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ABSTRACT 

Bluefin tuna are endothermic and have higher temperatures, 
heart rates, and cardiac outputs than tropical tuna. We hy
pothesized that the increased cardiovascular capacity to deliver 
oxygen in bluefin may be associated with the evolution of higher 
metabolic rates. This study measured the oxygen consumption 
of juvenile Pacific bluefin Thunnus orientalis and yellowfin tuna 
Thunnus albacares swimming in a swim-tunnel respirometer at 

˙20�C. Oxygen consumption ( Mo2) of bluefin (7.1–9.4 kg) 

h�1ranged from 235 � 38 mg kg�1 at 0.85 body length (BL) 

s�1 to 498 � 55 mg kg�1 h�1 at 1.80 BL s�1. Minimal metabolic 

h�1rates of swimming bluefin were 222 � 24 mg O2 kg�1 at 

speeds of 0.75 to 1.0 BL s�1. Ṁo2 of  T. albacares (3.7–7.4 kg) 

h�1ranged from 164 � 18 mg kg�1 at 0.65 BL s�1 to 405 � 
105 mg kg�1 h�1 at 1.8 BL s�1. Bluefin tuna had higher metabolic 

rates than yellowfin tuna at all swimming speeds tested. At a 
given speed, bluefin had higher metabolic rates and swam with 
higher tailbeat frequencies and shorter stride lengths than yel

˙lowfin. The higher Mo2 recorded in Pacific bluefin tuna is 
consistent with the elevated cardiac performance and enhanced 
capacity for excitation-contraction coupling in cardiac myo
cytes of these fish. These physiological traits may underlie 
thermal-niche expansion of bluefin tuna relative to tropical 
tuna species. 
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Introduction 

Tunas have a remarkable suite of morphological and physio
logical traits that enhance performance, including thunniform 
swimming mechanics, high cardiac outputs, and high metabolic 
rates (Fierstine and Walters 1968; Carey and Lawson 1973; 
Korsmeyer and Dewar 2001). All tunas have countercurrent 
vascular heat exchangers (retia mirabilia) that conserve meta
bolic heat, allowing metabolically active tissues to be warmed 
above ambient water temperatures. Among tunas, the bluefin 
species (Thunnus thynnus, Thunnus orientalis, and Thunnus 
maccoyii) are distinct in important aspects of their physiology 
and ecology, including higher internal temperatures, enhanced 
cardiac performance, and extension of their habitat into sub
polar seas (Carey and Teal 1969; Blank et al. 2004; Block et al. 
2005). These traits suggest that bluefin tuna may have higher 
metabolic rates than tropical species; however, bluefin have only 
recently been available for laboratory-based physiological 
measurement. 

Measurements of both standard and active metabolic rates 
in yellowfin tuna, kawakawa, skipjack, and albacore have in
dicated that tuna metabolic rates are elevated relative to other 
teleosts (Korsmeyer and Dewar 2001). Such measurements are 
technically difficult and are complicated by the need for tunas 
to swim continuously in order to ventilate their gills and to 
maintain hydrodynamic equilibrium (Magnuson 1973). As a 
result, standard metabolic rates (SMRs) of scombrids have been 
estimated using a variety of techniques, including oxygen con
sumption of fish immobilized with spinal anesthesia (Brill 1979, 
1987), O2 consumption of fish swimming freely (Gooding et 
al. 1981; Boggs and Kitchell 1991; Freund 1999) or at controlled 
speeds in swim tunnels (Graham and Laurs 1982; Graham et 
al. 1989; Dewar and Graham 1994a; Sepulveda and Dickson 
2000; Dickson et al. 2002), and loss of body mass during star
vation (Boggs and Kitchell 1991). Collectively, these studies 
indicate that yellowfin tuna, skipjack, kawakawa, and albacore 
have high SMRs of 200 to 500 mg O2 kg�1 h�1 at 25�C. However, 
most of these studies have involved measurements within the 
first 12 h in the experimental apparatus, when the fish may 
have been recovering from handling stress, thus potentially el
evating measurements of metabolic rates. 

˙Measurements of maximal metabolic rate ( ) in tunas Mo2max 

are especially limited due to the difficulty of designing a flume 
that can accommodate the large body size and high swimming 
speeds of burst activity. Metabolic rates of 2,200 to 2,500 mg 

h�1O2 kg�1 have been recorded in 2-kg skipjack tuna shortly 
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after capture at sea or introduction to a swim tunnel (Gooding 
et al. 1981; Dewar and Graham 1994a), and metabolic rates 

h�1up to 1,290 mg kg�1 have been recorded in a single 2-kg 
yellowfin tuna exercising in a swim tunnel (Dewar and Graham 

˙1994a). It is unclear whether these values represent ofMo2max 

tuna or an intermediate elevation of metabolism during re
covery from exercise stress. 

Despite these difficulties, measurements to date indicate that 
juvenile yellowfin, skipjack, and albacore tunas have elevated 
routine and SMRs compared with other fish. The high meta
bolic rates of tunas are supported by a suite of morphological 
and physiological adaptations for oxygen uptake and transport, 
including large gill surface areas and thin gill epithelia (Muir 
and Hughes 1969; Hughes 1984); large hearts, high proportions 
of compact myocardium, and well-developed coronary circu
lations (Poupa et al. 1981; Farrell et al. 1992); and high heart 
rates, cardiac outputs, and ventricular pressures (Brill and 
Bushnell 2001; Blank et al. 2004). Oxygen uptake is enhanced 
by high levels of myoglobin in cardiac and skeletal muscle 
(Giovane et al. 1980; Poupa et al. 1981; Dickson 1996; Marcinek 
2000) and high levels of aerobic enzymes in muscle and other 
tissues (Modigh and Tota 1975; Guppy et al. 1979; Moyes et 
al. 1992; Dickson 1996; Freund 1999). 

To date, most measurements of metabolic rate in tunas have 
been conducted in tropical species, including yellowfin (Thun
nus albacares), skipjack (T. alalunga) and kawakawa (Euthynnus 
affinis). While the habitats of Pacific bluefin tuna and yellowfin 
tuna overlap for a portion of their range, all bluefin tunas 
extend their geographic niches into higher latitudes, cooler tem
perate and (in southern and Atlantic bluefin) subpolar waters. 
Atlantic bluefin experience sea-surface temperatures as low as 
2�C (Block et al. 2001; Kitagawa et al. 2002; Block et al. 2005), 
and small juvenile Pacific bluefin range into surface waters of 
11�C or less off northern California. Yellowfin tuna primarily 
inhabit waters of 17�C and above, although they encounter 
cooler waters for short durations during foraging dives (Block 
et al. 1997). 

The bluefin tuna lineages have more extensive lateral coun
tercurrent retia mirabilia than tropical tunas and retain heat in 
the viscera as well as the slow-twitch muscle, brain, and eyes 
(Kishinouye 1923; Linthicum and Carey 1972; Carey and Law
son 1973). Atlantic bluefin tuna of large body size (200–400 
kg) can maintain muscle and visceral temperatures up to 21�C 
above ambient water temperature for prolonged periods 
(months), increasing the rates of physiological processes such 
as muscle contraction and digestion (Carey and Teal 1969; Ste
vens and McLeese 1984; Block et al. 2001). Electronic tagging 
studies indicate that small Pacific bluefin (8–10 kg) similar in 
size to those in this study are capable of maintaining visceral 
temperatures up to 12�C above ambient water temperature 
(Kitagawa et al. 2006) following daily feeding events. Muscle 
temperatures 8�C above ambient have been recorded in 10–20

kg Pacific bluefin swimming in mixed layer waters of 17�–21�C 
(Marcinek et al. 2001). 

Laboratory measurements have shown that Pacific bluefin 
have higher heart rates and cardiac outputs than yellowfin tuna 
at temperatures of 2�–20�C and maintain cardiac performance 
at lower temperatures than yellowfin (Blank et al. 2002, 2004). 
These differences are correlated with higher levels of sarco
plasmic reticulum Ca2� ATPase (SERCA 2) in bluefin heart 
cells compared with those of yellowfin tuna (Landeira-
Fernandez et al. 2004). L-type Ca2� channel densities and Ca2� 

current kinetics are enhanced in bluefin tuna cardiac myocytes 
(Shiels et al. 2004) relative to ectothermic scombrids. Enhanced 
cardiac performance at the organ and cellular level in bluefin 
tuna combined with elevated tissue temperatures suggests the 
possibility of high rates of whole-animal oxygen consumption. 
To test the hypothesis that bluefin have higher metabolic rates 
than tropical yellowfin tuna, we measured the rate of oxygen 
consumption of Pacific bluefin and yellowfin tuna as the an
imals swam in a swim-tunnel respirometer. Oxygen consump

˙tion ( Mo2) was measured across a range of swimming speeds 
in order to determine the minimum metabolic rate during 
swimming for each species. 

Material and Methods 

Experimental Animals 

Pacific bluefin tuna (Thunnus orientalis, N p 6) and yellowfin 
tuna (Thunnus albacares, N p 5) were captured on barbless 
circle hooks off San Diego, California, at latitudes of 31�20� to 
31�30�N and longitudes of 117�24� to 117�30�W in waters of 
20� to 20.1�C sea-surface temperature. Following capture, the 
tuna were held on board the fishing vessel in wells filled with 
aerated seawater for 1 to 2 d and transported by truck to the 
Tuna Research and Conservation Center (TRCC) in Pacific 
Grove, California. At the TRCC, bluefin and yellowfin tunas 
were held together in 109-m3 circular tanks containing seawater 
at 20� � 1.0�C, a temperature that is conducive to maintaining 
both species in captivity. The tunas were fed a diet of squid, 
sardines, and enriched gelatin three times per week, as previ
ously described (Farwell 2001). Tunas were used for experi
ments between 13 and 176 d after capture. Mean body size of 
bluefin used in the swim tunnel was 74 � 3 cm (range 70–78 
cm) and 8.3 � 0.8 kg (range 7.1–9.4 kg). Mean body size of 
yellowfin was 67 � 7 cm (range 60–76 cm) and 5.4  � 1.6 kg 
(range 3.7–7.4 kg). All fish fed well in captivity before the 
experiments, but food was withheld from the entire tank for 
45 to 72 h before capture of a fish for introduction to the swim 
tunnel. All procedures were approved by the Stanford Univer
sity Animal Care and Use Committee (protocol 7297). 
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Swim-Tunnel Design 

The swim tunnel consisted of an 870-L acrylic respirometer 
chamber contained in a 1,500-L external tank for thermal in
sulation (Loligo Systems, Tjele, Denmark). The working section 
in which the fish was held measured 45 cm # 45 cm # 135 
cm and was square in cross section. The return loop was of 
equal cross section and separated horizontally from the working 
section. Flow was generated by a propeller driven by a 6-kW 
motor. Turbulence was minimized by the presence of radial 
vanes downstream of the propeller, vertical vanes in curved 
sections, and two honeycomb sections placed upstream of the 
working section. The sides of the working section were marked 
with vertical stripes of black tape at 10-cm intervals to assist 
the fish in maintaining position in the tank. 

Water velocities were calibrated by video analysis of dye in
jections and corrected for solid blocking effects for each fish 
according to Bell and Terhune (1970). Fish cross-sectional area 
ranged from 6% to 10% of working section area, and blocking 
correction ranged from 5% to 11% of uncorrected velocity. 
Seawater that was continuously filtered and aerated was sup
plied to the respirometer from a 20,000-L reservoir. The tem
perature of the swim tunnel was maintained at 20� � 0.1�C, 
matching the acclimation temperature, by the addition of warm 
or cold filtered seawater to the reservoir and use of a 6,800-W 
heat pump. The entire swim tunnel was enclosed by black 
plastic sheeting to minimize light fluctuations, and access to 
the building was limited while the experiment was in progress 
to minimize disturbance of the fish. A mirror was mounted at 
a 45� angle above the working section of the swim tunnel, and 
a video camera was inserted through the side of the enclosure 
to provide an overhead view of the swimming fish. 

Introduction of the Fish 

Tunas were captured by lowering the water level in the holding 
tank and gently guiding an individual fish into a water-filled 
nylon sling (Farwell 2001). The curved-fork length of the fish 
was measured, and the sling filled with the fish and seawater 
was carried to the swim tunnel and submerged in the working 
section, where the fish was released into the oncoming flow 
stream. One person remained with the fish and kept it from 
brushing the sides and back of the working section until the 
fish became accustomed to the swim tunnel and began swim
ming steadily. During this time, the swim tunnel was flushed 
continuously with seawater from the external reservoir. Initial 
speeds of 1.0 to 1.15 body lengths (BL) s�1 facilitated accli
mation of bluefin tuna to the swim tunnel, while yellowfin 
appeared to prefer lower speeds of 0.9 to 1.0 BL s�1. Once the 
fish was swimming steadily, approximately 30 to 45 min after 
introduction, the lid of the working section was secured, and 
oxygen consumption measurements were initiated. Fish that 
did not swim steadily were returned to the holding tank. 

Respirometry Procedures 

˙Oxygen consumption ( Mo2) was measured by intermittent res
pirometry as described by Steffensen (1989). The swim tunnel 
was closed for 10 min for measurements of oxygen consump
tion and then flushed with aerated seawater from the external 
tank for 10 min to restore dissolved oxygen levels. These steps 
were repeated throughout the experiment, including the accli
mation period and periods of elevated swimming speeds. 
Ṁo2 was calculated from the slope of the decline in dissolved 
oxygen (DO2) in the swim tunnel during each measurement 
period, omitting the first minute after closure of the valves. 
The closed period was extended to 15 to 20 min for the smaller 
yellowfin tuna. DO2 remained above 80% of air saturation levels 
throughout each experiment and was generally above 90% sat
uration except at high speeds. Temperature and oxygen content 
of the seawater in the swim tunnel were logged at 15-s intervals 
and 0.01 mg L�1 resolution by a Yellow Springs Instruments 
model 556 multiprobe. The O2 level within the swim tunnel 
dropped by 0.20 to 1.06 mg L�1 during each 10-min closed 
period, depending on the size and activity level of the fish. The 
O2 electrode was calibrated in air-saturated seawater before and 
after each experiment, and the calibration was found to change 
by !1% over the duration of the experiment. 

Once metabolic rate measurements were initiated, the fish 
was allowed to acclimate to the respirometer for an additional 
2–3 h while swimming at 1 BL s�1. The fish was then presented 
with a practice series of speed changes in which speed was 
increased in 0.15-BL s�1 increments during each flush period. 
This increment was reduced to 0.10 BL s�1 near the maximum 
speed of 1.8 BL s�1 (limited by the capacity of the swim tunnel 
motor). Following completion of this practice speed test, the 
speed was reduced to 1.0 BL s�1, and the fish was allowed to 
acclimate to the swim tunnel overnight for a minimum of 15 
h. On the following day, speed was elevated or lowered in 
increments of 0.10 or 0.15 BL s�1, and a series of at least five 

˙consecutive Mo2 measurements was completed at each speed 
setting. Speed remained constant for a minimum of 100 min 
throughout the measurement and flush periods. Fish were 
maintained in the swim tunnel for a total of 2 to 6 d. A 
12L : 12D cycle was maintained, matching the light cycle in the 
holding tanks. When all measurements were completed, the 
fish was removed from the swim tunnel in a water-filled sling, 
weighed on a scale with a damp cloth over its eyes, and returned 
to the holding tank. After each experiment, the swim tunnel 
was resealed and background respiration measured. In all cases, 
background respiration was negligible. 

Figure 1 outlines a typical experiment and illustrates the 
˙decline of Mo2 observed during the acclimation period. The 

Ṁo2 values recorded at 1.0 BL s�1 immediately following the 
15-h acclimation period were 12% lower (paired t-test, P ! 

0.05) than values recorded between 3 and 6 h postintroduction 
˙in the same fish. Control measurements of Mo2 at 1.0 BL s�1 
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Figure 1. Time course of respirometry in a Pacific bluefin tuna. Closed 
˙system Mo2 measurements (filled circles) were taken at 20-min intervals 

as the fish swam in an 870-L swim tunnel at 20�C at controlled speeds 
indicated in BLs s�1 (solid line). An overnight acclimation period pre

˙ceded tests of speed effects on Mo2. 

˙following the series of speed changes reproduced Mo2 values 
˙recorded just after the initial acclimation period. Initial Mo2 

on sealing the respirometer was often higher, reaching 531 mg 
kg�1 h�1 in one bluefin swimming at 1.11 BL s�1 (Fig. 1). Only 
data taken following the acclimation period were included in 
the subsequent analysis. 

Data Analysis 

While in the swim tunnel, the fish was monitored continuously 
via closed-circuit video, and any aberrant swimming behaviors 
or external disturbances resulting from noise, earthquakes, or 
building disturbances were noted. Individual measurements of 
Ṁo2 and other variables associated with disturbances were ex
cluded from further analysis. The first 30 min of data following 
any change of speed were also excluded, and the mean of the 
remaining measurements at a given speed was taken as the 
Ṁo2 for that speed (minimum of N p 3). Minimum swimming 
metabolic rates for each species were calculated from the mean 
˙ ˙Mo2 of each individual fish at the speed that minimized Mo2 

for that particular fish. 
Tailbeat frequency (TBF) was measured by an observer 

watching the live video display of the swimming fish. Sixty 
tailbeats were timed with a stopwatch three times, and the 
computed tailbeats per minute from the three counts were 
averaged. This process was repeated at least twice for each fish 
at each speed. Results of initial tailbeat counts were confirmed 
by analysis of slow-motion video. Stride length, or distance 
traveled per tailbeat, was calculated as speed divided by TBF. 

Except where otherwise indicated, comparisons between spe
cies were made on the basis of linear regressions relating log 
Ṁo2, TBF, or stride length to swim speed for each species. 

Significance was assessed at P ! 0.05. Data are presented as 
means � SD. 

Results 

The mean metabolic rate of bluefin tuna swimming at 1 BL 
�1 h�1s at 20�C was 239 � 22 mg kg�1 (N p 6; Fig. 2A; Table 

1). Measurements at swimming speeds of 0.75 to 1.8 BL s�1 

˙yielded a J-shaped curve for Mo2 as a function of swimming 
speed. The lowest metabolic rates of swimming bluefin were 

h�1222 � 24 mg kg�1 at speeds of 0.75 to 1.0 BL s�1, and the 
maximum metabolic rates recorded in this study were 498 � 
55 mg kg�1 h�1 at 1.80 BL s�1 (Fig. 2A). As speed was lowered 

˙from 1.0 BL s�1, Mo2 increased in some fish and decreased in 
others (Fig. 2A). At the lowest speeds, the fish occasionally 
swam from side to side within the working section, sometimes 
bumping into the front and side walls when speed was too low. 

˙Figure 2. Mo2-speed relationship in individual Pacific bluefin (A) and 
˙yellowfin tuna (B). Mo2 was measured as Pacific bluefin (A; mass p 

8.3 � 0.8 kg, N p 6) and yellowfin (B; mass p 5.4 � 1.6 kg, N p 5) 
swam in a swim-tunnel respirometer at speeds matched to the body 
length of each fish. Each point represents the mean � SD for at least 

˙four measurements of Mo2 of one fish at a given speed at 20.0�C. Each 
individual fish is represented by a different shade or symbol. 
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Table 1: Parameters of each least squares linear 
˙regression ( y p m # U � b), relating log Mo2, tailbeat 

frequency (TBF), or stride length (SL) to swimming 
speed in Pacific bluefin and yellowfin tuna at 20�C 

Type and x units n m b r2 

Bluefin: 
log Ṁo2 (mg kg�1 h�1): 

BL 52 .335 2.06 .84 
cm 52 .0045 2.07 .83 

TBF (min�1): 
BL 34 70.7 46.1 .87 
cm 34 .963 46.3 .84 

SL: 
BL 34 .165 .34 .66 
cm 34 .165 25.2 .58 

Yellowfin: 
log Ṁo2 (mg kg�1 h�1): 

BL 52 .327 1.98 .72 
cm 52 .0053 1.96 .88 

TBF (min�1): 
BL 50 60.3 43.0 .90 
cm 50 .892 44.1 .92 

SL: 
BL 50 .209 .36 .79 
cm 50 .209 23.6 .84 

Note. BL p body length; n p number of observations. 

Only four of six bluefin tuna swam at 0.75 BL s�1, and none 
swam consistently at 0.65 BL s�1. 

Across the range of speeds tested, metabolic rates of bluefin 
tuna were significantly greater than those of yellowfin tuna 
swimming at the same relative speed (Fig. 3; P ! 0.001 ). The 
minimum Ṁo2 of yellowfin was 162 � 19 mg kg�1 h�1 at speeds 
of 0.65 to 0.75 BL s�1, and Ṁo2 increased to 405 � 105 mg 

h�1kg�1 at 1.8 BL s�1. Yellowfin tuna were able to swim at 
lower speeds than bluefin tuna, with all five yellowfin swimming 
steadily at 0.65 BL s�1 and two fish swimming at 0.55 BL s�1. 

˙As with the bluefin tuna, Mo2 increased at the lowest swimming 
˙speed for some yellowfin; however, the minimum Mo2 occurred 

at significantly lower speeds in yellowfin than in bluefin 
(Kruskal-Wallace, P ! 0.05). The minimum metabolic rate of 
bluefin tuna at 20�C was 37% higher than that of yellowfin. 

TBFs of bluefin tuna were significantly higher than those of 
yellowfin tuna across the range of swimming speeds tested (Fig. 
4A), regardless of whether swimming speed was expressed in 
body lengths per second or centimeters per second (Fig. 4A). 
TBF of bluefin tuna increased linearly from 99 � 7 beats min�1 

at 0.75 BL s�1 to 182 � 5 beats min�1 at 1.80 BL s�1 as compared 
with 88 � 4 beats min�1 at 0.75 BL s�1 to 150  � 9 beats min�1 

at 1.80 BL s�1 in yellowfin tuna (Fig. 4A). Stride length (distance 
traveled per tailbeat) of bluefin tuna was significantly lower 

than that of yellowfin tuna at equivalent speeds (Fig. 4B). Blue
fin stride length ranged from 0.46 � 0.04 BL at 0.75 BL s�1 to 
0.59 � 0.02 BL at 1.80 BL s�1 (Fig. 4B). Stride length of yel
lowfin tuna increased from 0.42 � 0.02 BL at 0.55 BL s�1 to 
0.72 � 0.04 BL at 1.80 BL s�1. 

The gross cost of transport (GCOT) describes the metabolic 
cost for an animal to travel a given distance. GCOT was cal

˙culated by dividing the measured Mo2 by the speed at which 
it was recorded for each fish at each speed and converted into 
energetic units based on an oxycalorific coefficient of 14.1 J 
mg O2 

�1 for oxidation of a mixture of protein, fat, and car
bohydrate (Videler 1993). GCOT of bluefin tuna reached a 
minimum at 1.23 J kg�1 m�1 at 1.15 and 1.3 BL s�1 and in
creased at higher and lower speeds (Fig. 5). GCOT of yellowfin 
tuna showed a similar pattern, reaching a minimum of 1.10 J 
kg�1 m�1 at 1.15 and 1.3 BL s�1. GCOT at a given speed (in 
BL s�1) was significantly greater in bluefin tuna than in yellowfin 
tuna (paired t-test, P ! 0.0001 ). 

SMRs of tunas and other obligate ram ventilators have often 
˙been calculated by plotting the relationship between log Mo2 

and swimming speed and extrapolating to 0 velocity (Brett 
1964; Gooding et al. 1981). Applying this calculation to indi

h�1vidual fish yielded mean SMRs of 120 � 26 mg kg�1 for 
h�1bluefin and 91 � 13 mg kg�1 for yellowfin tuna. 

Discussion 

This study reports measurements of metabolic rates of juvenile 
Pacific bluefin tuna Thunnus orientalis and yellowfin tuna 
Thunnus albacares swimming in a swim-tunnel respirometer. 

˙ ˙Bluefin Mo2 was significantly greater than Mo2 of yellowfin 
tuna swimming at equivalent speeds using the same protocol. 

˙ ˙Figure 3. Mo2 of swimming Pacific bluefin and yellowfin tunas. Mo2 

was measured as the fish swam in an 870-L swim-tunnel respirometer 
˙at 20�C. Each point represents the mean � SD of Mo2 of six bluefin 

tuna (filled circles; mass p 8.3 � 0.8 kg) or five yellowfin tuna (open 
squares; mass p 5.4 � 1.6 kg). 
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Figure 4. Tailbeat frequency (A) and stride length (B) of Pacific bluefin 
(filled circles) and yellowfin tuna (open squares). Each data point rep
resents the mean � SD of values obtained from at least two fish swim
ming at speeds matched to individual body length. Stride lengths are 
expressed as fractions of the body length of each individual fish. 

The two species were collected in an area where their ranges 
seasonally overlap along the western coast of North America 
and held in the same tanks before experiments. The higher 
metabolic rates of bluefin tuna compared with yellowfin are in 
accord with other indicators of physiological performance in 
the two species. Bluefin have warmer tissues, greater relative 
heart masses, higher heart rates and cardiac outputs, and higher 
concentrations of cardiac Ca2� cycling proteins than yellowfin 
tuna (Carey and Lawson 1973; Poupa et al. 1981; Blank et al. 
2002, 2004; Landeira-Fernandez et al. 2004). Both cellular and 
organismal traits indicate that higher metabolic rates have 
evolved specifically in this cold-temperate lineage of Thunnus. 

h�1The minimum metabolic rates of 222 � 24 mg kg�1 

recorded in fasted, bluefin tuna swimming at 0.75 to 1.0 BL 
s�1 were lower than those previously published for other species 
of tuna. The use of a large swim tunnel made it possible to 
record metabolic rates of swimming fish at controlled speeds 
and temperatures for up to six consecutive days. This duration 

of metabolic measurements is unprecedented for tunas. Over
night acclimation allowed the fish to recover from handling 
stress and oxygen debt that are associated with introduction of 
fish to swim tunnels (Sepulveda et al. 2003) and produced 
significant declines in metabolic rate (Fig. 1). Similar results 
have been noted by other investigators working on a variety of 
species, including salmonids and cod (Brett 1964; Steffensen et 
al. 1994). 

Comparison of Tailbeat Frequency between Species 

TBFs of bluefin were 10%–17% higher than those of yellowfin 
tuna at equivalent swimming speeds measured in BL s�1 (Fig. 
4A). The higher TBF in bluefin is likely to increase oxygen 
demand of the working muscle mass and contribute directly 
to higher metabolic rates at a given swimming speed. A higher 
TBF at routine swimming speeds would also increase heat pro
duction within the slow-twitch muscle and contribute to the 
elevation of muscle temperature in bluefin tuna. Dewar et al. 
(1994) recorded a similar effect in yellowfin tuna, as acute 
increases in swimming speed increased both TBF and slow-
twitch muscle temperatures. Conversely, higher muscle tem
peratures increase the frequencies at which power output and 
efficiency of the muscle are optimized (Altringham and Block 
1997). The causal relationships between heat conservation, 
muscle temperature, TBF, and oxygen consumption during 
swimming and the dependence of these factors on ontogeny 
and body size require further study. 

TBFs measured in both bluefin and yellowfin tunas in this 
study were lower than those previously recorded in yellowfin 
and skipjack tunas swimming at similar relative speeds in a 
flume (Dewar and Graham 1994b; Knower et al. 1999). This 

Figure 5. Gross cost of transport (GCOT) in Pacific bluefin tuna (filled 
circles) and yellowfin tuna (open squares). GCOT was calculated by 

˙dividing Mo2 by swim speed and applying a conversion factor of 14.1 
J mg�1 O2 

�1. Each point represents the mean GCOT � SD for N p 
6 bluefin ( N p 4 at 0.75 BL s�1) or N p 5 yellowfin ( N p 2 at 0.55 
BL s�1) at a given speed at 20.0�C. 
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difference may be a scaling effect, given the larger size of the 
fish used in this study. TBF at a given speed is inversely related 
to body size in fish utilizing caudal fin propulsion (Webb et 
al. 1984). 

Minimal metabolic rates of bluefin tuna were 37% higher 
than those of yellowfin tuna and occurred at significantly higher 
relative speeds in bluefin (0.75–1.0 BL s�1) than in yellowfin 
tuna (0.65–0.75 BL s�1; Figs. 2, 3). The inability of bluefin to 
swim efficiently at low speeds may be associated with the dis
tinct differences in pectoral fin surface area between the two 
species. Yellowfin have larger pectoral fins that produce more 
lift at a given speed, which may permit them to maintain ver
tical station at lower swimming speeds (Magnuson 1973). The 
smaller pectoral fins of the bluefin may constrain them to main
tain higher speeds and TBFs during routine cruising, thereby 
increasing minimum metabolic rate. The capacity to use the 
larger pectoral fins for increased lift may play a role in the 
reduction of metabolic costs in yellowfin in comparison to 
bluefin tuna. 

Cost of Transport 

Calculations of gross cost of transport at a range of speeds can 
be used to determine optimal swimming speed (Uopt) at which 
the energy cost to cover a given distance is minimized (Tucker 
1970). GCOT of bluefin tuna reached minimum values of 1.23 
J kg�1 m�1 at 1.15 to 1.30 BL s�1 (Fig. 5). This speed range is 
similar to mean swimming speeds of Pacific bluefin tuna in 
the wild (80–120 cm), as calculated from acoustic track records 
(Marcinek et al. 2001). GCOT of yellowfin tuna was minimized 
at 1.10 J kg�1 m�1 at the same relative speeds as in bluefin (Fig. 
4). GCOT across the range of speeds tested was significantly 
greater in bluefin tuna than yellowfin tuna. This difference 

˙reflects the difference in Mo2 between species and may be re
lated to the higher TBF employed by the bluefin tuna. 

GCOT values at Uopt for both bluefin and yellowfin tuna 
were lower than indicated in previous studies of yellowfin tuna 
(Dewar and Graham 1994a) and lower than published values 
for GCOT of bonito and mackerel (Dickson et al. 2002; Se
pulveda et al. 2003). This difference can be explained in part 
by differences in body size, as GCOT scales negatively relative 
to body mass (Videler 1993). GCOT at Uopt for tuna was ap
proximately twofold higher than predicted by allometric equa
tions describing swimming costs in a wide range of teleosts 
(Videler 1993). In both tuna species, GCOT increased relatively 
little with moderate speed increases, suggesting that tunas un
dertaking long migrations are able to select from a range of 
speeds without suffering a substantial energetic penalty. While 
the increased GCOT at low speeds primarily reflects the greater 
share of nonlocomotor costs in total metabolic rate, it may also 
be overestimated in a swim-tunnel setting, as the length of the 
working section constrains the fish to swim at a constant speed 
without coasting (Korsmeyer and Dewar 2001). 

Effects of Body Size and Experimental Temperature 

Mass-specific metabolic rates of both bluefin and yellowfin tu
nas recorded in this study were lower than those previously 
published for yellowfin and skipjack tunas. These differences 
can be attributed in part to scaling and temperature effects. 
Most previous studies of yellowfin tuna, skipjack, and kawa
kawa employed juvenile fish of 0.5–4.0 kg. Scaling exponents 
of approximately 0.6 for SMRs of yellowfin and skipjack tuna 
have been empirically determined using immobilized fish (Brill 
1979, 1987) and fish swimming in a swim tunnel (Dewar and 
Graham 1994a), although scaling exponents 11.0 have been 
reported in some other studies (Gooding et al. 1981; Graham 
et al. 1989). Application of scaling exponents determined in 
juvenile tunas to larger fish is complicated by the unknown 
influence of increasing body size on heat conservation and 
internal body temperatures. Interspecific scaling exponents of 
∼0.8 have been reported for a broader array of teleosts (Clarke 
and Johnston 1999). The size difference between the bluefin 
(8.3 � 0.8 kg) and yellowfin ( 5.4 � 1.6 kg) tuna in this study 
may result in an underestimation of the difference in metabolic 
rate between species, as the smaller size of the yellowfin would 
be expected to produce a higher mass-specific metabolic rate, 
contrary to our findings. 

Previous studies on yellowfin and skipjack tuna have pri
marily been conducted at 25�C, whereas tunas in this study 
were maintained and tested at 20�C. Both species commonly 
encounter 20�C waters in the eastern Pacific (Block et al. 1997; 
Marcinek et al. 2001), and the fish used in this study were 
captured in waters with a sea-surface temperature of 20�C. 
Dewar and Graham (1994a) report a Q10 of 1.67 for acute 
temperature changes in the range 18�–30�C in small yellowfin 
tuna swimming at constant speed, and preliminary results sug
gest a similar Q10 for metabolic rate of bluefin tuna at 20�– 
25�C (J. M. Blank, J. M. Morrissette, C. J. Farwell, M. Price, 
R. J. Schallert, and B. A. Block, unpublished data). However, 
Q10 values based on acute temperature change may be inap
propriate for correcting comparisons between studies in which 
fish have been acclimated to the temperatures at which they 
are tested. Acclimation before measurement would tend to mit
igate the effects of the acute temperature difference so that 
applying a Q10 based on an acute temperature change would 
result in overcorrection. 

If	 corrections for body size (b p 0.6) and temperature 
˙(Q10 p 1.67) are applied, Mo2 of swimming yellowfin tuna 

measured in this study remains approximately 20% lower than 
˙the lowest published measurements of Mo2 in swimming yel

lowfin (Dewar and Graham 1994a). The SMR of yellowfin in 
˙this study, as calculated by extrapolating Mo2-speed relation

ships to 0 velocity and corrected for mass and temperature, 
was 16% lower than the SMR measured in spinally blocked 
yellowfin (Brill 1987) and 33% lower than that previously cal
culated for swimming fish (Dewar and Graham 1994a). These 
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remaining differences in metabolic rate are likely to result from 
differences in experimental protocols between studies. 

Influence of Experimental Protocols and Fasting 

The experimental protocol used in this study was intended to 
˙overcome the difficulties of measuring Mo2 in an obligate ram 

ventilator and produce measurements of minimum metabolic 
rates of swimming tuna. In order to ensure a postabsorptive 
state before metabolic measurements, all tuna used in the study 
were fasted for 45–72 h before introduction to the swim tunnel. 
The captive tuna were routinely fed three times per week and 
were accustomed to feeding at 48–72-h intervals. Although 
gastric emptying may take 12 h or less in skipjack tuna, di
gestion often continues in the pyloric caeca and intestine for 
longer periods (Magnuson 1969). Both wild and captive bluefin 
tuna display substantial postfeeding increases in visceral tem
perature, which can be used as indicators of the duration of 
digestive processes (Carey et al. 1984; Gunn et al. 2001). Elec
tronic tagging has shown that stomach and peritoneal cavity 
temperatures of captive bluefin can remain elevated for over 
40 h following feeding (Carey et al. 1984; Gunn et al. 2001) 
and are routinely elevated for up to 36 h in captive fish identical 
in size and feeding regimen to those used in these experiments 
(Farwell 2001). This suggests that the 2-d fasting period was 
essential in eliminating the effects of specific dynamic action 
on metabolic rate in these experiments. Wild Pacific bluefin 
tuna carrying archival tags often forage daily, recording sig
nificant increases in visceral temperature following feeding. 
However, temperature records from archival tags demonstrate 
that involuntary fasting periods are also common and are not 
limited to migration and breeding periods (Kitagawa et al. 
2004). 

In addition to fasting, overnight acclimation and the pre
cautions taken to reduce traffic and noise in the laboratory may 
have resulted in lower measured metabolic rates. In a few cases, 
fish were visibly startled by unintended disturbances such as 
noise, lighting changes, power surges, and an earthquake, el

˙evating the measured Mo2 and confirming the importance of 
these precautions. 

Comparison of Standard Metabolic Rates among Species 

Because tunas are obligate ram ventilators, it is common to 
calculate SMRs by measuring metabolic rate at a range of swim
ming speeds and then extrapolating the curve relating metabolic 
rate and speed to 0 velocity (Brett 1964; Gooding et al. 1981). 
This method yielded mean SMRs for bluefin and yellowfin 
tunas of 120 � 26 and 91 � 13 mg kg�1 h�1, respectively. This 
calculation has been criticized on both theoretical and practical 
grounds as potentially misrepresenting SMR due to error in 
extrapolation and metabolic trade-offs encountered during ex
ercise (Thorarensen et al. 1993; Farrell et al. 2003). The increase 

in metabolic rate observed at low speeds in several of the fish 
studied here suggests that the minimum metabolic rate of 
swimming tuna may be a more physiologically relevant measure 
than SMR at 0 velocity. However, SMR may provide a useful 
point of comparison with the published literature. After cor
rection to 25�C and normalization to a standard mass, SMR 
of yellowfin tuna in this study remains 20%–50% lower than 
published values for yellowfin (Brill 1987; Dewar and Graham 
1994a). This difference may reflect the experimental protocol 
and the long fasting and acclimation periods used to avoid 
artificial elevation of metabolic rates in this study. 

The calculated SMR of bluefin tuna is significantly greater 
than that of yellowfin tuna in this study and, if corrected for 
body mass based on allometric predictions, exceeds SMRs re
ported for ectothermic scombrids (Dickson et al. 2002; Se
pulveda et al. 2003). Bluefin SMR is 50%–120% higher than 
that of bonito and 100% to severalfold higher than that of 
mackerel, depending on whether a scaling exponent of 0.6 or 
0.8 is applied. However, the mass-specific SMRs calculated for 
bluefin and yellowfin at 20�C are similar to those of bonito 
and mackerel at 18�C, and any comparisons should be inter
preted with caution due to the large differences in body size 
between species and studies. 

Implications to Physiology and Ecology of Tuna 

This article demonstrates that metabolic rates of swimming 
bluefin tuna are higher than those of yellowfin tuna. Metabolic 
rate data are important to understanding the energetics and 
ecology of tuna populations in the wild and provide additional 
information on how Pacific bluefin tuna diverge from other 
tunas. Recent work indicates that bluefin have higher heart rates 
and cardiac outputs than yellowfin, which may be related to 
higher levels of cardiac sarcoplasmic reticulum Ca2� ATPase 
(Blank et al. 2004; Landeira-Fernandez et al. 2004). These cel
lular and organ traits of bluefin can now be linked to higher 
metabolic rates in vivo, suggesting that increased cellular Ca2� 

cycling capacity may underlie whole-animal metabolic perfor
mance. This pattern of high metabolic rates co-occurring with 
high levels of cardiac performance and robust cardiac sarco
plasmic reticulum Ca2� cycling appears in a broad range of 
teleosts as well as in mammals and birds (Hamilton and Ianuzzo 
1991; Vornanen et al. 2002), supporting a linkage between ex
citation-contraction coupling in cardiac cells, increased cardiac 
output, and higher metabolic rates. Previous hypotheses linking 
the evolution of high metabolic rates in tunas to increased 
expression of intracellular cardiac excitation-contraction
coupling proteins were based largely on comparisons of tunas 
to ectothermic scombrid fishes (Blank et al. 2004). This study 
provides the metabolic data to link cardiac myocyte function, 
oxygen delivery, and metabolism in an endothermic fish. 

The higher metabolic rates of bluefin tuna compared with 
yellowfin are correlated with cold tolerance and a greater ca
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pacity for endothermy in bluefin. Bluefin tuna maintain higher 
slow-twitch muscle temperatures and larger thermal excesses 
than yellowfin tuna of a given body size (Barrett and Hester 
1964; Carey and Teal 1969; Marcinek et al. 2001). Aerobic en
zyme activities in the atrium, ventricle, and skeletal muscle are 
similar across different Thunnus species when measured in vitro 
(Dickson 1996; Marcinek 2000; Blank et al. 2004). However, 
the higher temperatures in slow-twitch muscle of bluefin would 
increase aerobic enzyme activities in vivo, increasing the po
tential oxygen consumption of bluefin skeletal muscle (Mar
cinek et al. 2001). It has been reported that oxidative slow-
twitch muscle comprises a larger proportion of the body mass 
in bluefin than in yellowfin (Kishinouye 1923), although com
parisons are complicated by the differences in body size of 
specimens (Sharp and Pirages 1978). A larger mass of oxidative 
red muscle would tend to increase oxygen consumption and 
heat production in bluefin relative to yellowfin. 

In addition to the lateral retia, which conserve heat in the 
skeletal muscle, bluefin have well-developed countercurrent re
tia mirabilia associated with the stomach and caecum (Carey 
and Lawson 1973; Block et al. 2001). These visceral heat ex
changers allow Pacific bluefin to elevate visceral temperature 
following feeding and maintain this temperature elevation for 
many hours (Farwell 2001) whereas yellowfin tuna inhabiting 
the same waters exhibit no significant visceral thermal excess 
(K. M. Schaefer, D. W. Fuller, and B. A. Block, unpublished 
data). Visceral temperatures would be minimized by the long 

˙fasting periods preceding Mo2 measurements (Carey et al. 1984; 
Gunn et al. 2001); however, bluefin of the size used in this 
study maintain baseline peritoneal cavity temperatures 1�–2�C 
above ambient following fasting (Farwell 2001; Kitagawa et al. 
2004), which may increase the oxygen demand of the viscera. 
Collectively, differences in tissue temperatures between bluefin 
and yellowfin may explain much of the difference in oxygen 
consumption between species. The ability of bluefin tuna to 
maintain large thermal gradients between oxidative tissues and 
ambient water has allowed the species to expand its thermal 
niche into productive subpolar waters. The elevated metabolic 
rates presented here may be an essential component of the 
thermoregulatory capacity of bluefin. While high rates of ox
idative metabolism contribute to maintenance of muscle and 
visceral tissues at optimal temperatures, they can do little to 
warm the heart, which must function at ambient temperature. 
Thus, the cardiac specializations for intracellular EC-coupling 
that sustain high cardiac outputs and high metabolic rates in 
bluefin tuna are also essential for cold tolerance and thermal-
niche expansion. 

The high aerobic capacity of tuna has been described as an 
adaptation for dealing with multiple simultaneous metabolic 
demands (Korsmeyer et al. 1996). The finding that minimum 
metabolic rates of swimming yellowfin are lower than previ
ously reported helps to explain how tuna can superimpose the 
energetic demands of constant swimming, feeding, digestion, 

growth, and recovery from burst swimming. These measure
ments should improve our ability to model the energetics of 
tuna in the field and understand the balance between these 
competing demands in wild individuals and populations. Un
der most circumstances, field metabolic rates of both bluefin 
and yellowfin are likely to be substantially higher than metabolic 
rates reported here due to these additional energetic demands. 
The influence of ambient temperature and thermogenic phys
iological processes such as specific dynamic action on metabolic 
rates of tunas is of particular interest. The impact of these 
factors may be especially large in tunas due to coordinate in
creases in body temperatures and metabolic rate with increasing 
feeding and swimming activity (Carey et al. 1984; Dewar et al. 
1994). Clarifying the influence of body size, ambient temper
ature, feeding status, and behavior on the metabolic rates of 
tuna and other scombrids remains an important goal. 
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