output value. Hence, there is only one output node in
QNNSI and ANN. In order to fully compare the approxi-
mation ability of two models, the number of hidden nodes
are respectively set to 10,11, . . . ,30. The predefined pre-
cision is set to 0.05, and the maximum of iterative steps
is set to 100. The QNNSI rotation angles in hidden layer
are initialized to random numbers in (−π/2,π/2), and the
connection weights in output layer are initialized to random
numbers in (−1,1). For ANN, all weights are initialized to
random numbers in (−1,1), and the Sigmoid functions are
used as activation functions in hidden layer and output layer.

Obviously, ANN has n input nodes, and an ANN’s in-
put sample can be described as a n-dimensional vector. For
the number of input nodes of QNNSI, we employ the fol-
lowing six kinds of settings shown in Table 1. For each of
these settings in Table 1, a single QNNSI input sample can
be described as a matrix.

It is worth noting that, in QNNSI, a n × q matrix can
be used to describe a single sequence sample. In gen-
eral, ANN cannot deal directly with a single n × q se-
quence sample. In ANN, a n × q matrix is usually regarded
as q n-dimensional vector samples. For fair comparison,
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in ANN, we have expressed the n × q sequence samples
into the nq-dimensional vector samples. Therefore, in Ta-
ble 1, the sequence lengths for ANN are not changed. It is
clear that, in fact, there is only one kind of ANN in Table 1,
namely, ANN32.

Our experiment scheme is that, for each kind of combina-
tion of input nodes and hidden nodes, six QNNSIs and one
ANN are respectively run 10 times. Then we use four indi-
cators, such as the average approximation error, the average
iterative steps, the average running time, and the conver-
gence ratio, to compare QNNSI with ANN. Training results

Table 1 The input nodes and the sequence length setting of QNNSIs
and ANN

QNNSIs ANN

Input nodes Sequence length Input nodes Sequence length

1 32 32 1

2 16 32 1

4 8 32 1

8 4 32 1

16 2 32 1

32 1 32 1

contrast are shown in Tables 2, 3, 4 and 5, where QNNSIn_q
denotes QNNSI with n input nodes and q sequence length.

From Tables 2–5, we can see that when the input nodes
take 4 and 8, the performance of QNNSIs are obviously su-
perior to that of ANN, and the QNNSIs have better stability
than ANN when the number of hidden nodes changes. The
same results also are illustrated in Figs. 5, 6, 7 and 8.

Next, we investigate the generalization ability of QNNSI.
Based on the above experimental results, we only investigate
QNNSI4_8 and QNNSI8_4. Our experiment scheme is that
two QNNSIs and one ANN train 10 times on the training set,
and the generalization ability is immediately investigated on
the testing set after each training. The average results of
the 10 tests are regarded as the evaluation indexes. We first
present the following definition of evaluation indexes.

Average prediction error Suppose [yl
1, y

l
2, . . . , y

l
m] and

[̂yl
1(t), ŷ

l
2(t), . . . , ŷ

l
m(t)] denote the desired output of the lth

sample and the corresponding prediction output after the
t th testing respectively. The average prediction error over
N testing is defined as

Eavg = 1

N

N∑

t=1

max
1≤l≤L

max
1≤k≤m

∣
∣yl

k − ŷl
k(t)

∣
∣, (38)

Table 2 Training results of average approximation error

Model Hidden nodes

10 12 14 16 18 20 22 24 26 28 30

QNNSI1_32 0.0430 0.0400 0.2275 0.0412 0.1321 0.1317 0.1344 0.3155 0.4100 0.2242 0.4101

QNNSI2_16 0.0455 0.0432 0.1326 0.1344 0.0426 0.2266 0.2252 0.1348 0.1349 0.1341 0.1351

QNNSI4_8 0.0426 0.0417 0.0420 0.0430 0.0419 0.0434 0.0418 0.0417 0.0428 0.0431 0.0425

QNNSI8_4 0.0433 0.0427 0.0437 0.0428 0.0431 0.0427 0.0426 0.0444 0.0431 0.0439 0.0441

QNNSI16_2 0.0859 0.0469 0.0819 0.0435 0.0445 0.0440 0.0446 0.0429 0.0424 0.0430 0.0431

QNNSI32_1 0.4746 0.4770 0.4746 0.4746 0.4741 0.4744 0.4746 0.4779 0.4743 0.4746 0.4745

ANN32 0.3198 0.2295 0.1377 0.1367 0.2292 0.0453 0.4122 0.1377 0.2284 0.1371 0.2287

Table 3 Training results of average iterative steps

Model Hidden nodes

10 12 14 16 18 20 22 24 26 28 30

QNNSI1_32 10.0 9.90 27.3 7.90 16.5 16.9 16.8 34.2 43.8 25.1 43.6

QNNSI2_16 7.50 6.50 15.7 15.1 5.70 24.5 24.1 14.8 14.5 14.1 14.7

QNNSI4_8 6.10 5.40 6.00 5.10 6.10 4.70 4.90 4.70 4.20 4.80 4.60

QNNSI8_4 6.90 6.30 6.10 5.80 5.80 6.00 5.30 5.60 5.00 5.10 4.90

QNNSI16_2 34.1 40.5 31.8 15.1 12.3 11.6 10.3 9.90 9.90 10.7 8.40

QNNSI32_1 100 100 100 100 100 100 100 100 100 100 100

ANN32 45.8 32.2 23.9 23.1 33.4 14.8 47.6 21.1 29.8 21.2 30.1
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Table 4 Training results of average running time (s)

Model Hidden nodes

10 12 14 16 18 20 22 24 26 28 30

QNNSI1_32 80.30 100.12 306.59 99.49 253.26 301.29 348.72 656.19 913.15 584.80 1061.1

QNNSI2_16 29.93 34.94 93.58 109.2 51.36 230.8 241.2 169.3 171.0 165.3 199.1

QNNSI4_8 17.65 16.55 20.21 20.72 29.15 29.67 30.04 33.41 36.48 42.67 51.44

QNNSI8_4 12.45 14.43 17.29 21.44 26.27 30.56 32.73 38.86 39.17 41.23 45.37

QNNSI16_2 54.66 65.36 63.51 38.36 34.07 39.18 39.91 46.62 48.04 56.55 46.07

QNNSI32_1 122.22 132.80 150.90 174.93 221.64 237.06 250.45 287.07 386.51 439.71 428.34

ANN32 23.02 22.33 21.73 26.01 42.95 26.42 83.37 47.70 74.48 63.87 99.36

Table 5 Training results of convergence ratio (%)

Model Hidden nodes

10 12 14 16 18 20 22 24 26 28 30

QNNSI1_32 100 100 80 100 90 90 90 70 60 80 60

QNNSI2_16 100 100 90 90 100 80 80 90 90 90 90

QNNSI4_8 100 100 100 100 100 100 100 100 100 100 100

QNNSI8_4 100 100 100 100 100 100 100 100 100 100 100

QNNSI16_2 90 90 90 100 100 100 100 100 100 100 100

QNNSI32_1 0 0 0 0 0 0 0 0 0 0 0

ANN32 70 80 90 90 80 90 60 90 80 90 80

Fig. 5 The average approximation error contrast

where m denotes the dimension of the output space, L de-
notes the number of the testing samples.

Average error mean Suppose yl = [yl
1, y

l
2, . . . , y

l
m] and

ŷl(t) = [̂yl
1(t), ŷ

l
2(t), . . . , ŷ

l
m(t)] denote the desired output

of the lth sample and the corresponding prediction output af-
ter the t th testing respectively. The average error mean over
N testing is defined as

Emean = 1

N

N∑

t=1

1

L

L∑

l=1

∣
∣yl − ŷl(t)

∣
∣, (39)

Fig. 6 The average iterative steps contrast

Average prediction variance Suppose yl = [yl
1, y

l
2,

. . . , yl
m] and ŷl(t)= [̂yl

1(t), ŷ
l
2(t), . . . , ŷ

l
m(t)] denote the de-

sired output of the lth sample and the corresponding pre-
diction output after the t th testing respectively. The average
error variance over N testing is defined as

Evar

= 1

N

N∑

t=1

1

L − 1
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l=1

(
∣
∣yl − ŷl(t)

∣
∣− 1

L
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∣
∣yl − ŷl(t)

∣
∣

)2

,

(40)
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The evaluation indexes contrast of QNNSIs and ANN are
shown in Table 6. Taking 24 hidden nodes for example, and
the average prediction results contrast over 10 testing are il-
lustrated in Fig. 9. The experimental results show that the
generalization ability of the two QNNSIs is obviously supe-
rior to that of ANN.

These experimental results can be explain as follows. For
processing of input information, QNNSI and ANN take two
different approaches. QNNSI directly receives a discrete in-
put sequence. In QNNSI, using quantum information pro-
cessing mechanism, the input is circularly mapped to the

Fig. 7 The average running time contrast

Fig. 8 The convergence ratio contrast

output of quantum controlled-rotation gates in hidden layer.
As the controlled-rotation gate’s output is in the entangled
state of multi-qubits, therefore, this mapping is highly non-
linear, which makes QNNSI have the stronger approxima-
tion ability. In addition, QNNSI’s each input sample can
be described as a matrix with n rows and q columns. It is
clear from QNNSI’s algorithm that, for the different com-
bination of n and q , the output of quantum-inspired neu-
ron in hidden layer is also different. In fact, The number
of discrete points q denotes the depth of pattern memory,
and the number of input nodes n denotes the breadth of
pattern memory. When the depth and the breadth are ap-
propriately matched, the QNNSI shows excellent perfor-
mance. For the ANN, because its input can only be de-
scribed as a nq-dimensional vector, it does not directly
deal with a discrete input sequence. Namely, it can only
obtain the sample characteristics by way of breadth in-
stead of depth. Hence, in the ANN information process-
ing, there inevitably exists the loss of sample characteris-
tics, which affects its approximation and generalization abil-
ity.

Fig. 9 The average prediction results contrast of QNNSIs and ANN

Table 6 The average prediction error contrast of QNNSIs and ANN

Model Index Hidden nodes

10 12 14 16 18 20 22 24 26 28 30

QNNSI4_8 Eavg 0.051 0.051 0.050 0.052 0.051 0.054 0.051 0.052 0.053 0.053 0.052

Emean 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.009

Evar 9e-5 9e-5 9e-5 9e-5 9e-5 1e-4 1e-4 9e-5 1e-4 1e-4 9e-5

QNNSI8_4 Eavg 0.052 0.053 0.052 0.052 0.052 0.052 0.052 0.054 0.052 0.052 0.053

Emean 0.009 0.009 0.009 0.008 0.009 0.008 0.008 0.009 0.009 0.009 0.009

Evar 9e-5 9e-5 9e-5 9e-5 9e-5 9e-5 9e-5 9e-5 9e-5 9e-5 9e-5

ANN32 Eavg 0.332 0.243 0.152 0.153 0.244 0.061 0.425 0.154 0.243 0.153 0.243

Emean 0.148 0.105 0.053 0.062 0.107 0.011 0.182 0.053 0.106 0.052 0.095

Evar 0.019 0.013 0.006 0.006 0.013 0.0001 0.025 0.006 0.013 0.006 0.013
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5.2 Annual average of sunspot prediction

In this section, we take the measured data of annual average
of sunspot from 1749 to December 2007 as the experiment
objects, and investigate the prediction ability of the proposed
model. All samples data are shown in Fig. 10. In all sam-
ples, we use the first 200 years (1949–1948) data to train the

Fig. 10 The measured data of annual average of sunspot

Table 7 The input nodes and the sequence length setting of QNNSIs
and ANNs

QNNSIs ANNs

Input nodes Sequence length Input nodes Sequence length

1 50 50 1

2 25 50 1

5 10 50 1

7 7 49 1

10 5 50 1

25 2 50 1

50 1 50 1

network, and the remaining 59 years (1949–2007) data to
test the generalization of the proposed model. For the input
nodes and the sequence length, we employ the seven kinds
of settings shown in Table 7. In this experiment, we set the
number of hidden nodes to 20,21, . . . ,40, respectively. The
target error is set to 0.05, and the maximum number of itera-
tive steps is set to 100. The other parameters of QNNSIs and
ANNs are set by the same way as the previous experiment.

7 QNNSIs and 2 ANNs are run 10 times respectively
for each setting of hidden nodes, and then we use the same
evaluation indicators as the previous experiment to compare
QNNSIs with ANNs. Training result contrasts are shown in
Tables 8, 9, 10 and 11.

From Tables 8–11, we can see that the performance of
QNNSI5_10, QNNSI7_7 and QNNSI10_5 are obviously su-
perior to that of the two ANNs. The convergence ratio of
these three QNNSIs reaches 100% under a variety of val-
ues of hidden nodes. Overall, the other three indicators of
these three QNNSIs are better than that of two ANNs, and
there is good stability when the number of hidden nodes
changes. The same results also are illustrated in Figs. 11,
12, 13 and 14.

Next, we investigate the generalization ability of QNNSI.
Based on the above experimental results, we only investigate
QNNSI5_10, QNNSI7_7, and QNNSI10_5. Our experiment
scheme is that three QNNSIs and two ANNs are respec-
tively done 10 training by the first 200 years (1749–1948)
data, and are immediately tested by the remaining 59 years
(1949–2007) data after each training. The average predic-
tion error of the 10 tests is regarded as the evaluation index.
The average prediction error contrast of QNNSIs and ANNs
are shown in Table 12. Taking 35 hidden nodes for exam-
ple, the average prediction result contrast are illustrated in
Fig. 15. The experimental results show that the generaliza-
tion ability of three QNNSIs is obviously superior to that of
corresponding ANNs.

Table 8 Training results of average approximation error

Model Hidden nodes

20 22 24 26 28 30 32 34 36 38 40

QNNSI1_50 40.20 40.20 38.60 36.60 28.90 20.30 36.90 34.90 52.80 18.00 43.40

QNNSI2_25 19.30 19.40 28.10 36.60 18.40 26.80 36.30 36.00 26.80 17.30 35.70

QNNSI5_10 12.40 12.20 10.30 10.60 9.600 10.30 11.00 9.700 10.00 9.400 8.500

QNNSI7_7 15.50 13.50 13.60 13.20 12.10 12.30 12.60 11.90 11.80 10.30 10.40

QNNSI10_5 18.00 14.80 15.70 14.50 15.60 13.80 14.60 13.40 14.10 12.80 13.40

QNNSI25_2 99.20 85.00 93.30 89.60 82.70 72.20 77.50 60.90 75.20 66.10 71.20

QNNSI50_1 100 100 100 100 100 100 100 100 100 100 100

ANN49 87.90 88.40 84.80 86.20 89.60 85.80 88.00 85.30 82.50 69.90 87.60

ANN50 79.10 92.60 93.20 79.40 92.30 87.60 85.80 86.60 92.40 76.00 87.30
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Table 9 Training results of average iterative steps

Model Hidden nodes

20 22 24 26 28 30 32 34 36 38 40

QNNSI1_50 40.69 36.69 40.47 40.40 21.84 8.450 40.54 36.26 72.73 8.144 54.84

QNNSI2_25 26.38 22.84 37.13 51.01 22.57 40.84 50.82 58.47 36.96 22.61 62.47

QNNSI5_10 9.102 9.103 9.233 8.988 9.027 9.115 9.023 8.961 9.072 8.942 9.028

QNNSI7_7 9.125 9.174 9.072 9.211 9.028 8.940 9.174 8.936 9.110 8.961 9.081

QNNSI10_5 9.277 8.901 9.150 9.134 9.123 9.129 9.161 9.155 8.984 9.199 9.100

QNNSI25_2 38.02 39.66 26.08 20.55 22.83 10.97 11.88 9.875 14.43 9.276 9.636

QNNSI50_1 94.40 94.40 94.40 94.40 94.39 94.39 94.38 94.20 94.40 94.40 94.40

ANN49 10.37 10.87 10.15 10.38 10.10 9.828 10.22 9.807 9.765 9.414 9.812

ANN50 9.808 10.38 10.37 9.559 10.46 10.00 9.737 9.708 9.628 9.524 9.896

Table 10 Training results of average running time (s)

Model Hidden nodes

20 22 24 26 28 30 32 34 36 38 40

QNNSI1_50 389.30 489.90 586.80 684.20 665.30 554.70 1191.9 1344.2 2387.4 972.20 2670.7

QNNSI2_25 162.28 221.41 344.19 495.03 250.20 384.93 768.91 837.37 691.63 336.29 707.80

QNNSI5_10 113.61 105.38 92.445 104.11 114.82 150.21 150.02 137.65 149.81 143.35 152.54

QNNSI7_7 66.266 55.433 74.901 93.984 95.672 101.76 129.86 126.66 136.12 139.53 140.45

QNNSI10_5 92.259 72.502 103.34 108.26 129.73 115.09 158.92 211.05 246.20 212.38 215.31

QNNSI25_2 567.20 484.80 478.20 634.80 588.40 419.10 551.80 358.50 492.20 496.80 1283.5

QNNSI50_1 497.20 497.10 634.80 784.10 671.30 789.90 699.60 645.70 627.80 741.10 2659.4

ANN49 314.85 296.63 335.97 407.13 404.54 546.14 677.46 591.49 714.95 613.73 786.97

ANN50 106.07 156.89 197.15 207.75 293.74 334.77 390.02 465.37 578.43 553.22 742.02

Table 11 Training results of convergence ratio (%)

Model Hidden nodes

20 22 24 26 28 30 32 34 36 38 40

QNNSI1_50 80 80 80 80 90 100 80 80 60 100 70

QNNSI2_25 90 90 80 70 90 80 70 70 80 90 70

QNNSI5_10 100 100 100 100 100 100 100 100 100 100 100

QNNSI7_7 100 100 100 100 100 100 100 100 100 100 100

QNNSI10_5 100 100 100 100 100 100 100 100 100 100 100

QNNSI25_2 10 50 30 40 50 70 80 90 70 90 80

QNNSI50_1 0 0 0 0 0 0 0 0 0 0 0

ANN49 40 40 50 40 40 60 50 50 60 80 60

ANN50 80 20 30 70 30 40 60 50 60 80 50

5.3 Caravan insurance policy prediction

In this experiment, we predict who would be interested
in buying a caravan insurance policy. This data set used
in the CoIL 2000 Challenge contains information on cus-
tomers of an insurance company and comes from the fol-

lowing url: http://kdd.ics.uci.edu/databases/tic/tic.html. The
data was supplied by the Dutch data mining company Sen-
tient Machine Research and is based on a real world busi-
ness problem. The training set contains 5822 descriptions of
customers. Each record consists of 86 attributes, containing
sociodemographic data (attribute 1–43) and product owner-

http://kdd.ics.uci.edu/databases/tic/tic.html
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ship (attributes 44–86). The sociodemographic data is de-
rived from zip codes. All customers living in areas with the
same zip code have the same sociodemographic attributes.

Fig. 11 The average approximation error contrast

Fig. 12 The average iterative steps contrast

Attribute 86 is the target variable, which equals 0 or 1 and
indicate information of whether or not they have a caravan
insurance policy. The Dataset for predictions contains 4000

Fig. 13 The average running time contrast

Fig. 14 The convergence ratio contrast

Table 12 The average prediction error contrast of QNNSIs and ANNs

Model Index Hidden nodes

20 22 24 26 28 30 32 34 36 38 40

QNNSI5_10 Eavg 15.48 15.42 15.17 15.51 16.75 15.44 14.94 16.37 16.16 14.93 14.53

Emean 3.506 2.944 3.525 3.777 3.797 3.158 2.994 3.354 3.757 3.078 3.218

Evar 10.46 8.383 10.30 10.07 11.71 9.256 8.341 10.00 11.15 8.062 8.512

QNNSI7_7 Eavg 15.47 16.19 15.32 17.04 15.32 15.21 15.07 15.49 15.39 14.96 15.52

Emean 3.240 3.259 3.032 3.575 3.194 3.206 2.966 3.014 2.934 3.089 3.238

Evar 9.406 9.440 8.179 10.50 9.464 8.989 8.418 8.593 8.465 8.958 9.592

QNNSI10_5 Eavg 15.99 15.93 15.79 16.11 16.46 15.70 16.20 15.89 15.58 16.45 16.47

Emean 4.086 3.788 3.518 3.654 3.943 3.615 3.643 3.727 3.880 3.605 3.760

Evar 12.40 10.57 10.17 10.81 11.45 10.30 10.04 10.52 10.75 10.85 10.29

ANN49 Eavg 31.40 26.33 27.80 29.07 27.20 61.01 28.26 29.97 45.47 45.19 45.23

Emean 10.08 8.159 8.383 9.518 8.360 25.91 8.686 9.294 16.18 15.11 15.54

Evar 55.32 34.50 37.60 46.60 40.58 578.8 40.18 48.02 311.6 312.8 312.8

ANN50 Eavg 44.20 31.05 28.92 29.49 30.32 30.23 28.56 42.48 57.92 27.67 26.18

Emean 14.85 9.221 8.605 8.439 9.534 9.119 8.384 14.77 25.16 9.121 8.356

Evar 306.2 47.31 44.02 39.37 46.98 49.47 41.74 307.4 569.5 44.21 37.57
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Fig. 15 The average prediction results contrast of QNNSIs and ANNs

Table 13 The input nodes and the sequence length setting of QNNSIs
and ANN

QNNSIs ANN

Input nodes Sequence length Input nodes Sequence length

1 85 85 1

5 17 85 1

17 5 85 1

85 1 85 1

customer records of whom only the organisers know if they
have a caravan insurance policy. It has the same format as
the training set, only the target is missing. Participants are
supposed to return the list of predicted targets only.

Considering the each customer consists of 85 feature at-
tributes for the input nodes and the sequence length, we
employ the four kinds of settings shown in Table 13. In
this experiment, we set the number of hidden nodes to
10,11, . . . ,20, respectively. The maximum number of itera-
tive steps is set to 100. The other parameters of QNNSIs and
ANN are set by the same way as the previous experiment. In
this experiment, we do not set the value of target error. The
algorithm is not stopped until it reaches the predefined max-
imum number of iterative steps.

QNNSIs and ANN train 10 times for each setting of hid-
den nodes by the training set data, and are immediately
tested by the testing set data after each training. The eval-
uation indicators used in this experiment are defined as fol-
lows.

The number of correct prediction results Suppose y1, y2,

. . . , yM denote the desired outputs of M samples, and y1,

y2, . . . , yM denote the corresponding actual outputs, where
M denotes the number of samples in training set. The num-
ber of correct prediction results for training set is defined
as

Ntr =
N∑

n=1

(

M −
M∑

m=1

∣
∣ym − [

ym
]∣
∣

)

/N, (41)

where N denotes the total number of training trials, if
ym ≥ 0.5, then [ym] = 1, otherwise [ym] = 0. Similarly, the
number of correct prediction results for the testing set is de-
fined as

Nte =
N∑

n=1

(

M −
M∑

m=1

∣
∣ym − [

ym
]∣
∣

)

/N, (42)

where M denotes the number of samples in testing set.

The ratio of correct prediction results The ratio of correct
prediction results for the training set is defined as

Rtr = 100Ntr/M. (43)

Similarly, the ratio of correct prediction results for the
testing set is defined as

Rte = 100Nte/M. (44)

Then, we use these four indicators and the average run-
ning time Tavg to compare QNNSIs with ANN. Experimen-
tal result contrasts are shown in Table 14.

It can be seen from Table 14 that the average running
time of QNNSI85_1 is the shortest, and so, it is the most
efficient. The Rte of QNNSI17_5 is the greatest, and so, its
generalization ability is the strongest. For ANN85, although
the Rtr is the greatest of the five models, its generalization
ability is inferior to QNNSI17_5 and QNNSI5_17. In addi-
tion, for the four QNNSIs, almost all of the Rte are greater
than the corresponding Rtr , which suggests that QNNSI has
stronger generalization ability than ANN.

5.4 Breast cancer prediction

In this experiment, we give an example of predicting breast
cancer with QNNSI and ANN. Features are computed from
a digitized image of a fine needle aspirate (FNA) of a breast
mass. They describe characteristics of the cell nuclei present
in the image. A few of the images can be found at the follow-
ing url: http://www.cs.wisc.edu/~street/images/. The dataset
is linearly separable using all 30 input features, and 2 predic-
tion fields respectively are benign and malignant. The num-
ber of instances in the dataset equals to 569, where 357 in-
stances are benign and 212 instances are malignant. The best
predictive accuracy obtained using one separating plane in
the 3-D space of Worst Area, Worst Smoothness and Mean
Texture. Separating plane described above can be obtained
using Multi-surface Method-Tree (MSM-T), a classification
method which uses linear programming to construct a deci-
sion tree. The actual linear program used to obtain the sep-
arating plane in the 3-dimensional space is that described in
Ref. [23]. The above-mentioned classifier has correctly di-
agnosed 176 consecutive new patients as of November 1995.

http://www.cs.wisc.edu/~street/images/
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Table 15 The input nodes and the sequence length setting of QNNSIs
and ANN

QNNSIs ANN

Input nodes Sequence length Input nodes Sequence length

1 30 30 1

2 15 30 1

3 10 30 1

5 6 30 1

6 5 30 1

10 3 30 1

15 2 30 1

30 1 30 1

In all samples, we use the first 400 instances (where 227
are benign) to train the network, and the remaining 169 in-
stances (where 130 are benign) to test the generalization of
the proposed model. For the input nodes and the sequence
length, we employ the eight kinds of settings shown in Ta-
ble 15. In this experiment, we set the number of hidden
nodes to 5,6, . . . ,15, respectively. The maximum number of
iterative steps is set to 100. The other parameters of QNNSIs
and ANN are set in the same way as the previous experi-
ment. In this experiment, we do not set the value of the tar-
get error. The algorithm is not stopped until it reaches the
predefined maximum number of iterative steps.

Our experiment scheme is below. QNNSIs and ANN
train 10 times for each setting of hidden nodes by the train-
ing set data, and are immediately tested by the testing set
data after each training. Then, we use the same evaluation
indicators as the previous experiment to compare QNNSIs
with ANN. Experimental contrast results are shown in Ta-
ble 16.

It can be seen from Table 16 that, as far as the approxima-
tion and generalization ability are concerned, QNNSI1_30
and QNNSI30_1 are obviously inferior to ANN30;
QNNSI2_15 and QNNSI15_2 are roughly equal to ANN30;
QNNSI3_10 and QNNSI10_3 are slightly superior to
ANN30; QNNSI5_6 and QNNSI6_5 are obviously supe-
rior to ANN30. As far as the average running time are con-
cerned, QNNSI1_30, QNNSI2_15, and QNNSI3_10 are ob-
viously longer than ANN30; QNNSI5_6 and QNNSI6_5
are slightly longer than ANN30; QNNSI10_3, QNNSI15_2,
and QNNSI30_1 are roughly equal to ANN30. Synthesiz-
ing the above-mentioned two aspects, QNNSI shows better
performance than ANN when the number of input nodes is
close to the sequence length.

Next, we theoretically explain the above experimental re-
sults. Assume that n denotes the number of input nodes,
q denotes the sequence length, p denotes the number of hid-
den nodes, and m denotes the number of output nodes, and
the product of nq is approximately a constant.

It is clear that the number of adjustable parameters in
QNNSI and ANN is the same, i.e., equals npq + pm. The

weights adjustment formula in the output layer of QNNSI
and ANN is also the same. But, their parameters adjust-
ment of hidden layer is completely different. The adjust-
ment of hidden parameters in QNNSI is much more com-
plex than that in ANN. In ANN, each hidden parame-
ter adjustment only involves two derivative calculations.
In QNNSI, each hidden layer parameter adjustment in-
volves at least two and at most q + 1 derivative calcula-
tions.

In QNNSI, when q = 1, although the number of in-
put nodes is the greatest possible, the calculation of the
hidden layer output and hidden parameter adjustment are
also the most simple, which directly lead to the reduc-
tion of the approximation ability. When n = 1, the cal-
culation of the hidden layer output is the most com-
plex, which make the QNNSI have the strongest nonlin-
ear mapping ability. However, at this time, the calcula-
tion of hidden parameter adjustment is also very com-
plex. A large number of derivative calculations can lead
to the adjustment of parameters which tend to zero or in-
finity. This can hinder the convergence of the training pro-
cess and lead to the reduction of the approximation abil-
ity. Hence, when q = 1 or n = 1, the approximation abil-
ity of QNNSI is inferior to that of ANN. When n > 1 or
q > 1, the approximation ability of QNNSI tends to im-
prove, and under a certain condition, the approximation abil-
ity of QNNSI will certainly be superior to that of ANN.
The above analysis is consistent with the experimental re-
sults.

In addition, what is the accurate relationship between n

and q to make QNNSI approximation ability the strongest?
This problem needs further study, and usually depends on
the specific issues. Our conclusions based on experiments is
as follows: when q/2 ≤ n ≤ 2q , QNNSIn_q is superior to
the ANN with nq input nodes.

It is worth pointing out that QNNSI is potentially much
more computationally efficient than all the models refer-
enced above in the Introduction section. The efficiency of
many quantum algorithms comes directly from quantum
parallelism that is a fundamental feature of many quantum
algorithms. Heuristically, and at the risk of over-simplifying,
quantum parallelism allows quantum computers to evalu-
ate a function f (x) for many different values of x simul-
taneously. Although quantum simulation requires many re-
sources in general, quantum parallelism leads to very high
computational efficiency by using the superposition of quan-
tum states. In QNNSI, the input samples have been con-
verted into corresponding quantum superposition states af-
ter preprocessing. Hence, as far as a lot of quantum ro-
tation gates and controlled-not gates used in QNNSI are
concerned, information processing can be performed simul-
taneously, which greatly improves the computational effi-
ciency. Because the above four experiments are performed
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Table 16 The performance contrast of QNNSIs and ANN for breast cancer prediction

Model Index Hidden nodes

5 6 7 8 9 10 11 12 13 14 15

QNNSI1_30 Ntr 180.8 217.0 188.1 210.5 198.2 237.2 202.7 219.5 198.2 203.0 204.9

Rtr (%) 45.20 54.25 47.03 52.63 49.55 59.30 50.68 54.88 49.55 50.75 51.23

Nte 66.00 86.60 53.00 92.70 66.20 95.30 64.60 92.40 65.60 58.30 68.40

Rte (%) 39.05 51.24 31.36 54.85 39.17 56.39 38.22 54.67 38.82 34.50 40.47

Tavg (s) 204.8 253.0 312.9 327.8 333.8 360.6 422.4 455.7 502.5 536.4 585.3

QNNSI2_15 Ntr 325.2 342.9 359.4 347.9 338.8 320.3 314.6 309.2 248.3 239.1 178.4

Rtr (%) 81.30 85.73 89.85 86.98 84.70 80.08 78.65 77.30 62.08 59.78 44.60

Nte 132.4 130.6 149.9 138.3 142.5 132.0 135.2 123.8 79.70 99.90 48.10

Rte (%) 78.34 77.28 88.70 81.83 84.32 78.11 80.00 73.25 47.16 59.11 28.46

Tavg (s) 89.33 115.7 122.5 145.1 181.6 217.2 240.0 317.1 359.6 275.8 281.8

QNNSI3_10 Ntr 378.5 366.9 378.6 392.8 392.2 378.0 356.7 378.2 369.2 360.8 362.5

Rtr (%) 94.63 91.73 94.65 98.20 98.05 94.50 89.18 94.55 92.30 90.20 90.63

Nte 148.0 136.2 148.1 161.2 156.6 158.5 143.2 145.5 151.9 151.5 138.1

Rte (%) 87.57 80.59 87.63 95.38 92.66 93.79 84.73 86.09 89.88 89.65 81.72

Tavg (s) 77.45 82.46 108.4 119.3 141.3 174.7 172.8 182.2 222.1 218.1 222.1

QNNSI5_6 Ntr 396.1 397.5 396.5 397.4 394.9 397.3 396.9 397.8 397.7 399.0 398.3

Rtr (%) 99.03 99.38 99.13 99.35 98.73 99.33 99.23 99.45 99.43 99.75 99.58

Nte 162.1 164.6 162.4 162.0 160.0 162.8 159.9 161.6 163.1 162.1 161.3

Rte (%) 95.92 97.40 96.09 95.86 94.67 96.33 94.62 95.62 96.51 95.92 95.44

Tavg (s) 51.35 63.32 69.94 86.37 110.6 118.8 137.1 134.9 170.8 172.9 214.6

QNNSI6_5 Ntr 396.5 397.8 397.7 395.5 395.7 398.0 397.4 397.4 398.0 398.0 398.0

Rtr (%) 99.13 99.45 99.43 98.88 98.93 99.50 99.35 99.35 99.50 99.50 99.50

Nte 163.4 164.0 162.4 162.8 164.4 162.0 164.9 163.9 163.4 163.8 162.4

Rte (%) 96.69 97.04 96.09 96.33 97.28 95.86 97.57 96.98 96.69 96.92 96.09

Tavg (s) 49.18 67.04 68.45 92.39 94.67 115.0 147.0 146.2 161.7 154.5 209.9

QNNSI10_3 Ntr 373.5 395.5 366.7 382.0 393.2 392.2 356.8 387.6 392.8 393.6 392.6

Rtr (%) 93.38 98.88 91.68 95.50 98.30 98.05 89.20 96.90 98.20 98.40 98.15

Nte 156.5 160.2 146.2 153.7 156.8 155.5 148.1 159.2 159.8 161.2 159.3

Rte (%) 92.60 94.79 86.51 90.95 92.78 92.01 87.63 94.20 94.56 95.38 94.26

Tavg (s) 42.44 59.02 62.93 83.88 82.65 104.3 110.5 134.6 136.1 166.8 196.0

QNNSI15_2 Ntr 278.8 247.4 348.6 276.5 360.9 368.1 360.2 356.6 341.8 393.9 375.5

Rtr (%) 69.70 61.85 87.15 69.13 90.23 92.03 90.05 89.15 85.45 98.48 93.88

Nte 126.0 121.0 147.6 111.3 151.6 158.5 156.4 153.7 150.0 162.9 162.3

Rte (%) 74.56 71.59 87.34 65.86 89.70 93.79 92.54 90.95 88.76 96.39 96.04

Tavg (s) 42.22 44.65 60.23 62.27 86.29 104.6 104.5 138.9 134.9 151.3 148.5

QNNSI30_1 Ntr 229.3 203.9 226.4 222.9 209.1 209.0 231.6 216.0 214.5 235.4 200.7

Rtr (%) 57.33 50.98 56.60 55.73 52.28 52.25 57.90 54.00 53.63 58.85 50.18

Nte 105.9 90.10 104.9 84.10 93.10 88.10 100.0 84.00 100.0 98.10 84.20

Rte (%) 62.66 53.31 62.07 49.76 55.09 52.13 59.17 49.70 59.17 58.05 49.82

Tavg (s) 42.39 45.21 63.31 63.61 86.65 86.29 115.4 112.6 140.9 150.4 176.5

ANN30 Ntr 364.6 274.1 342.0 347.4 324.8 336.6 347.4 365.9 359.2 376.4 359.2

Rtr (%) 91.15 68.53 85.50 86.85 81.20 84.15 86.85 91.48 89.80 94.10 89.80

Nte 153.7 105.7 142.9 151.6 139.7 133.7 151.9 147.8 145.6 149.1 145.8

Rte (%) 90.95 62.54 84.56 89.70 82.66 79.11 89.88 87.46 86.15 88.22 86.27

Tavg (s) 50.52 53.80 71.63 72.42 97.72 98.18 125.4 127.7 145.9 136.1 154.6
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in classical computer, the quantum parallelism has not been
explored. However, the efficient computational ability of
QNNSI is bound to stand out in future quantum com-
puter.

6 Conclusions

This paper proposes a quantum-inspired neural network
model with sequence input based on the principle of quan-
tum computing. The architecture of the proposed model
includes three layers, where the hidden layer consists of
quantum neurons and the output layer consists of classi-
cal neurons. An obvious difference from classical ANN
is that each dimension of a single input sample consists
of a discrete sequence rather that a single value. The ac-
tivation function of hidden layer is redesigned according
to the principle of quantum computing. The Levenberg–
Marquardt algorithm is employed for learning. With the ap-
plication of the information processing mechanism of quan-
tum controlled-rotation gates, the proposed model can effec-
tively obtain the sample characteristics by way of breadth
and depth. The experimental results reveal that a greater
difference between input nodes and sequence length leads
to a lower performance of the proposed model than that
of the classical ANN, on the contrary, it obviously en-
hances the approximation and generalization ability of the
proposed model when input nodes are closer to the se-
quence length. The following issues to the proposed model,
such as continuity, computational complexity, and improve-
ment of the learning algorithm, are subject of further re-
search.
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Appendix: The gradient calculation in
Levenberg–Marquardt algorithm

According to the gradient descent algorithm in Ref. [22], the
gradient of the rotation angles of the quantum rotation gates
in hidden layer and the connection weights in output layer

can be calculated as follows
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Based on the above Eq. (45), we obtain
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where j = 1,2, . . . , p, k = 1,2, . . . ,m, r = 1,2, . . . , q ,
l = 1,2, . . . ,L.

The gradient of the connection weights in the outer layer
can be calculated as follows
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