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Abstract We consider the thresholding scheme, a time discretization for mean curvature flow
introduced by Merriman et al. (Diffusion generated motion by mean curvature. Department
of Mathematics, University of California, Los Angeles 1992). We prove a convergence result
in the multi-phase case. The result establishes convergence towards a weak formulation of
mean curvature flow in the BV-framework of sets of finite perimeter. The proof is based
on the interpretation of the thresholding scheme as a minimizing movements scheme by
Esedoglu et al. (Commun Pure Appl Math 68(5):808-864, 2015). This interpretation means
that the thresholding scheme preserves the structure of (multi-phase) mean curvature flow as
a gradient flow w. 1. t. the total interfacial energy. More precisely, the thresholding scheme
is a minimizing movements scheme for an energy functional that I"-converges to the total
interfacial energy. In this sense, our proof is similar to the convergence results of Almgren et
al. (STAM J Control Optim 31(2):387—-438, 1993) and Luckhaus and Sturzenhecker (Calculus
Var Partial Differ Equ 3(2):253-271, 1995), which establish convergence of a more academic
minimizing movements scheme. Like the one of Luckhaus and Sturzenhecker, ours is a
conditional convergence result, which means that we have to assume that the time-integrated
energy of the approximation converges to the time-integrated energy of the limit. This is a
natural assumption, which however is not ensured by the compactness coming from the basic
estimates.
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1 Introduction
1.1 Context

The thresholding scheme, a time discretization for mean curvature flow introduced by Merri-
man et al. [26], has because of its conceptual and practical simplicity become a very popular
scheme, see Algorithm 1 for its definition in a more general context. It has a natural extension
from the two-phase case to the multi-phase case with triple junctions in local equilibrium,
well-known in case for equal surface tensions since some time [27]. Multi-phase mean-
curvature flow models the slow relaxation of grain boundaries in polycrystals (called grain
growth), where each grain corresponds to a phase. Elsey et al. have shown that (a modifica-
tion of) the thresholding scheme is practical in handling a large number of grains over time
intervals sufficiently large to extract significant statistics of the coarsening (also called aging)
of the grain configuration [11-13]. In grain growth, the surface tension (and the mobility) of
a grain boundary is both dependent on the misorientation between the crystal lattice of the
two adjacent grains and on the orientation of its normal. In other words, the surface tension
ojj of an interface is indexed by the pair (i, j) of phases it separates, and is anisotropic.
Esedoglu and the second author have shown in [14] the thresholding scheme can be extended
to handle the first extension in a very general way, including in particular the most popular
Ansatz for a misorientation-dependent grain boundary energy [33]. How to handle general
anisotropies in the framework of the thresholding scheme, even in case of two phases, seems
not yet to be completely settled, see however [5] and [19]. Hence in this work, we will focus
on the isotropic case, ignore mobilities, but make the attempt to be as general as [14] when
it comes to the dependence of o;; on the pair (i, j).

In the two-phase case, the convergence of the thresholding scheme is well-understood:
two-phase mean curvature flow satisfies a geometric comparison principle, and it is easy to
see that the thresholding scheme preserves this structure. Partial differential equations and
geometric motions that allow for a comparison principle can typically be even characterized
by comparison with very simple solutions, which opens the way for a definition of a very
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robust notion of weak solutions, namely what bears the somewhat misleading name of viscos-
ity solutions. If one allows for what the experts know as fattening, two-phase mean-curvature
flow is well-posed in this framework [16]. Barles and Georgelin [4] and Evans [15] proved
independently that the thresholding scheme converges to mean-curvature flow in this sense.
Hence the main novelty of this work is a (conditional) convergence result in the multi-phase
case; where clearly a geometric comparison principle is absent. However, the result has also
some interest in the two-phase case, since it establishes convergence even in situations where
the viscosity solution features fattening. Together with Drew Swartz [22], the first author uses
similar arguments to treat another version of mean curvature flow that does not even allow
for a comparison principle in the two-phase case, namely volume-preserving mean-curvature
flow. They prove (conditioned) convergence of a scheme introduced by Ruuth and Wetton
in [35]. We also draw the reader’s attention to the recent work of Mugnai et al. [32], where
they prove a (conditional) convergence result as in [24] of a modification of the scheme
in [2,24] to volume-preserving mean curvature flow. Note that due to the only conditional
convergence, our result does not provide a long-time existence result for (weak solutions of)
multi-phase mean curvature flow. Short-time existence results of smooth solutions go back
to the work of Bronsard and Reitich [7]. Mantegazza et al. [25] and Schniirer et al. [38] were
able to construct long-time solutions close to a self-similar singularity.

For the present work, the structural substitute for the comparison principle is the gradient
Sflow structure. Folklore says that mean curvature flow, also in its multi-phase version, is the
gradient flow of the total interfacial energy. Itis by now well-appreciated that the gradient flow
structure also requires fixing a Riemannian structure, that is, an inner product on the tangent
space, which here is given by the space of normal velocities. Mean curvature flow is then
the gradient flow with respect to the L2-inner product, in case of grain growth weighted by
grain-boundary-dependent and anisotropic mobilities. Loosely speaking, Brakke’s existence
proof in the framework of varifolds [6] is based on this structure in the sense that the solution
monitors weighted versions of the interfacial energy. Recently, Kim and Tonegawa [21]
improved this work by deriving the continuity of the volumes of the grains in the case of
grain growth with equal surface tensions which ensures that the solution is non-trivial. Also
Ilmanen’s convergence proof of the Allen—Cahn equation, a diffuse interface approximation
of computational relevance in the world of phase-field models, to mean curvature flow makes
use of the gradient flow structure [18]. It was only discovered recently that the thresholding
algorithm preserves also this gradient flow structure [14], which in that paper was taken as a
guiding principle to extend the scheme to surface tensions o;; and mobilities that depend on
the phase pair (7, j). In this paper, we take the gradient flow structure, which we make more
precise in the following paragraphs, as a guiding principle for the convergence proof.

On the abstract level, every gradient flow has a natural discretization in time, which
comes in form of a sequence of variational problems: the configuration X" at time step n
is obtained by minimizing 1dist>(%, £"~!) + hE (), where £"~! is the configuration at
the preceding time step, & is the time-step size and dist denotes the induced distance on the
configuration space endowed with the Riemannian structure. In the Euclidean case, the Euler—
Lagrange equation (i. e. the first variation) of this variational problem yields the implicit (or
backwards) Euler scheme. This variational scheme has been named “minimizing movements”
by De Giorgi [10], and has recently gained popularity because it allows to interpret diffusion
equations as gradient flows of an entropy functional w. r. t. the Wasserstein metric ([20],
see [3] for the abstract framework)—an otherwise unrelated problem. However, the formal
Riemannian structure in case of mean curvature flow is completely degenerate: dist?(Z, )
as defined as the infimal energy of curves in configuration space that connect X to ¥ vanishes
identically, cf. [28].
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Hence when formulating a minimizing movements scheme in case of mean curvature
flow, one has to come up with a proxy for dist>(X, ). This has been independently achieved
by Almgren et al. [2] on the one side and Luckhaus and Sturzenhecker [24] on the other
side of the Atlantic. £ = dQ and & = 3Q, 2 [, 5 d(x, £)dx is one possible substitute

for dist?(Z, %) in the minimizing movements scheme, where d (x, ¥) denotes the unsigned
distance of the point x to the surface X—it is easy to see that to leading order in the prox-
imity of 2 to €2, this expression behaves as the metric tensor fz V2dx, where V is the

normal velocity leading from © to Q in one unit time. Their work makes this point by
proving that this minimizing movements scheme converges to mean curvature flow. To be
more precise, they consider a time-discrete solution {Q2"}, of the minimizing movement
scheme, interpolated as a piecewise constant function Q" in time and assume that for a
subsequence i | 0, the time-dependent sets 2" converge to € in a stronger sense than
the given compactness provides. Almgren et al. assume that £/ (¢) converges to X (7) in
the Hausdorff distance and show that ¥ solves the mean curvature flow equation in the
above mentioned viscosity sense. The argument was later substantially simplified by Cham-
bolle and Novaga in [9]. Luckhaus and Sturzenhecker start from a weaker convergence
assumption than the one in [2]: they assume that for the finite time horizon 7 under consid-
eration, fOT | (1)|dt converges to fOT |2(t)|dt. Then they show that Q2 evolves according
to a weak formulation of mean curvature flow, using a distributional formulation of mean
curvature that is available for sets of finite perimeter, see Definition 1.1 for the multi-phase
case of this formulation. Incidentally, weak-strong uniqueness of this formulation seems not
to be understood—even in the two-phase case. Those are both only conditional convergence
results: While the natural estimates coming from the minimizing movements scheme, namely
the uniform boundedness of sup,, | X" | and Zn 2 fQ,, a1 d(x, >™)dx, are enough to ensure
Jy R 0aQ@dt — 0and [ 1S()ldr < liminf [ " (1)|dt, they are not sufficient
to yield lim sup fOT I=h (@) |dr < fOT |=(1)|dt or even the convergence of X' (¢) to X (¢) in
the Hausdorff distance. Our result will be a conditional convergence result very much in the
same sense as the one in [24] but it turns out that our convergence result for the thresholding
scheme requires no regularity theory for (almost) minimal surfaces, in contrast to the one
of [24] and is therefore not restricted to low spatial dimensions d < 7. Although the time
discretization scheme in [2,24] seems rather academic from a computational point of view,
it has been adapted for numerical simulations by Chambolle in [8]. Nevertheless, even in
that variant, in each step one has to compute a (signed) distance function and solve a convex
optimization problem.

Following [14], we now explain in which sense the thresholding scheme may be considered
as a minimizing movements scheme for mean curvature flow. Each step in Algorithm 1 is
equivalent to minimizing a functional of the form Ej;, (x)—En(x —x n=1) where the functional
E}, defined below in (3), is an approximation to the total interfacial energy. It is a little more
subtle to see that the second term, —E,(x" — x”’l), is comparable to the metric tensor
f): V2dx. The T-convergence of functionals of the type (3) to the area functional has a
long history: for the two-phase case, cf. Alberti and Bellettini [1] and Miranda et al. [29].
The multi-phase case, also for arbitrary surface tensions was investigated by Esedoglu and
the second author in [14]. Incidentally, it is easy to see that I'-convergence of the energy
functionals is not sufficient for the convergence of the corresponding gradient flows; Sandier
and Serfaty [36] have identified sufficient conditions on both the functional and the metric
tensor for this to be true.
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Identically, the approach of Saye and Sethian [37] for multi-phase evolutions can also be
seen as coming from the gradient flow structure when applied to mean-curvature flow with
P phases. More precisely, it can be understood as a time splitting of an L2-gradient flow
with an additional phase whose volume is strongly penalized: the first step is (P + 1)-phase
gradient flow w. r. t. the total interfacial energy and the second step is (P + 1)-gradient flow
w. 1. t. the volume penalization (so geometrical optics leading to the Voronoi construction).

1.2 Informal summary of the proof

We now give a summary of the main steps and ideas of the convergence proof. In Sect. 2, we
draw consequences from the basic estimate (10) in a minimizing movements scheme, like
compactness, Proposition 2.1, coming from a uniform (integrated) modulus of continuity in
space, Lemma 2.4, and in time, Lemma 2.5. We also draw the first consequence from the
strengthened convergence (8) in the case of equal surface tensions in Proposition 2.2. We
strongly advise the reader to familiarize him- or herself with the argument for the modulus
of continuity in time, Lemma 2.5, since it is there that the mesoscopic time scale /% appears
for the first time in a simple context before being used in Sect. 4 in a more complex context.
In the same vein, the fudge factor « in the mesoscopic time scale a+/h, which will be crucial
in Sect. 4, will first be introduced and used in the simple context when estimating the normal
velocity V of the limit in Proposition 2.2.

Starting from Sect. 3, we also use the Euler-Lagrange equation (34) of the minimizing
movement scheme. By Euler-Lagrange equation we understand the first variation w. r. t.
the independent variables, as generated by a test vector field £. In Sect. 3, we pass to the
limit in the energetic part of the first variation, recovering the mean curvature H via the
term fz HE v = f): V - & — v - V&v. This amounts to show that under our assumption
of strengthened convergence (8), the I'-convergence of the functionals can be upgraded to a
distributional convergence of their first variations, cf. Proposition 3.1. It is a classical result
credited to Reshetnyak [34] that under the strengthened convergence of sets of finite perimeter,
the measure-theoretic normals and thus the distributional expression for mean curvature also
converge. The fact that this convergence of the first variation may also hold when combined
with a diffuse interface approximation is known for instance in case of the Ginzburg—Landau
approximation of the area functional (also known by the names of Modica and Mortola, who
established this I'-convergence [30,31]), see [23]. In our case the convergence of the first
variations relies on a localization of the ingredients for the I'-convergence worked out in
[14], like the consistency, i. e. pointwise convergence of these functionals.

Section 4 constitutes the central and, as we believe, most innovative piece of the paper;
we pass to the limit in the dissipation/metric part of the first variation, recovering the normal
velocity V via the term [, V & - v. In fact, we think of the test-field & as localizing this
expression in time and space, and recover the desired limiting expression only up to an error
that measures how well the limiting configuration can be approximated by a configuration
with only two phases and a flat interface in the space—time patch under consideration; this
is measured both in terms of area (leading to a multi-phase excess in the language of the
regularity theory of minimal surfaces) and volume, see Proposition 4.1. The main difficulty
of recovering the metric term f): V & - v in comparison to recovering the distributional form
f 5. V-& —v-VE& v of the energetic term is that one has to recover both the normal velocity V/,
which is distributionally characterized by d; x — V|V x| = 0 on the level of the characteristic
function y, and the (spatial) normal v. In short: one has to pass to the limit in a product. More
precisely, the main difficulty is that there is no good bound on the discrete normal velocity V
at hand on the level of the microscopic time scale h; only on the level of the above-mentioned
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mesoscopic time scale /I, such an estimate is available. This comes from the fact that the
basic estimate yields control of the time derivative of the characteristic function x only when
mollified on the spatial scale v/A in u = G, % x. The main technical ingredient to overcome
this lack of control in Proposition 4.1 is presented in Lemma 4.2 in the two-phase case and
in Lemma 4.5 in the general setting: if one of the two (spatial) functions u, & is not too far
from being strictly monotone in a given direction (a consequence of the control of the tilt
excess, see Lemma 4.4), then the spatial L'-difference between the level sets x = {u > %}
and ¥ = {0 > %} is controlled by the squared L2-difference between « and ii.

In Sect. 5, we combine the results of the previous two sections yielding the weak formu-
lation of V = H on some space—time patch up to an error expressed in terms of the above
mentioned (multi-phase) tilt excess of the limit on that patch. Complete localization in time
and partition of unity in space allows us to assemble this to obtain V = H globally, up to
an error expressed by the time integral of the sum of the tilt excess over the spatial patches
of finite overlap. De Giorgi’s structure theorem for sets of finite perimeter (cf. Theorem 4.4
in [17]), adapted to a multi-phase situation but just used for a fixed time slice, implies that
the error expression can be made arbitrarily small by sending the length scale of the spatial
patches to zero.

1.3 Notation

We denote by

Gr2) = — e _kr
M=o mydr P\ T gy

the Gaussian kernel of variance 4. Note that Go;(z) is the fundamental solution to the heat
equation and thus

WG —A1AG =0 in (0,00) x RY,
G=6y for h=0.

We recall some basic properties, such as the normalization, non-negativity, boundedness and
the factorization property:

/d Grdz=1, 0<G,<Ch 2, VG(z) = —gGh(z), G(x) =G' (1) G2,
R

where G denotes the 1-dimensional and G4~ the (d — 1)-dimensional Gaussian kernel; let
us also mention the semi-group property

GS+I = GS * G[.
Throughout the paper, we will work on the flat torus [0, A)?. The thresholding scheme
for multiple phases, introduced in [14], for arbitrary surface tensions o;; and mobilities

wij = 1/0;j; is the following.

Algorithm 1 Given the partition Q7 ', ..., @5 of [0, A)? at time 1 = (n — 1), obtain
the new partition Q7, ..., Q7 at time t = nh by:
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1. Convolution step:
P
¢i = Gh k ZUile;_l . (1)
j=1

2. Thresholding step:
Q= [xe[O, A gi(x) < ¢ (x) forallj;éi]. )

We will denote the characteristic functions of the phases 2 at the nth time step by x/
and interpolate these functions piecewise constantly in time, i. e.

Xih(t) = Xln = 19{" fort € [nh, (I’l + l)h)

As in [14], we define the approximate energies
1
En(0) = %:Uij / Xi G xj dx 3)

for admissible measurable functions:
P
X= 0 ) 0.8 = (0.1 st D xi=1 ae @)
i=1

Here and in the sequel [ dx stands short for f[o Ayt dx, whereas J dz stands short for [, dz.
The minimal assumption on the matrix of surface tensions {o;;}, next to the obvious

0jj =0ji = 0min >0 ifi #j, o0, =0,
is the following triangle inequality
Oij = Oik + Okj-

It is known that (e. g. [14]), under the conditions above, these energies I'-converge w. r. t.
the L'-topology to the optimal partition energy given by

1
E(x) == coZai,E(/le-H/Wxn—/W(x,-+x,-)|)
iJj

for admissible yx:

P
X=0xp) 0,0 > (0.1} e BV st D =1 ae

i=1
The constant ¢ is given by
1
NGTa

For our purpose we ask the matrix of surface tensions o to satisfy a strict triangle inequality:

0o
Co = wg—1 / G(ryrldr =
0

0ij < oj; + oy for pairwise different i, j, k.
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We recall the minimizing movements interpretation from [14] which is easy to check. The
combination of convolution and thesholding step in Algorithm 1 is equivalent to solving the
following minimization problem

x" =argmin {E4(0 — En(x = x" "} ©)

where x runs over (4). The proof will mostly be based on the interpretation (5) and only once
uses the original form (1) and (2) in Lemmas 4.2 and 4.4, respectively. Following [14], we
will additionally assume that o is conditionally negative-definite, i. e.

o<—-0o on(l,..., D",

where o > 0 is a constant. That means, that o is negative as a bilinear formon (1, ..., 1)l.
This ensures that —Ej,(x — x"~ ') in (5) is non-negative and penalizes the distance to the
previous step.

In the following we write A < B to express that A < CB for a (possibly large) generic
constant C < oo that only depends on the dimension d, the total number of phases P and
on the matrix of surface tensions o through omin = min;+; 0jj, omax = maxo;jj, o and
min{oj; + oxj — 0jj: i, j, kpairwise different}. Furthermore, we say a statement holds for
A < B if the statement holds for A < éB for some generic constant C < oo as above.

1.4 Main result

The definition of our weak notion of mean-curvature flow is a distributional formulation
which is suited to the framework of functions of bounded variation.

Definition 1.1 (Motion by mean curvature) Fix some finite time horizon T < 00, a matrix of
surface tensions o as above and initial data x°: [0, A)? — {0, 1}¥ with Eg := E(x°) < oo.
We say that the network

X =0t oo xp) s 0,7) x [0, A — {0, 1}”
with >°; x; = l a.e. and

sup E(x (1)) < 00
t
moves by mean curvature if there exist functions V;: (0, T) x [0, A)? — R with
T
/ /VI.2 |Vxildt < oo
0
which satisfy

T 1
Sy [ [ 0 e—u - Vew =260 5 (Vaul+ Vil = [V + ) dr =0
i,j
©
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Convergence of the thresholding scheme Page 9 of 74 129

forall & € C3°((0, T) x [0, A)¥, RY) and which are normal velocities in the sense that for
all ¢ € C*°([0, T] x [0, A)) with ¢(T)=0andalli € {1,..., P}

T T
/ /a,cxi dxdr+/c<0>x,-°dx _ _/ /;v,- Vil dr. )
0 0

Note that (7) also encodes the initial conditions as well as (6) encodes the Herring angle
condition. Indeed, for a smooth evolution, since for any interface ¥ we have

/Z(V-g—v.vgu):/rb-ﬂ/zm.g,

where I' = 0%, b denotes the conormal and H the mean curvature of ¥, we do not only
obtain the equation

H,"/' = 2‘/,/ on zij = 89[ N 89/

along the smooth parts of the interfaces but also the Herring angle condition at triple junctions.
If three phases 21, 2> and €23 meet at a point x, then we have

o12 v12(x) + 023 v23(x) + 031 v31(x) = 0.
In terms of the opening angles 61, 6> and 63 at the junction, this condition reads

sin 0 sin 6> sin 63

o33 o3 o
so that the opening angles at triple junctions are determined by the surface tensions.

Remark 1.2 To prove the convergence of the scheme, we will need the following convergence
assumption:

T T
/Eh(xh)dt—>/ E(x)dt. 8)
0 0

This assumption makes sure that there is no loss of area in the limit # — 0 as in Fig. 1.

Theorem 1.3 Let P € N, let the matrix of surface tensions o satisfy the strict triangle
inequality and be conditionally negative-definite, T < 00 be a finite time horizon and let x°
be given with E(x") < oo. Then for any sequence there exists a subsequence h | 0 and a

T
T

Fig. 1 For fixed t = #g as h — 0 there should be no loss of area. The ruled out case is illustrated here. The
dashed line is sometimes called hidden boundary
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01 2 K 2K N Fsteps

| |

T T T

0 h2h T 27 T t

Fig. 2 The micro-, meso-, and macroscopic time scales A, T and T

x: (0, T) x [0, A — {0, 1} with E(x(t)) < Eg such that the approximate solutions x"
obtained by Algorithm 1 converge to x. Given (8), x moves by mean curvature in the sense
of Definition 1.1 with initial data x°.

Remark 1.4 An upcoming result of the authors will show that under the assumption (8) the
limit x solves alocalized energy inequality and is thus a weak solution in the sense of Brakke.

Remark 1.5 Our proof uses the following three different time scales (Fig. 2):

1. the macroscopic time scale, T < oo, given by the finite time horizon,
2. the mesoscopic time scale, T = avh ~ h > 0and
3. the microscopic time scale, h > 0, coming from the time discretization.

The mesoscopic time scale arises naturally from the scheme: due to the parabolic scaling,
the microscopic time scale / corresponds to the length scale /A as can be seen from the
kernel Gy . Since for a smooth evolution, the normal velocity V' is of order 1, this prompts
the mesoscopic time scale /.

The parameter o will be kept fixed most of the time until the very end, where we send @ — O.
Therefore, it is natural to think of « ~ 1, but small.

These three time scales go hand in hand with the following numbers, which we will for
simplicity assume to be natural numbers throughout the proof:

1. N: the total number of microscopic time steps in a macroscopic time interval (0, 7'),
2. K: the number of microscopic time steps in a mesoscopic time interval (0, t) and
3. L: the number of mesoscopic time intervals in a macroscopic time interval.

The following simple identities linking these different parameters will be used frequently:

N T
T=Nh=Lt, t=Kh, L=—=—.
K T

2 Compactness

In this section we prove the compactness of the approximate solutions, construct the normal
velocities and derive bounds on these velocities. In the first subsection we present all results
of this section; the proofs can be found in the subsequent subsection.

2.1 Results

The first main result of this section is the following compactness statement.

Proposition 2.1 (Compactness) There exists a sequence h | 0 and a limit x: (0,T) x
[0, A — {0, 137 such that

x" — x a e in(0,T)x[0, A )
and the limit satisfies E(x(t)) < Eo and x(t) is admissible in the sense of (4) for a.e.
te0,7).
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Convergence of the thresholding scheme Page 11 of 74 129

The second main result of this section is the following construction of the normal velocities
and the square-integrability under the convergence assumption (8).

Proposition 2.2 If the convergence assumption (8) holds, the limit y = limj,_.q x" has the
following properties.

(i) 0;x is a Radon measure with
/ 10: xil S (1+T)Eo
foreachi € {1,..., P}.

(ii) Foreachi € {1, ..., P}, 0;x; is absolutely continuous w. r. t. |V x;|dt. In particular,
there exists a density V; € L! (IVxildt) such that

T T
—/0 /atcxidxdtz/o /;vnwmz

forall ¢ € C*((0,T) x [0, A)?).
(iii)) We have a strong L2-bound: foreachi € {1,..., P}

T
/ /I/i2|in|dt < (1+7T)E,.
0

Both results essentially stem from the following basic estimate, a direct consequence of
the minimizing movements interpretation (5).

Lemma 2.3 (Energy-dissipation estimate) The approximate solutions satisfy

N
En(x™) = D En(x" = x""") < Eo. (10)

n=1

/—E}, defines a norm on the process space {w: [0, A)? — RF| >, wi = 0}. In particular,
the algorithm dissipates energy.

In order to prove Proposition 2.1 we derive estimates on time- and space-variations of the
approximations only using the basic estimate (10).

The estimate (10) bounds the (approximate) energies Eh(xh), which in turn control
Ik |VGh * xh| dx and thus variations of G, % x in space. On length scales greater than

/I, this estimate also survives for the approximations x”.

Lemma 2.4 (Almost BV in space) The approximate solutions satisfy
T
/ /‘Xh(x—i—(Se,t)—xh(x,t) dxdt < (14 T)Eg (3+Jﬁ) (11)
0

forany 8 > 0ande € S 1.

Variations in time are controlled by the following lemma coming from interpolating the
(unbalanced) estimate (10) on time scales of order /7.
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Lemma 2.5 (Almost BV in time) The approximate solutions satisfy

T
/ /‘Xh(t)—xh(t—r) dxdt < (1+T)Ey (r+\/ﬁ) (12)
forany t > 0.

Let us also mention that with the same methods we can prove C'/2-Holder-regularity of the

. 1 .. . .
volumes, i. e. [Q2(s)AQ(¢)| < |s — t|2. For the approximations this estimate of course only
holds on time scales larger than the time-step size .

Lemma 2.6 (C'/2-bounds) We have uniform Hélder-type bounds for the approximate solu-
tions: Le. for any pair s, t € [0, T] with |s — t| > h we have

/\xh(s)—xha) dx S Eols — 1|7 . (13)
In particular, x € C'2([0, T1, L' ([0, A)?)): for almost every s, t € (0, T), we have
1
J1x® =1 dx < Eols — 11t (14)

For the proof of the second main result of this section, Proposition 2.2, and also for later
use in Sect. 4 it is useful to define certain measures which are induced by the metric term.
These measures allow us to localize the result of Lemma 2.5. In the two-phase case this
is enough to prove that the measure 9d; x is absolutely continuous w. r. t. the perimeter and
the existence and integrability of the normal velocity, cf. (i) and (ii) of Proposition 2.2. The
square-integrability follows then from a refinement of these estimates by localizing the fudge
factor « (cf. Remark 1.5) after passage to the limit 47 — 0.

Definition 2.7 (Dissipation measure) For h > 0, we define the approximate dissipation
measures (associated to the approximate solution x™ pp on [0, T] x [0, A)? by

N
1 [ B _
/ Cduy =Y ﬁ/; (|G;,/2*(X"—X” NP+ [Ga = (x" = x" 1)|2)dx, (15)
n=1

where ¢ € C%°([0, T1x [0, A)¢) and Zn is the time average of ¢ on the interval [nh, (n+1)h).
By the monotonicity of & — ||Gj, * u|| ;2> and the energy-dissipation estimate (10), we have

i ([0, T1 % [0, A)) < Eo (16)

and puj, — w after passage to a further subsequence for some finite, non-negative measure
on [0, T] x [0, A)¢ with ([0, T] x [0, A)?) < Eo. We call u the dissipation measure.

In order to prove Proposition 2.2 also in the multi-phase case we have to ensure that
the convergence assumption implies the convergence of the individual interfacial areas
51 UVxil+ Vi = [V + x)))-
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af losl on | =0 2

Fig. 3 As h — 0, the two interfaces E{‘z and 233 merge into one interface, X3, between Phases 1 and 3.

Therefore the measure of |E{'3| jumps up in the limit 2z — O although the total interfacial energy converges
due to the choice of surface tensions

Lemma 2.8 (Implications of convergence assumption) The convergence assumption (8)
ensures that for any pairi # j and any ¢ € C*([0, T] x [0, A,

T
h h h h
/0 ﬁ/f(xi Gh*xj + X Gh*xi)dxdt
T
—>Co/0 /c(lei|+|vX,-}—|V<xi+x,-)|)dz, (17)
ash — 0.

The proof of Lemma 2.8 heavily relies on the fact that o satisfies the strict triangle inequal-
ity so that we can preserve the triangle inequality after perturbing the energy functional. The
following example shows that this is not a technical assumption but is a necessary condition
for the lemma to hold and thus plays a crucial role in identifying the normal velocities V;.

Example 2.9 To fix ideas let us consider three sets €21, €27 and €23 in dimension d = 2 with
surface tensions o2 = 023 = 1, 013 = 2 as illustrated in Fig. 3. Then, the total energy is
constant in /2 and due to the choice of the surface tensions the convergence assumption is
fulfilled. Nevertheless, we clearly have

|E{’2| =const. > 0 = || and |E{’3| =0 < const. = | Z3].

This example also illustrates that although the energy functional E is lower semi-continuous,
the individual interfacial energies %f (|in| + Vil = IV(xi + Xj)|) are not.

2.2 Proofs

Before proving the statements of this section we cite two results of [14] which will be used
frequently in the proofs.

The following monotonicity statement is a key tool for the I"'-convergence in [14]. We will
use it throughout our proofs but we seem not to rely heavily on it.

Lemma 2.10 (Approximate monotonicity) For all 0 < h < hg and any admissible x, we
have

d+1
h
Vo ) Eno (X)- (18)

E -z
n00 = (ﬁw%
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Another important tool for the I"-convergence in [14] is the following consistency, or
pointwise convergence of the functionals Ej, to E, which we will refine in Sect. 3.

Lemma 2.11 (Consistency) For any admissible x € BV, we have

Jim Ej(x) = EC0)- (19)

Taking the limit 2 — 0in (18) with x = XO and using (19), we see that that the interfacial
energy Eq of the initial data x (0) = x° bounds the approximate energy of the initial data:

Eo := E(x(0)) > Ex(x°).

We first prove Proposition 2.1 which follows directly from the estimates in Lemmas 2.4
and 2.5. Then we give the proofs of the Lemmas used for Proposition 2.1. We present the proof
of Proposition 2.2 at the end of this section since the proof heavily relies on the techniques
developed in the proofs of the lemmas, especially in Lemma 2.5.

Proof of Proposition 2.1 The proof is an adaptation of the Riesz—Kolmogorov L?-compa-
ctness theorem. By Lemmas 2.4 and 2.5, we have

T
/ /‘Xh(x-f—r?e,t—l—r)—xh(t) dxdt < (14 T)E (5+r+x/ﬁ) (20)
0

for any 8,7 > 0 and e € S9~!. For § > 0 consider the mollifier g5 given by the scaling
@s(x) = M%(p(%, 5)and ¢ € C§°((—1,0) x By) such that 0 < ¢ < I and ffl fBl o =1.
We have the estimates

<1

~é

‘ws*xh’ <1 and ’V(wa*x")

Hence, on the one hand, the mollified functions are equicontinuous and by Arzela—Ascoli
precompact in CO([0, T1x [0, A)?): for givene, § > O there exist functions u; € ([0, T1x
[0, A)?),i =1,...,n(e,8) such that

n(e,d)
{os x>0} < {J Bet,

i=1

where the balls B, (u;) are given w. 1. t. the CY-norm. On the other hand, for any function
we have

T
/ /Iwa*x—dexdt5/(pa(z,S)/Ix(x—z,t—S)—x(x,t)ld(x,t)d(z,S)
0
T
= sup / /|X(X—Z,t—s)—x(x,t)|dxdt.
(z,5)€suppes <0

Using this for x" and plugging in (20) yields

T
/0 /’%*X’l—xh‘dxdzg(1+T)Eo(a+\/f7).

@ Springer



Convergence of the thresholding scheme Page 150f 74 129

Given p > 0, fix 8, hg > 0 such that

T
/ /’(pa*xh—xh‘dxdtfg for all 1 € (0, ho).
0

Then set € := # and find uy, ..., u, from above. Note that only finitely many of the
elements in the sequence {h} are greater than /(. Therefore,

U € U Boi) U ix™nsne € | Bowd U | Bo(x™)
i=1 i=1 h>hg

is a finite covering of balls (w. r. t. L'-norm) of given radius p > 0. Therefore, {x"}, is
precompact and hence relatively compact in L!. Hence we can extract a converging subse-
quence. After passing to another subsequence, we can w. 1. 0. g. assume that we also have
pointwise convergence almost everywhere in (0, 7') x [0, A). ]

Proof of Lemma 2.3 By the minimality condition (5), we have in particular
En(x") = En(x" = x"™) < Ex(xX" ™)

for each n = 1,..., N. Iterating this estimate yields (10) with E;,(x°) instead of Ey =
E(x°). Then (10) follows from the short argument after Lemma 2.11.
We claim that the pairing —ﬁ f w -0 (G, * ®) dx defines a scalar product on the process

space. It is bilinear and symmetric thanks to the symmetry of o and Gj,. Since o is condi-
tionally negative-deﬁnite,

f w-0 (G *xw)dx = — f/ Gh/z*w) (Gh/z*a))dx

> ;hIIGh/z x o7, > 0.

Furthermore, we have equality only if @ = 0. Thus, «/—E}, is the induced norm on the
process space. O

Proof of Lemma 2.4 Step 1 We claim that
/OT/ ‘VG;, % Xh’ dxdt < (1 + T)Ey. 1)
Indeed, for any characteristic function x : [0, A)? — {0, 1} we have
V(G * x)(x) = —/VGh(Z) (x(x+2) — x(x))dz.
Therefore, since |VGj(z)| < ﬁ |G2n ()],

1
/IVGh*XI dx S ﬁ/GZh(Z)/U((x‘i‘Z)_X(XN dxdz.

By x € {0, 1}, wehave [x(x +2) = x()| = x@) A = x) x +2)+ (1 — x) ) x(x +2)
and thus by symmetry of Gj,:

1
/|VGh*X|dx§ﬁ/(l_X) Gop * x dx.
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Applying this on X,-h, summing over i = 1,..., P, using Xih =1-24 X? and o;; >
Omin > 0 fori # j we obtain '

[76n s 2" 0] dx 5 B2 < B0

where we used the approximate monotonicity of Ej, cf. Lemma 2.10. Using the energy-
dissipation estimate (10), we have

/]vch x Xh(t)‘ dx < Eo

and integration in time yields (21).
Step 2 By (21) and Hadamard’s trick, we have on the one hand

/OT/‘Gh*xh(x—i—c?e,t)—Gh*xh(x,t)‘dxdtﬁ(1+T)E08.
Since x € {0, 1}, we have on the other hand
X =Grx)pr =xGpx(l—x) and (x —=Gpxx)- =0 —x)Gn*x,
which yields
X =Grxxl=U0—=x)Gr*xx +xGpx1—x). (22)

Using the translation invariance and (22) for the components of Xh, we have
T
/ / ‘Xh(x +8e,1) — x"(x, t)‘ dxdt
0

T
52/ /’Gh*xh—xh’dxdt
0

T
+/ /’Gh*Xh(x—i—rSe,t)—Gh*Xh(x,t) dx di
0
5(1+T)E0(«/E+5).

[m}

Proof of Lemma 2.5 In this proof, we make use of the mesoscopic time scale T = a+/h, see
Remark 1.5 for the notation. First we argue that it is enough to prove

T
/ /’Xh(t)—xh(t—r) dxdt < (14 T)Eyt (23)

fora € [1,2]. If « € (0, 1), we can apply (23) twice, once for T = /h and once for
7 = (1 4+ «)~/h and obtain (12). If « > 2, we can iterate (23). Thus we may assume that
o € [1,2]. We have
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T K—1
/ /}Xh(t) ~ e — r)‘ dedi = h 2/ | K+ KO=D | g
T k=0 I=1
LKL
_ 1 Ki+k _  K(—1)+k
_Kk_ot;/b( X |dx.

Thus, it is enough to prove
L
z/ | Kk KO0+ g < (14 T Eq
=1

forany k = 0, ..., K — 1. By the energy-dissipation estimate (10), we have Ej;(x*) < Eo
for all these k’s. Hence we may assume w. 1. 0. g. that k = 0 and prove only

L
Z/ | — XD ax < (14 T)Eo. (24)
=1

Note that for any two characteristic functions x, ¥ we have
X =xI==0Gr*x(x =X+ —=XX—X—GCGr*(x—X)
SX=X0Grx(x—X)+Ix —Guxxl+1x —Gn=*xl. (25)

Now we post-process the energy-dissipation estimate (10). Using the triangle inequality for
the norm /—E), on the process space and Jensen’s inequality, we have

2
K
—E, (XKI _ XK(Z—I)) < Zl: (_ E) (Xn _ Xn—l))%
n=K(—1)+1
K
<K > —E (x"—-x""). (26)
n=K({—1)+1

Using (25) for XiKl and XK(FI) with (22) for the second and the third right-hand side term

i
and the conditional negativity of o and the above inequality for the first right-hand side term
we obtain

L N
Z/ |XiKl—xiK(lfl)|dx < \FhKZ—Eh (x" = x""+L ml?x/ (1=x") Gp * x/' dx.
=1 n=1

Since (1 — /") = Z#i X]’.l a.e. and 0;; > opin > 0 for alli # j, the energy-dissipation
estimate (10) yields

L

1
§ / |x¥ = x®=D)ax < aEg + aTEO < (1+ T)Ey,
=1

which establishes (24) and thus concludes the proof. ]
Proof of Lemma 2.6 First note that (14) follows directly from (13) since we also have

Xh(t) — x(t) in L' for almost every t. The argument for (13) comes in two steps. Let
s>t,71:=s—tandt € [nh, (n+ 1)h).
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Step 1 Let T be a multiple of 4. We may assume w. 1. 0. g. that T = m>h for some m € N. As
in the proof of Lemma 2.5, using (25) and (26) we derive

m
/ X = X" dx S mVR Y| —Ep (" = xR + \/thax En(x"@)).
k=1

As before, we sum these estimates:

-1
/{Xn+m2 _ x"|dx < mZ“/ |Xn+m(1+l) _ Xn+ml| dx
1=0

n+m?
SmVh DT —En(" = 1" + mhmax By (" ()
n'=n

< m«/ﬁEo = EpA/T.

Step 2 Let t > h be arbitrary. Take m € Nsuchthats € [(m+n)h, (m+n+1)h). From Step
2 we obtain the bound in terms of m# instead of . If T > mh, we are done. If h < t < mh,
then m > 2 and thus mh < ﬁt <rt. O

Proof of Lemma 2.8 W.1.0.g.leti = 1, j = 2. We prove the statement in three steps. In the
first step we reduce the statement to a time-independent one. In the second step, we show that
due to the strict triangle inequality, the convergence of the energies implies the convergence
of the individual perimeters. In the third step, we conclude by showing that this convergence
still holds true if we localize with a test function ¢, which proves the time-independent
statement formulated in the first step.

Step 1: reduction to a time-independent problem It is enough to prove that x” — x in
L'([0, A)?, R) and Ej(x") — E(x) imply
B h h o h h _
NG X Grxx) + X Grnxxi')dx —>co [ CUVXxil+1Vxal = VO + x2)D)
27

for any ¢ € C([0, A)9).
Given x" — x in L'((0, T) x [0, A)?), for a subsequence we clearly have x" (t) — x (1)
in L1([0, A)?) for a. e. t. We further claim that for a subsequence

En(x™ — E(x) fora.e.t. (28)

Writing | Ex (x™) — E(x)| = 2(E(x) — Eh(xh))+ + Ej(x™) — E(x) and using the lim inf-
inequality of the I"-convergence of Ej, to E, we have

lim (E(X) En(x ))+ —0 fora.e.r.

Then Lebesgue’s dominated convergence, cf. (10), and the convergence assumption (8) yield
T
lim / ‘Eh(xh) - E(X)’ di =0
h—0 Jo
and thus (28) after passage to a subsequence. Therefore, we can apply (27) for a. e. r and the

time-dependent version follows from the time-independent one by Lebesgue’s dominated
convergence theorem and (10).
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Step 2: convergence of perimeters We claim that given x" — x in L' ([0, A)¢, RP) and
En(x™) — E(x), the individual perimeters converge in the following sense: we have

Fu(x]) = F(x), Fa(xd) — F(xa) and Fp(x] + x2) — F(x1 + x).

where Fj and F are the two-phase analogues of the (approximate) energies:
2
Fr(x) := —/(1 —X)Gp*xdx and F(x):= 2co/ IVxl|.
vh

We will prove this claim by perturbing the functional Ej. We recall that the functionals F,
I'-converge to F (see e. g. [29] or [14]). Since the argument for the three cases work in the
same way, we restrict ourself to the first case, Fj, ( X{’) — F(x1). Since the matrix of surface
tensions o satisfies the strict triangle inequality, we can perturb the functionals Ej, in the
following way: for sufficiently small € > 0, the associated surface tensions for the functional
x — En(x) — eFp(x1) satisfy the triangle inequality so that approximate monotonicity,
Lemma 2.10, and consistency, Lemma 2.11, still apply. Therefore, by Lemma 2.10, we have
for any hog > h

En(x™ = Ex(x™) — e Fn(x!) + € Fn(x1)

- (7 Vho
~ \WVh + Vho
By assumption, the left-hand side converges to E(x). Since for fixed ho, x + Epo(x) —

€ Fyy(x1) is clearly a continuous functional on L2, the first right-hand side term converges
as h — 0. Thus, for any /gy > 0,

limsup e F (x]) < E(x) — (Eno(x) — €Fno(x1)) -

h—0

d+1
) (Eno " = €Fng () + € ).

As hg — 0, Lemma 2.11 yields

limsup F; () < F(x1).
h—0

By the I'-convergence we also have

lim inf Fr(x = F(xn)

and thus the convergence Fj, (X{l) — F(x1).

Step 3: conclusion We claim that given x" — x in L'([0, A)¢, R”) and E;,(x") — E(x),
for any ¢ € C®([0, A)¢) we have (27).
We will not prove (27) directly but prove that for any ¢ € C*([O0, A

Fa(x O = F(u, 0, Fn(xt, 0)— F(x2,0) and  Fy(xf+x3, 0) = F(u+x2, 0)

(29)
for the localized functionals
Fa(7.¢) = %/;[(1—;2)6;1*;2 L 7Grx (= ]dx and
F(7.¢) = 2co/c|vm (30)
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instead. This is indeed sufficient since for any yi, x2, we clearly have

X1Gnx 2o+ x2Gr*x1 =0 = x1) G x1+ (1= x2) Gn * x2
— =0+ x2) Grx (X1 + x2)
and (29) therefore implies (27).

Now we give the argument for (29). As before, we only prove one of the statements,
namely Fj, (X{’, ¢) = F(x1,¢). For this we use two lemmas that we will prove in Sect. 3.
First, by applying Lemma 3.6, which is the localized version of Lemma 2.11, we have for
the functional Fj, instead of Ej, we have Fj,(x1) — F(x1). Then, by Lemma 3.7 we can
estimate |Fh (x1) — Fn( th)| — 0 and thus conclude the proof.

Let us mention that one can also follow a different line of proof by localizing the

monotonicity statement of Lemma 2.10 with a test function ¢. Since Lemma 3.7 seems
more robust, we only prove the statement in this fashion. O

Proof of Proposition 2.2 'We make use of the mesoscopic time scale 7, see Remark 1.5 for
the notation.
Argument for (i) Let £ € C§°((0, T) x [0, A)?). We have to show that

T
—/O /a,zx,-dxdrs (14 T)Eo ¢ 1o -

In this part we choose &« = 1. Using the notation d*¢ for the discrete time derivative
% (¢ (t + 1) — (1)), by the smoothness of ¢,

0°¢ — 0;¢ uniformly in (0, T') x [0, A)d ash — 0.

Since x" — x in L'((0, T) x [0, A)?), the product converges:

T T
/ /8,; Xxidxdt = lim/ /8% Xih dx dt.
0 h—0 Jo

Since supp¢ is compact, by Lemma 2.5 we have

T T
—/ /afgxl."dxdt:/ /ga*’xi’ldxdt
0 0

T
<t [ [l |dxar s a4 B
T

for sufficiently small /.
Argument for (ii) First we prove

T 1 T
—/O /at;xidxdrsafo /|c||in|dr+a/ cldu 31)

forany o > Oand any ¢ € C3°((0, T') x [0, A)?). We fix ¢ and by linearity we may assume
that ¢ > 0 if we prove the inequality with absolute values on the left-hand side. We use the
identity from above
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T T
—/ /a,; xi dx dt = lim/ /{8_’thdxdt.
0 h—0 Jo

. 1 [@+Dh
¢ ':Z/nh c(t)dt

Setting

to be the time average over a microscopic time interval, we have

T K L
_ 1 K(I—1)+k
‘/ /53 ’Xihdxdt 5}22/5K1+k’XlKl+k_Xi( )+|dx.
0 k=1 I=1
Now fix k € {1, ..., K}. For simplicity, we will ignore k at first. We can argue as in the proof

of Lemma 2.5, here with the localization ¢: By (22) we have for any x € {0, 1}
1 / 1
— [ $IGhxx — x|l dx = 7/;[(1 —X0)Grxx+xGrx(1—x)dx = Fp(x, )
vh vh
with Fj, as in (30) and furthermore

‘/(5’“’“) — KA =) Gh* xdx| < ||a,:||ooaﬁ/(1 —x) Gy * x dx.

Therefore, using (25) we obtain

L L
D R L S P S R AP A Th
=1 =1

L L
T Kl Kl Kl
+;z§—1 Fr(xi» ¢ )+«/ﬁ|l3t§||oof z En(x™),

=1

where the last right-hand side term vanishes as # | 0 by (10). For the first right-hand side
term we note that for any ¢ € C*°([0, A)4) and any x, x € {0, 1} we have

‘/;[Gh/z*(x—@]zdx—/c(x—;z)Gh*(x—fodx

= ‘/ (EGhp* (X —3%) =G *[¢(x = 0)]) Gz * (x — X)dx
S/Gh/z(z)/li(X+z)—§(x)||X—XI(X+Z)|Gh/2*(X—)?)|(x)dxd2
Vel Vi [ ZeGip@ds [ 1= ilas

< ||vc||ooﬁ/|x — #ldx,

so that we can replace the first right-hand side term by
c -1y ?
K(—
2/5” (G (" = ")) ax,
I=1
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up to an error that vanishes as /2 | 0, due to the above calculation and e. g. Lemma 2.6. As in
(26) for —Ep, now for this localized version, we can use the triangle inquality and Jensen’s
inequality to bound this term by

2
ZK Z /é” G * (X — X l)) dXSa/ ¢ duy + o(1),

=1  n=K(-1)+1

as h | 0, where pu, is the (approximate) dissipation measure defined in (15). Therefore we
have

Z/c’“lx %P dx < = ZFh(X ’“)+a/ ¢ dy + o(1),

as h | 0. Taking the mean over the k’s we obtain

T 1 T
[eoxtasar <2 [ modioarva [[ edw+ o,
0

Passing to the limit # — 0, (17), which is guaranteed by the convergence assumption (8),
implies (31).
Nowlet U C (0,T) x [0, A)d be open such that

/ Vil dt = 0.
JU

If we take ¢ € Ci°(U), the first term on the right-hand side of (31) vanishes and therefore

T
—/ /3t§Xidde§05/ cldu.
0

Since the left-hand side does not depend on «, we have

T
—/ /8,§Xidxdt§0.
0

Taking the supremum over all € C3°(U) yields

/ 9] = 0.
U

Thus, 9; x; is absolutely continuous w. 1. t. |V x;| dt and the Radon—-Nikodym theorem com-
pletes the proof.

Argument for (iii) We refine the estimate in the argument for (ii). Instead of estimating the
right-hand side of (31) and optimizing afterwards, which leads to a weak L2-bounds, we
localize. Starting from (31), we notice that we can localize with the test function ¢. Thus, we
can post-process the estimate and obtain

T T 1
‘/0 /ViCIVXiIthC/O /5|¢||in|dt+C//a|c|du
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for any integrable ¢ : (0, T) x [0, A)¢ — R, any measurable : (0, T') x [0, A)¢ — (0, oc)
and some constant C < oo which depends only on the dimension d, the number of phases
P and the matrix of surface tensions 0. Now choose

2C
Vil

=V, and o =

where we set o := 1 if V; = 0, in which case all other integrands vanish. Then, the first term
on the right-hand side can be absorbed in the left-hand side and we obtain

T
| [ vEivmiar < wao. 1< 0.00% < £ .
0

3 Energy functional and curvature

It is a classical result by Reshetnyak [34] that the convergence x” — x in L' and

/|th| —>/|Vx| — E(o)

imply convergence of the first variation

aE(x,s>:/(V-s—v-vsvwm.

A result by Luckhaus and Modica [23] shows that this may extend to a I'-convergence
situation, namely in case of the Ginzburg-Landau functional

1
Ep(u) = /h |Vu|2 + n (1 - uz)zdx.

We show that this also extends to our I'-converging functionals Ej. Let us first address
why the first variation of the approximate energies is of interest in view of our minimiz-
ing movements scheme. We recall (5): the approximate solution x” at time nh minimizes
En(x) — En(x — x™ 1) among all x. The natural variations of such a minimization prob-
lem are inner variations, i. e. variations of the independent variable. Given a vector field
£ € C*([0, A)¢, R?) and an admissible x, we define the deformation x; of x along & by
the distributional equation

a
aXi,S + Vxis-§ =0, Xi,x|S:0 = Xi>

which means that the phases are deformed by the flow generated through £. The inner variation
S Ej, of the energy Ej, at x along the vector field € is then given by

d 2
SEN(X ) = g En)]g = T Zai,-/x,- Gu* (~Vy;-&)dx. (32
i,j
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For an admissible jx the inner variation of the metric term —Ej, (x — x) is given by
- d -
—8ER(- =000 8) = (= En(xs = O)ls—o
2 -
= =S [ =m0 Gur (Vi g)an. 39
Vi

The (chosen and not necessarily unique) minimizer x” in Algorithm 1 therefore satisfies the
Euler-Lagrange equation

SEn(x", &) = 8En(- — x" H(x", &) =0 (34)
for any vector field & € C*°([0, A, RY).

3.1 Results

The goal of this section is to prove the following statement about the convergence of the first
term in the Euler—Lagrange equation.

Proposition 3.1 Let x", x: (0, T)x[0, A)¢ — {0, 1} be such that x"(t), x (t) are admis-
sible in the sense of (4) and E(x (t)) < oo for a.e. t. Let

Xh —> x a.e.in(0,T) x [0, A)d, (35)

and furthermore assume that

T T
/ En(x™ dt —>/ E(x)dt. (36)
0 0
Then, for any & € C§°((0, T) x [0, A)4, RY), we have

T

lim / SEn(x", &) dt

h—0 Jo

T 1
= Cozﬁi_//o /(v &= v VEW) o (1Yl + [V | = [VOu + x)]) ar.
ij
It is easy to reduce the statement to the following time-independent statement.

Proposition 3.2 Ler x, x: [0, A) — {0, 1}F be admissible in the sense of (4) with
E(x) < oo such that

" x ae., (37)
and furthermore assume that
Ex(x") — EQ0. (38)

Then, for any & € C*°({[0, M), RY), we have

. 1
maEhuh, £) = CO,Z,;J” / (V& —vi-VEw) 5 (IVxil + Vx| = Vi + x))]) -

@ Springer



Convergence of the thresholding scheme Page 25 of 74 129

Remark 3.3 Proposition 3.2 and all other statements in this section hold also in a more
general context. We do not need the approximations x” to be characteristic functions. In fact
the statements hold for any sequence u” : [0, A)¢ — [0, 1]¥ with > uf‘ = 1 a.e. converging
to some y : [0, AT — {0, 1} with E(x) < oo in the sense of (37)—(38).

The following first lemma brings the first variation § E; of Ej into a more convenient
form, up to an error vanishing as 4 — 0 because of the smoothness of &. Already at this
stage one can see the structure

V-E—v-VEv=VE: (Id—vQv)
in the first variation of E in the form of V&: (G,ld — hV2G},) on the level of the approxi-
mation.
Lemma 3.4 Let x be admissible and & € C([0, A)?, RY) then

1
SENGL == oy [ 0V : (GhId=hV3Gy) 5 4y dx+0 (196 EnGVE).
iJj

(39)

We have already seen in Lemma 2.8 that we can pass to the limit in the term involving
only the kernel G 1d:

MIZ%/;XZ Gn* x) dx—coZa,,/; (Vi + 1V = VG + 1)) »

where now ¢ = V - £. The next proposition shows that we can also pass to the limit in the
term involving the second derivatives 4V>G}, of the kernel, which yields the projection v ® v
onto the normal direction in the limit.

Proposition 3.5 Let x", x satisfy the convergence assumptions (37) and (38). Then for any
A € C®([0, A)T R

: 1 h g . 2 h
}PLI})EZO'U/XI- A:hV Gh*xjdx

—a Yoy [vavs 2 (V1 + 1931 = 19 + 7).
ij
The following two statements are used to prove Proposition 3.5. The following lemma
yields in particular the construction part in the I"-convergence result of Ej to E. We need it
in a localized form; the proof closely follows the proof of Lemma 4 in Section 7.2 of [14].

Lemma 3.6 (Consistency) Let x € BV ([0, A)?, {0, 1Y) be admissible in the sense of (4).
Then for any ¢ € C®([0, A)?)

. 1 1
l}%ﬁizjldij/f Xi Gp* xjdx = Coizjldij/f 3 (IVxil + IVxjl = IV + x)I)
and for any A € C*°([0, A)d, RE*d)

R
,%ILI})\/“ZU’J/X"A’}ZV Gp* xjdx

1
—a X0 [ veavg (90l + 1951 = 906 + ).
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The next lemma shows that under our convergence assumption of x” to x, the correspond-
ing spatial covariance functions fj, and f are very close and allows us to pass from Lemmas
3.4 and 3.6 to Proposition 3.2.

Lemma 3.7 (Error estimate) Let x", x satisfy the convergence assumptions (37) and (38)
and let k be a non-negative kernel such that

k(z) = p(1zDG(2)
for some polynomial p. Then

li
h—0

1
m ﬁ/kh(zﬂfh(z) ~ f@ldz =0, (40)
where

7@ i= Yoy [ Ao+ and £ i= Py [ x0ox6+ 2.
ij ij
3.2 Proofs
Proof of Proposition 3.1 The proposition is an immediate consequence of the time-indep-
endent analogue, Proposition 3.2. Indeed, according to Step 1 in the proof of Lemma 2.8

we have Ej( Xh) — E(x) for a. e. t. Thus all conditions of Proposition 3.2 are fulfilled.
Proposition 3.1 follows then from Lebesgue’s dominated convergence theorem. O

Proof of Proposition 3.2 We may apply Lemma 3.4 for x" and obtain by the energy-
dissipation estimate (10) that

1
SEn(x, "y = 7 > o / X! V& (1d Gy — hV?Gy) % X! dx + O (||v25||ooEo«/E) .
ij
Applying Proposition 3.5 for the kernel V2G with V& playing the role of the matrix field A
and Lemma 2.8 for the kernel G with { = V - &, we can conclude the proof. m]
Proof of Lemma 3.4 Recall the definition of § Ej in (32). Since —Vyx - & = =V - (x &) +

% (V - £) for any function ¥ : [0, A)¢ — R, we can rewrite the integral on the right-hand
side of (32):

/xl-Gh*(—vx,--s)dx=/—x,-Gh*(V-<x,-s>)+x,-Gh*(x_,V-s)dx

=/—XiVGh*(XjE)-i-Xj(V-"E)Gh*Xidx-

Let us first turn to the first right-hand side term. For fixed (i, j), we can collect the two terms
in the sum that belong to the interface between phases i and j and obtain by the antisymmetry

of the kernel VG, that the resulting term with the prefactor %;% is

/—xi VG * (4 €) — x; VG * (i €) dx

_ / Xi(X)/(S(x) L E(x —2)) - VG x(x — D) dzdx.
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A Taylor expansion of £ around x gives the first-order term

2(7,‘./'

Xi (x) / (VE(X)2) - VGi(2) xj(x —z)dzdx.

Now we argue that the second-order term is controlled by || V2E ||loo En (x)~/h. Indeed, since
1zI3G(z) < G1(2), the contribution of the second-order term is controlled by

e
1960 201y [ 6@ [ 000,04 2y e

ij
~ V€ lloo'h E2i ().

1 Izl
||v2s||oo—h Zaﬁ/|z|276h(z)/xl~<x)x]~(x+z)dxdz
L]

Using the approximate monotonicity (18) of Ej, we have suitable control over this term.
After distrib