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For the past 20 years the US military services have suffered under the limitations of stove-piped 
computer software applications that function as discrete entities within a fragmented data-
processing environment. Lack of interoperability has been identified by numerous think tanks, 
advisory boards, and studies, as the primary information systems problem (e.g., Army Science 
Board 2000, Air Force SAB 2000 Command and Control Study, and NSB Network-Centric 
Naval Forces 2000). Yet, despite this level of attention, all attempts to achieve interoperability 
within the current data-centric information systems environment have proven to be expensive, 
unreliable, and generally unsuccessful. 

The Apparently Elusive Goal of ”Interoperability‘ 
The expectations of true interoperability are threefold. First, interoperable applications should be 
able to integrate related functional sequences in a seamless and user transparent manner. 
Second, this level of integration assumes the sharing of information from one application to 
another, so that the results of the functional sequence are automatically available and similarly 
interpreted by the other application. And third, any of the applications should be able to enter or 
exit the integrated interoperable environment without jeopardizing the continued operation of the 
other applications. These conditions simply cannot be achieved by computer software that 
processes numbers and meaningless text with predetermined algorithmic solutions through hard-
coded dumb data links. 

Past approaches to interoperability have basically fallen into three categories. Attempts to create 
common architectures have largely failed because this approach essentially requires existing 
systems to be re-implemented in the common (i.e., new) architecture. Attempts to create bridges 
between applications within a confederation of linked systems have been faced with three major 
obstacles. First, the large number of bridges required (i.e., the square of the number of 
applications). Second, the fragility associated with hard-coded inter-system data linkages. Third, 
the cost of maintaining such linkages in a continuously evolving information systems 
environment. The third category of approaches has focused on achieving interoperability at the 
interface boundary. For anything other than limited presentation and visualization capabilities, 
this approach cannot accommodate dynamic data flows, let alone constant changes at the more 
useful information level. 

These obstacles to interoperability and integration are largely overcome in an information-centric 
software systems environment by embedding in the software some understanding of the 
information being processed. How is this possible? Surely computers cannot be expected to 
understand anything. Aren't they just dumb electronic machines that simply execute programmed 
instructions without any regard to what either the instructions, or the information to which the 
instructions apply, mean? The answer is no, it is all a matter of representation (i.e., how the 
information is structured in the computer). 
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The Notion of ‘Information-Centric’ 
The term information-centric refers to the representation of information in the computer, not to 
the way it is actually stored in a digital machine. This distinction between representation and 
storage is important, and relevant far beyond the realm of computers. When we write a note 
with a pencil on a sheet of paper, the content (i.e., meaning) of the note is unrelated to the 
storage device. A sheet of paper is designed to be a very efficient storage medium that can be 
easily stacked in sets of hundreds, filed in folders, bound into volumes, folded, and so on. 
However, all of this is unrelated to the content of the written note on the paper. This content 
represents the meaning of the sheet of paper. It constitutes the purpose of the paper and governs 
what we do with the sheet of paper (i.e., its use). In other words, the nature and efficiency of the 
storage medium is more often than not unrelated to the content or representation that is stored in 
the medium. 

In the same sense, the way in which we store bits (i.e., 0s and 1s) in a digital computer is 
unrelated to the meaning of what we have stored. When computers first became available they 
were exploited for their fast, repetitive computational capabilities and their enormous storage 
capacity. Application software development progressed rapidly in a data-centric environment. 
Content was stored as data that were fed into algorithms to produce solutions to predefined 
problems in a static problem solving context. It is surprising that such a simplistic and 
artificially contrived problem solving environment was found to be acceptable for several 
decades of intensive computer technology development. 

When we established the Collaborative Agent Design Research Center at Cal Poly in 1986, we 
had a vision. We envisioned that users should be able to sit down at a computer terminal and 
solve problems collaboratively with the computer. The computer should be able to continuously 
assist and advise the user during the decision-making process. Moreover, we postulated that one 
should be able to develop software modules that could spontaneously react in near real-time to 
changing events in the problem situation, analyze the impact of the events, propose alternative 
courses of action, and evaluate the merits of such proposals. What we soon discovered, as we 
naively set out to develop an intelligent decision-support system, is that we could not make much 
headway with data in a dynamically changing problem environment. 

Initially focusing on engineering design, we had no difficulties at all developing a software 
module that could calculate the daylight available inside a room, as long as we specified to the 
computer the precise location and dimensions of the window, the geometry of the room, and 
made some assumptions about external conditions. However, it did not seem possible for the 
computer to determine on its own that there was a need for a window and where that window 
might be best located. The ability of the computer to make these determinations was paramount 
to us. We wanted the computer to be a useful assistant that we could collaborate with as we 
explored alternative design solutions. In short, we wanted the computer to function intelligently 
in a dynamic environment, continuously looking for opportunities to assist, suggest, evaluate, 
and, in particular, alert us whenever we pursued solution alternatives that were essentially not 
practical or even feasible. 

We soon realized that to function in this role our software modules had to be able to reason. 
However, to be able to reason the computer needs to have something akin to understanding of 
the context within which it is supposed to reason. The human cognitive system builds context 
from knowledge and experience using information (i.e., data with attributes and relationships) as 
its basic building block. Interestingly enough the storage medium of the information, knowledge 
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and context held by the human brain is billions of neurons and trillions of connections (i.e., 
synapses) among these neurons that are as unrelated to each other as a pencilled note and the 
sheet of paper on which it is stored. 

What gives meaning to the written note is its representation within the framework of a language 
(e.g., English) that can be understood by the reader. Similarly, in a computer we can establish 
the notion of meaning if the stored data are represented in an ontological framework of objects, 
their characteristics, and their interrelationships. How these objects, characteristics and 
relationships are actually stored at the lowest level of bits (i.e., 0s and 1s) in the computer is 
immaterial to the ability of the computer to undertake reasoning tasks. The conversion of these 
bits into data and the transformation of data into information, knowledge and context takes place 
at higher levels, and is ultimately made possible by the skillful construction of a network of 
richly described objects and their relationships that represent those physical and conceptual 
aspects of the real world that the computer is required to reason about. 

This is what is meant by an information-centric computer-based decision-support environment. 
One can further argue that to refer to the ability of computers to understand and reason about 
information is no more or less of a trick of our imagination than to refer to the ability of human 
beings to understand and reason about information. In other words, the countless minuscule 
charges that are stored in the neurons of the human nervous system are no closer to the 
representation of information than the bits (i.e., 0s and 1s) that are stored in a digital computer. 
However, whereas the human cognitive system automatically converts this collection of charges 
into information and knowledge, in the computer we have to construct the framework and 
mechanism for this conversion Such a framework of objects, attributes and relationships 
provides a system of integrated software applications with a common language that allows 
software modules (now popularly referred to as agents) to reason about events, monitor changes 
in the problem situation, and collaborate with each other as they actively assist the user(s) during 
the decision-making process. One can say that this ontological framework is a virtual 
representation of the real world problem domain, and that the agents are dynamic tools capable 
of pursuing objectives, extracting and applying knowledge, communicating, and collaboratively 
assisting the user(s) in the solution of current and future real world problems. 

Definitions: Data, Information, and Knowledge 
It is often lamented that we human beings are suffering from an information overload. This is a 
myth, as shown in Fig.1 there is no information overload. Instead we are suffering from a data 
overload. The confusion between data and information is not readily apparent and requires 
further explanation. Unorganized data are voluminous but of very little value. Over the past 15 
years, industry and commerce have made significant efforts to rearrange this unorganized data 
into purposeful data, utilizing various kinds of database management systems. However, even in 
this organized form, we are still dealing with data and not information. 

Data are defined as numbers and words without relationships. In reference to Fig.2, the words 
—town“, —dog“, —Tuesday“, —rain“, —inches“, and —min“, have little if any meaning without 
relationships. However, linked together in the sentence: "On Tuesday, 8 inches of rain fell in 10 
min."; they become information. If we then add the context of a particular geographical region, 
pertinent historical climatic records, and some specific hydrological information relating to soil 
conditions and behavior, we could perhaps infer that: "Rainfall of such magnitude is likely to 
cause flooding and landslides." This becomes knowledge. 
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 Fig.3: Unassisted problem solving Fig.4: Limited data-processing assistance 

Context is normally associated solely with human cognitive capabilities. Prior to the advent of 
computers, it was entirely up to the human agent to convert data into information and to infer 
knowledge through the addition of context. However, the human cognitive system performs this 
function subconsciously (i.e., automatically); therefore, prior to the advent of computers, the 
difference between data and information was an academic question that had little practical 
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significance in the real world of day-to-day activities. As shown in Fig.3, the intersection of the 
data, human agent and context realms provides a segment of immediately relevant knowledge. 

The Data-Centric Evolution of Computer Software 
When computers entered on the scene, they were first used exclusively for processing data. In 
fact, even in the 1980s computer centers were commonly referred to as data-processing centers. 
It can be seen in Fig.4 that the context realm remained outside the computer realm. Therefore, 
the availability of computers did not change the need for the human agent to interpret data into 
information and infer knowledge through the application of context. The relegation of 
computers to data-processing tasks is the underlying reason why even today, as we enter the 21st 
Century, computers are still utilized in only a very limited decision-support role. As shown in 
Fig.5, in this limited computer-assistance environment human decision makers typically 
collaborate with each other utilizing all available communication modes (e.g., telephone, FAX, 
e-mail, letters, face-to-face meetings). Virtually every human agent utilizes a personal computer 
to assist in various computational tasks. While these computers have some data sharing 
capabilities in a networked environment, they cannot directly collaborate with each other to 
assist the human decision makers in the performance of decision-making tasks. Each computer 
is typically limited to providing relatively low-level data-processing assistance to its owner. The 
interpretation of data, the inferencing of knowledge, and the collaborative teamwork that is 
required in complex decision-making situations remains the exclusive province of the human 
agents. In other words, without access to information and at least some limited context, the 
computer cannot participate in a distributed collaborative problem-solving arena. 
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 Fig.5: Limited computer assistance Fig.6: Evolution of business intelligence (A) 

In this regard, it is of interest to briefly trace the historical influence of evolving computer 
capabilities on business processes and organizational structures. When the computer first 
became more widely available as an affordable computational device in the late 1960s, it was 
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applied immediately to specialized numerical calculation tasks such as interest rate tables and 
depreciation tables (Fig.6). During the early 1970s, these computational tasks broadened to 
encompass bookkeeping, record storage, and report generation. Tedious business management 
functions were taken over by computer-based accounting and payroll applications. By the late 
1970s, the focus turned to improving productivity using the computer as an improved automation 
tool to increase and monitor operational efficiency. 

In the early 1980s (Fig.7), the business world had gained sufficient confidence in the reliability, 
persistence, and continued development of computer technology to consider computers to be a 
permanent and powerful data-processing tool. Accordingly, businesses were willing to 
reorganize their work flow as a consequence of the functional integration of the computer. More 
comprehensive office management applications led to the restructuring of the work flow. 

By the late 1980s, this had led to a wholesale re-engineering of the organizational structure of 
many businesses with the objective of simplifying, streamlining, and downsizing. It became 
clear that many functional positions and some entire departments could be eliminated and 
replaced by integrated office automation systems. During the early 1990s, the problems 
associated with massive unorganized data storage became apparent, and with the availability of 
much improved database management systems, data were organized into mostly relational 
databases. This marked the beginning of ordered-data archiving and held out the promise of 
access to any past or current data and reporting capabilities in whatever form management 
desired. 
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 Fig.7: Evolution of business intelligence (B) Fig.8: Evolution of business intelligence (C) 

However, by the mid 1990s (Fig.8), the quickening pace of business in the light of greater 
competition increased the need for a higher level of data analysis, faster response, and more 
accurate pattern detection capabilities. During this period, the concepts of data-warehouses, 
data-marts, and On-Line Analytical Processing (OLAP) tools were conceived and rapidly 
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implemented (Humphries et al. 1999). Since then, the term ‘business intelligence’ has been 
freely used to describe a need for the continuous monitoring of business trends, market share, 
and customer preferences. 

In the late 1990s, the survival pressure on business increased with the need for real-time 
responsiveness in an Internet-based global e-commerce environment. By the end of the 20th 
Century, business began to seriously suffer from the limitations of a data-processing 
environment. The e-commerce environment presented attractive opportunities for collecting 
customer profiles for the implementation of on-line marketing strategies with enormous revenue 
potential. However, the expectations for automatically extracting useful information from low-
level data could not be satisfied by the methods available. These methods ranged from relatively 
simple keyword and thematic indexing procedures to more complex language-processing tools 
utilizing statistical and heuristic approaches (Denis 2000, Verity 1997). 

The major obstacle confronted by all of these information-extraction approaches is the 
unavailability of adequate context (Pedersen and Bruce 1998). As shown previously in Fig.4, a 
computer-based data-processing environment does not allow for the representation of context. 
Therefore, in such an environment, it is left largely to the human user to interpret the data 
elements that are processed by the computer. 

Methods for representing information and knowledge in a computer have been a subject of 
research for the past 40 years, particularly in the field of ‘artificial intelligence’ (Ginsberg 1993). 
However, these studies were mostly focussed on narrow application domains and did not 
generate wide-spread interest even in computer science circles. For example even today, at the 
beginning of the 21st Century, it is difficult to find an undergraduate computer science degree 
program in the US that offers a core curriculum class dealing predominantly with the 
representation of information in a computer. 

The Representation of ‘Context’ in a Computer 
Conceptually, to represent information in a computer, it is necessary to move the context circle 
in Fig.4 upward into the realm of the computer (Fig.9). This allows data to enter the computer in 
a contextual framework, as information. The intersection of the data, context, and human agent 
circles provide areas in which information and knowledge are held in the computer. The 
prevailing approach for the practical implementation of the conceptual diagram shown in Fig.9 is 
briefly outlined below. As discussed earlier (Fig.2), the principal elements of information are 
data and relationships. We know how data can be represented in the computer but how can the 
relationships be represented? The most useful approach available today is to define an ontology 
of the particular application domain in the form of an object model. This requires the 
identification of the objects (i.e., elements) that play a role in the domain and the relationships 
among these objects (Fig.10). Each object, whether physical (e.g., car, person, building, etc.) or 
conceptual (e.g., event, privacy, security, etc.) is first described in terms of its behavioral 
characteristics. For example, a car is a kind of land conveyance. As a child object of the land 
conveyance object, it automatically inherits all of the characteristics of the former and adds some 
more specialized characteristics of its own (Fig.11). Similarly, a land conveyance is a kind of 
conveyance and therefore inherits all of the characteristics of the latter. This powerful notion of 
inheritance is well supported by object-oriented computer languages such as C++ (Stroustrup 
1987) and Java (Horstmann and Cornell 1999) that support the mainstream of applications 
software development today. 

41 



           

ANCE

d
Sedan

Aircraft

Rocket

Computer: Some information representation. 

UNUSED ADDITIONAL RELEVANT
 
COMPUTER HELD IMMEDIATE
 

INFORMATION KNOWLEDGE
 

HUMAN/COMPUTER SHARED
CURRENTLY UNUSED ADDITIONAL KNOWLEDGE 

COMPUTER HELD
 
DATA CURRENTLY UNUSED
 

HUMAN/COMPUTER 

CAPABILITIES
 

CONTEXT 
"It often rains in the early 

evenings on tropical islands" 

UNUSED ADDITIONAL 
HUMAN HELD 
KNOWLEDGE 

RELEVANT
 
ADDITIONAL
 

HUMAN HELD
 
KNOWLEDGE
 

COMPUTER 
AGENTS 
(TOOLS) 

HUMAN 
AGENT 

INFORMATION 

DATA 
90% island 
Tuesday 

18:00 
tropical 

101110 

001001101 

3 

CONVEYANCE 

Land Conveyance Water Conveyance Air Conveyance 

Amphibious 

Hover Craft 

Tracked 
Vehicle 

Truck 

Car 

Motorcycle 

Bicycle 

Skateboard 

Roller Skates 

Ship 

Submarine 

Boat 

Raft 

Sports Car Off-Road 
Vehicle 

Sedan Recreational 
Vehicle 

Balloon 

Aircraft 

Rocket 

Space Craft

 Fig.9: Early human-computer partnership Fig.10: Branch of a typical object model 

However, even more important than the characteristics of objects and the notion of inheritance 
are the relationships that exist between objects. As shown in Fig.12, a car incorporates many 
components that are in themselves objects. For example, cars typically have engines, steering 
systems, electric power units, and brake systems. They utilize fuel and often have an air-
conditioning system. 
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For several reasons, it is advantageous to treat these components as objects in their own right 
rather than as attributes of the car object. First, they may warrant further subdivision into parent 
and child objects. For example, there are several kinds of air-conditioning systems, just as there 
are several kinds of cars. Second, an air-conditioning system may have associations of its own to 
other component systems such as a temperature control unit, a refrigeration unit, an air 
distribution system, and so on. Third, by treating these components as separate objects we are 
able to describe them in much greater detail than if they were simply attributes of another object. 
Finally, any changes in these objects are automatically reflected in any other objects that are 
associated with them. For example, during its lifetime, a car may have its air-conditioning 
system replaced with another kind of air handling unit. Instead of having to change the attributes 
of the car, we simply delete the association to the old unit and add an association to the new unit. 
This procedure is particularly convenient when we are dealing with the association of one object 
to many objects, such as the wholesale replacement of a cassette tape player with a new compact 
disk player model in many cars, and so on. 

The way in which the construction of such an ontology leads to the representation of information 
(rather than data) in a digital computer is described in Fig.13, as follows. By international 
agreement, the American Standard Code for Information Interchange (ASCII) provides a simple 
binary (i.e., digital) code for representing numbers, alphabetic characters, and many other 
symbols (e.g., +, -, =, ( ), etc.) as a set of 0 and 1 digits. This allows us to represent sets of 
characters such as the sentence "Police car crossing bridge at Grand Junction." in the 
computer. However, in the absence of an ontology, the computer stores this set of characters as a 
meaningless text string (i.e., data). In other words, in the data-centric realm the computer has no 
understanding at all of the meaning of this sentence. As discussed previously, this is 
unfortunately the state of e-mail today. While e-mail has become a very convenient, 
inexpensive, and valuable form of global communication, it depends entirely on the human 
interpretation of each e-mail message by both the sender and the receiver. 
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Now, if the "Police car crossing bridge at Grand Junction." message had been sent to us as a 
set of related objects, as shown at the bottom of Fig.13, then it should be a relatively simple 
matter to program computer-based agents to reason about the content of this message and 
perform actions on the basis of even this limited level of understanding. How was this 
understanding achieved? In reference to Fig.13, the police car is interpreted by the computer as 
an instance of a car object which is associated with a civilian organization object of kind police. 
The car object automatically inherits all of the attributes of its parent object, land conveyance, 
which in turn inherits all of the attributes of its own parent object, conveyance. The car object is 
also associated with an instance of the infrastructure object, bridge, which in turn is associated 
with a place object, Grand Junction, giving it a geographical location. Even though this 
interpretational structure may appear primitive to us human beings, it is adequate to serve as the 
basis of useful reasoning and task performance by computer-based agents. 

The Popular Notion of ”Intelligent Agents‘ 
Agents that are capable of reasoning about events, in the kind of ontological framework of 
information described above, are little more than software modules that can process objects, 
recognize their behavioral characteristics (i.e., attributes of the type shown for the objects in 
Fig.11), and trace their relationships to other objects. It follows, that perhaps the most elementary 
definition of agents is simply: —Software code that is capable of communicating with other 
entities to facilitate some action“. Of course this communication and action capability alone does 
not warrant the label of intelligent. 

The use of the word intelligent is more confusing than useful. As human beings we tend to judge 
most everything in the world around us in our image. And, in particular, we are rather sensitive 
about the prospect of ascribing intelligence to anything that is not related to the human species, 
let alone an electronic machine. Looking beyond this rather emotional viewpoint, one could 
argue that there are levels of intelligence. At the most elementary level, intelligence is the ability 
to remember. A much higher level of intelligence is creativity (i.e., the ability to create new 
knowledge). In between these two extremes are multiple levels of increasingly intelligent 
capabilities. Certainly computers can remember, because they can store an almost unlimited 
volume of data and can be programmed to retrieve any part of that data. Whether, computers can 
interpret what they remember depends on how the data are represented (i.e., structured) in the 
software. 

In this regard, the notion of intelligent agents refers to the existence of a common language (i.e., 
the ontological framework of information described earlier) and the ability to reason about the 
object characteristics and relationships embodied in the informational structure. Increasing levels 
of intelligent behavior can be achieved by software agents if they have access to existing 
knowledge, are able to act on their own initiative, collaborate with other agents to accomplish 
goals, and use local information to manage local resources. 

Such agents may be programmed in many ways to serve different purposes (Fig.14). Mentor 
agents may be designed to serve as guardian angels to look after the welfare and represent the 
interests of particular objects in the underlying ontology. For example, a mentor agent may 
simply monitor the fuel consumption of a car or perform more complex tasks such as helping a 
tourist driver to find a particular hotel in an unfamiliar city, or alert a platoon of soldiers to a 
hostile intrusion within a specified radius of their current position in the battlefield (Pohl et al. 
1999). Service agents may perform expert advisory tasks on the request of human users or other 
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agents. For example, a computer-based daylighting consultant can assist an architect during the 
design of a building (Pohl et al. 1989) or a Trim and Stability agent may continuously monitor 
the trim of a cargo ship while the human cargo specialist develops the load plan of the ship (Pohl 
et al. 1997). At the same time, Planning agents can utilize the results of tasks performed by 
Service and Mentor agents to devise alternative courses of action or project the likely outcome of 
particular strategies. Facilitator agents can monitor the information exchanged among agents 
and detect apparent conflicts (Pohl 1996). Once such a Facilitator agent has detected a potential 
non-convergence condition involving two or more agents, it can apply one of several relatively 
straightforward procedures for promoting consensus, or it may simply notify the user of the 
conflict situation and explain the nature of the disagreement. 

An Information-Centric Transition Architecture 
An information-centric decision-support system typically consists of components (or modules) 
that exist as clients to an integrated collection of services. Incorporating such services, the 
information-serving collaboration facility (Fig.15) communicates to its clients in terms of the 
real world objects and relationships that are represented in the information structure (i.e., the 
underlying ontology). The software code of each client includes a version of the ontology, 
serving as the common language that allows clients to communicate information rather than 
data.

 Fig.15: Information-centric interoperability. Fig.16: Transitioning to an information-centric
 architecture. 

To reduce the amount of work (i.e., computation) that the computer has to accomplish and to 
minimize the volume of information that has to be transmitted within the system, two strategies 
can be readily implemented. First, each client can register a standing request with the 
collaboration facility for the kind of information that it would like to receive. This is referred to 
as a subscription profile, and the client has the ability to change this profile dynamically during 
execution if it sees cause to ask for additional or different information. For example, after 
receiving certain information through its existing subscription profile, a Mentor agent 
representing a squad of Marines may decide to request information relating to engagement 
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events in a different sector of the battlefield, henceforth. By allowing information to be 
automatically pushed to clients, the subscription service obviates the need for database queries 
and thereby greatly reduces the amount of work the computer has to perform. Of course, a 
separate query service is also usually provided so that a client can make one-time requests for 
information that is not required on a continuous basis. 

The second strategy relates directly to the volume of information that is required to be 
transmitted within the system. Since the software code of each client includes a version of the 
ontology (i.e., common language) only the changes in information need to be communicated. For 
example, a Mentor agent that is watching over a squad of Marines may have more than 100 
objects included in its subscription profile. One set of these objects represents an enemy unit and 
its warfighting capabilities. If this unit changes its position then in reality only one attribute (i.e., 
the location attribute) of one object may have changed. Only the changed value of this single 
object needs to be transmitted to the Mentor agent, since as a client to the collaboration facility it 
already has all of the information that has not changed. 

How does this interoperability between the collaboration facility and its clients translate into a 
similar interoperability among multiple software applications (i.e., separate programs dealing 
with functional sequences in related domains)? For example, more specifically, how can we 
achieve interoperability between a tactical command and control system such as IMMACCS 
(Pohl et al. 1999) and a logistical command and control system such as SEAWAY (Wood et al. 
2000)? 

Since both of these software systems are implemented in an information-centric architecture, the 
underlying information representation can be structured in levels (Fig.16). At the highest level 
we define notions, concepts and object types in general terms. This overarching common core 
ontology sits on top of any number of lower level application specific ontologies that address the 
specific bias and level of granularity of the particular application domain. For example, in the 
core ontology an ‘aircraft’ may be defined in terms of its physical nature and those capabilities 
that are essentially independent of its role in a particular application domain. In the tactical 
domain this general description (i.e., representation) of an ‘aircraft’ is further refined and biased 
toward a warfighting role. In other words, the IMMACCS application sees an aircraft as an 
airborne weapon with certain strike capabilities. SEAWAY, on the other hand, sees an aircraft as 
an airborne mobile warehouse capable of transporting supplies from one point to another. 

The interoperability capabilities of an information-centric software environment will also allow 
agents in one application to notify agents in other applications of events occurring in multiple 
domains. For example, the Engagement Agent in the tactical IMMACCS application is able to 
advise appropriate agents in the logistical SEAWAY application whenever a Supply Point ashore 
is threatened by enemy activity. This may result in the timely rescheduling or redirection of a 
planned re-supply mission. The agents are able to communicate across multiple applications at 
the information level through the common language of the ontological framework. Similarly, the 
SEAWAY application is able to rely on the ICODES (Pohl et al. 1997) ship load planning 
application to maintain in-transit cargo visibility, down to the location of a specific supply item 
in a particular container on-board a ship en-route to the sea base. 

One might argue that this is all very well for newly developed applications that are by design 
implemented in an information-centric architecture, but what about the many existing data-
centric applications that all perform strategic and indispensable functions? These existing legacy 
applications constitute an enormous investment that cannot be discarded overnight, for several 
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reasons. First, they perform critical functions. Second, it will take time to cater for these 
functions in the new decision-support environment. Third, at least some of these functions will 
be substantially modified or eliminated as the information-centric environment evolves. 

As shown in Fig.16, data-centric applications can communicate with information-centric systems 
through translators. The function of these translators is to map those portions of the low level 
data representation of the external application that are important to the decision-making context, 
to the ontology of the information-centric system. Conversely, the same translator must be 
capable of extracting necessary data items from the information context and feed these back to 
the data-centric application. Typically, as in the case of IMMACCS (Pohl et al. 1999), this 
translation capability is implemented as a universal translator that can be customized to a 
particular external application. The translator itself, exists as a client to the information-serving 
collaboration facility (Fig.15) of the information-centric system and therefore includes in its 
software code a version of the ontology that describes the common language of that system. 

Conclusion 
While the capabilities of present day computer-based agent systems are certainly a major 
advancement over data-processing systems, we are only at the threshold of a paradigm shift of 
major proportions. Over the next several decades, the context circle shown in Fig.17 will 
progressively move upward into the computer domain, increasing the sector of "relevant 
immediate knowledge" shared at the intersection of the human, computer, data, and context 
domains. Returning to the historical evolution of business intelligence described previously in 
reference to Figs. 6, 7 and 8, the focus in the early 2000s will be on information management as 
opposed to data-processing (Fig.18). Increasingly, businesses will insist on capturing data as 
information through the development of business enterprise ontologies and leverage scarce 
human resources with multi-agent software capable of performing useful analysis and pattern-
detection tasks. 

An increasing number of commercial companies are starting to take advantage of the higher level 
collaborative assistance capabilities of computers to improve their competitive edge and 
overcome potential customer service difficulties. A good example is the timely detection of the 
fraudulent use of telephone credit card numbers. Telephone companies deal with several million 
calls each day, far too many for monitoring by human detectives. Instead, they have 
implemented intelligent computer software modules that monitor certain information relating to 
telephone calls and relate that information to the historical records of individual telephone users. 
The key to this capability is that telephone call data such as time-of-day, length of call, origin of 
call, and destination are stored in the computer as an information structure containing data 
objects, relationships, and some attributes for each data object. For example, the data 
”Columbia‘ may have the attributes international, South America, uncommon telephone call 
destination, attached to it. In addition, relationships are established dynamically between 
”Columbia‘ the telephone number of the caller, the telephone number being called, the time-of-
day of the call, and so on. The result is a network of objects with attributes and relationships that 
is very different from the data stored in a typical commercial data-mart. This network constitutes 
information (rather than data) and allows hundreds of software agents to monitor telephone 
connections and detect apparent anomalies. What is particularly attractive about this fairly 
straightforward application of information-centric technology, is that the software agents do not 
have to listen in on the actual telephone conversations to detect possibly fraudulent activities. 
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However, from the telephone company‘s point of view this use of expert agents saves millions of 
dollars each year in lost revenues. 

COMPUTER 
AGENTS 
(TOOLS) 

Computer: Better information representation. 

RELEVANT 
IMMEDIATE 

KNOWLEDGE 

UNUSED ADDITIONAL 
COMPUTER HELD 

DATA 

UNUSED ADDITIONAL 
HUMAN HELD 
KNOWLEDGE 

RELEVANT 
ADDITIONAL 

HUMAN HELD 
KNOWLEDGE 

HUMAN 
AGENT 

CONTEXT 
"It often rains in the early 

evenings on tropical islands" 

INFORMATION 

HUMAN/COMPUTER SHARED 
ADDITIONAL KNOWLEDGE 

CURRENTLY UNUSED 
HUMAN/COMPUTER 

CAPABILITIES 

CURRENTLY UNUSED 
COMPUTER HELD 

INFORMATION 

DATA 
90% island 
Tuesday 

18:00 
tropical 

101110 

00100110 

EARLY 2000s 

MID 2000s 

CAPTURING 
AND STORING 
INFORMATION 

KNOWLEDGE 
HARVESTING 

INFORMATION MANAGEMENT 

KNOWLEDGE BUILDING 

FOCUS: Decision-Assistance,
 Domain Ontologies. 

APPLICATIONS: 
XML, Collaborative Computer-
Based Agent Systems. 

FOCUS: Automatic Inferencing,
 Linked Ontologies. 

APPLICATIONS: 
Mobile Agents, 
Adaptive Systems.

 Fig.17: Evolving human-computer partnership Fig.18: Evolution of business intelligence (D) 

Toward the mid 2000s, we can expect some success in the linking of such ontologies to provide a 
virtually boundless knowledge harvesting environment for mobile agents with many kinds of 
capabilities. Eventually, it may be possible to achieve virtual equality between the information 
representation capabilities of the computer and the human user. This virtual equality is likely to 
be achieved not by the emulation of human cognitive capabilities, but rather, through the skillful 
combination of the greatly inferior artificial cognitive capabilities of the computer with its vastly 
superior computational, pattern-matching and storage facilities. 
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