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Abstract We consider the thresholding scheme, a time discretization for mean curvature flow
introduced by Merriman et al. (Diffusion generated motion by mean curvature. Department
of Mathematics, University of California, Los Angeles 1992). We prove a convergence result
in the multi-phase case. The result establishes convergence towards a weak formulation of
mean curvature flow in the BV-framework of sets of finite perimeter. The proof is based
on the interpretation of the thresholding scheme as a minimizing movements scheme by
Esedoğlu et al. (Commun Pure Appl Math 68(5):808–864, 2015). This interpretation means
that the thresholding scheme preserves the structure of (multi-phase) mean curvature flow as
a gradient flow w. r. t. the total interfacial energy. More precisely, the thresholding scheme
is a minimizing movements scheme for an energy functional that �-converges to the total
interfacial energy. In this sense, our proof is similar to the convergence results of Almgren et
al. (SIAM J Control Optim 31(2):387–438, 1993) and Luckhaus and Sturzenhecker (Calculus
Var Partial Differ Equ 3(2):253–271, 1995), which establish convergence of a more academic
minimizing movements scheme. Like the one of Luckhaus and Sturzenhecker, ours is a
conditional convergence result, which means that we have to assume that the time-integrated
energy of the approximation converges to the time-integrated energy of the limit. This is a
natural assumption, which however is not ensured by the compactness coming from the basic
estimates.

Mathematics Subject Classification 35A15 · 65M12

Communicated by M. Struwe.

B Tim Laux
tim.laux@mis.mpg.de

1 Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22,
04103 Leipzig, Germany

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/191376519?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s00526-016-1053-0&domain=pdf


129 Page 2 of 74 T. Laux, F. Otto

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Informal summary of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Main result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Energy functional and curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Dissipation functional and velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1 Idea of the proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1 Proof of Theorem 1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2 Proofs of the lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1 Introduction

1.1 Context

The thresholding scheme, a time discretization for mean curvature flow introduced by Merri-
man et al. [26], has because of its conceptual and practical simplicity become a very popular
scheme, see Algorithm 1 for its definition in a more general context. It has a natural extension
from the two-phase case to the multi-phase case with triple junctions in local equilibrium,
well-known in case for equal surface tensions since some time [27]. Multi-phase mean-
curvature flow models the slow relaxation of grain boundaries in polycrystals (called grain
growth), where each grain corresponds to a phase. Elsey et al. have shown that (a modifica-
tion of) the thresholding scheme is practical in handling a large number of grains over time
intervals sufficiently large to extract significant statistics of the coarsening (also called aging)
of the grain configuration [11–13]. In grain growth, the surface tension (and the mobility) of
a grain boundary is both dependent on the misorientation between the crystal lattice of the
two adjacent grains and on the orientation of its normal. In other words, the surface tension
σi j of an interface is indexed by the pair (i, j) of phases it separates, and is anisotropic.
Esedoğlu and the second author have shown in [14] the thresholding scheme can be extended
to handle the first extension in a very general way, including in particular the most popular
Ansatz for a misorientation-dependent grain boundary energy [33]. How to handle general
anisotropies in the framework of the thresholding scheme, even in case of two phases, seems
not yet to be completely settled, see however [5] and [19]. Hence in this work, we will focus
on the isotropic case, ignore mobilities, but make the attempt to be as general as [14] when
it comes to the dependence of σi j on the pair (i, j).

In the two-phase case, the convergence of the thresholding scheme is well-understood:
two-phase mean curvature flow satisfies a geometric comparison principle, and it is easy to
see that the thresholding scheme preserves this structure. Partial differential equations and
geometric motions that allow for a comparison principle can typically be even characterized
by comparison with very simple solutions, which opens the way for a definition of a very
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robust notion of weak solutions, namely what bears the somewhat misleading name of viscos-
ity solutions. If one allows for what the experts know as fattening, two-phase mean-curvature
flow is well-posed in this framework [16]. Barles and Georgelin [4] and Evans [15] proved
independently that the thresholding scheme converges to mean-curvature flow in this sense.
Hence the main novelty of this work is a (conditional) convergence result in the multi-phase
case; where clearly a geometric comparison principle is absent. However, the result has also
some interest in the two-phase case, since it establishes convergence even in situations where
the viscosity solution features fattening. Together with Drew Swartz [22], the first author uses
similar arguments to treat another version of mean curvature flow that does not even allow
for a comparison principle in the two-phase case, namely volume-preserving mean-curvature
flow. They prove (conditioned) convergence of a scheme introduced by Ruuth and Wetton
in [35]. We also draw the reader’s attention to the recent work of Mugnai et al. [32], where
they prove a (conditional) convergence result as in [24] of a modification of the scheme
in [2,24] to volume-preserving mean curvature flow. Note that due to the only conditional
convergence, our result does not provide a long-time existence result for (weak solutions of)
multi-phase mean curvature flow. Short-time existence results of smooth solutions go back
to the work of Bronsard and Reitich [7]. Mantegazza et al. [25] and Schnürer et al. [38] were
able to construct long-time solutions close to a self-similar singularity.

For the present work, the structural substitute for the comparison principle is the gradient
flow structure. Folklore says that mean curvature flow, also in its multi-phase version, is the
gradient flow of the total interfacial energy. It is by now well-appreciated that the gradient flow
structure also requires fixing a Riemannian structure, that is, an inner product on the tangent
space, which here is given by the space of normal velocities. Mean curvature flow is then
the gradient flow with respect to the L2-inner product, in case of grain growth weighted by
grain-boundary-dependent and anisotropic mobilities. Loosely speaking, Brakke’s existence
proof in the framework of varifolds [6] is based on this structure in the sense that the solution
monitors weighted versions of the interfacial energy. Recently, Kim and Tonegawa [21]
improved this work by deriving the continuity of the volumes of the grains in the case of
grain growth with equal surface tensions which ensures that the solution is non-trivial. Also
Ilmanen’s convergence proof of the Allen–Cahn equation, a diffuse interface approximation
of computational relevance in the world of phase-field models, to mean curvature flow makes
use of the gradient flow structure [18]. It was only discovered recently that the thresholding
algorithm preserves also this gradient flow structure [14], which in that paper was taken as a
guiding principle to extend the scheme to surface tensions σi j and mobilities that depend on
the phase pair (i, j). In this paper, we take the gradient flow structure, which we make more
precise in the following paragraphs, as a guiding principle for the convergence proof.

On the abstract level, every gradient flow has a natural discretization in time, which
comes in form of a sequence of variational problems: the configuration �n at time step n
is obtained by minimizing 1

2 dist2(�,�n−1) + hE(�), where �n−1 is the configuration at
the preceding time step, h is the time-step size and dist denotes the induced distance on the
configuration space endowed with the Riemannian structure. In the Euclidean case, the Euler–
Lagrange equation (i. e. the first variation) of this variational problem yields the implicit (or
backwards) Euler scheme. This variational scheme has been named “minimizing movements”
by De Giorgi [10], and has recently gained popularity because it allows to interpret diffusion
equations as gradient flows of an entropy functional w. r. t. the Wasserstein metric ([20],
see [3] for the abstract framework)—an otherwise unrelated problem. However, the formal
Riemannian structure in case of mean curvature flow is completely degenerate: dist2(�, �̃)

as defined as the infimal energy of curves in configuration space that connect � to �̃ vanishes
identically, cf. [28].
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Hence when formulating a minimizing movements scheme in case of mean curvature
flow, one has to come up with a proxy for dist2(�, �̃). This has been independently achieved
by Almgren et al. [2] on the one side and Luckhaus and Sturzenhecker [24] on the other
side of the Atlantic. � = ∂� and �̃ = ∂�̃, 2

∫
���̃

d(x, �)dx is one possible substitute

for dist2(�, �̃) in the minimizing movements scheme, where d(x, �) denotes the unsigned
distance of the point x to the surface �—it is easy to see that to leading order in the prox-
imity of �̃ to �, this expression behaves as the metric tensor

∫
�
V 2dx , where V is the

normal velocity leading from � to �̃ in one unit time. Their work makes this point by
proving that this minimizing movements scheme converges to mean curvature flow. To be
more precise, they consider a time-discrete solution {�n}n of the minimizing movement
scheme, interpolated as a piecewise constant function �h in time and assume that for a
subsequence h ↓ 0, the time-dependent sets �h converge to � in a stronger sense than
the given compactness provides. Almgren et al. assume that �h(t) converges to �(t) in
the Hausdorff distance and show that � solves the mean curvature flow equation in the
above mentioned viscosity sense. The argument was later substantially simplified by Cham-
bolle and Novaga in [9]. Luckhaus and Sturzenhecker start from a weaker convergence
assumption than the one in [2]: they assume that for the finite time horizon T under consid-
eration,

∫ T
0 |�h(t)|dt converges to

∫ T
0 |�(t)|dt . Then they show that � evolves according

to a weak formulation of mean curvature flow, using a distributional formulation of mean
curvature that is available for sets of finite perimeter, see Definition 1.1 for the multi-phase
case of this formulation. Incidentally, weak-strong uniqueness of this formulation seems not
to be understood—even in the two-phase case. Those are both only conditional convergence
results: While the natural estimates coming from the minimizing movements scheme, namely
the uniform boundedness of supn |�n | and

∑
n 2

∫
�n��n+1 d(x, �n)dx , are enough to ensure

∫ T
0 |�h(t)��(t)|dt → 0 and

∫ T
0 |�(t)|dt ≤ lim inf

∫ T
0 |�h(t)|dt , they are not sufficient

to yield lim sup
∫ T

0 |�h(t)|dt ≤ ∫ T
0 |�(t)|dt or even the convergence of �h(t) to �(t) in

the Hausdorff distance. Our result will be a conditional convergence result very much in the
same sense as the one in [24] but it turns out that our convergence result for the thresholding
scheme requires no regularity theory for (almost) minimal surfaces, in contrast to the one
of [24] and is therefore not restricted to low spatial dimensions d ≤ 7. Although the time
discretization scheme in [2,24] seems rather academic from a computational point of view,
it has been adapted for numerical simulations by Chambolle in [8]. Nevertheless, even in
that variant, in each step one has to compute a (signed) distance function and solve a convex
optimization problem.

Following [14], we now explain in which sense the thresholding scheme may be considered
as a minimizing movements scheme for mean curvature flow. Each step in Algorithm 1 is
equivalent to minimizing a functional of the form Eh(χ)−Eh(χ−χn−1), where the functional
Eh , defined below in (3), is an approximation to the total interfacial energy. It is a little more
subtle to see that the second term, −Eh(χ

n − χn−1), is comparable to the metric tensor∫
�
V 2dx . The �-convergence of functionals of the type (3) to the area functional has a

long history: for the two-phase case, cf. Alberti and Bellettini [1] and Miranda et al. [29].
The multi-phase case, also for arbitrary surface tensions was investigated by Esedoğlu and
the second author in [14]. Incidentally, it is easy to see that �-convergence of the energy
functionals is not sufficient for the convergence of the corresponding gradient flows; Sandier
and Serfaty [36] have identified sufficient conditions on both the functional and the metric
tensor for this to be true.
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Identically, the approach of Saye and Sethian [37] for multi-phase evolutions can also be
seen as coming from the gradient flow structure when applied to mean-curvature flow with
P phases. More precisely, it can be understood as a time splitting of an L2-gradient flow
with an additional phase whose volume is strongly penalized: the first step is (P + 1)-phase
gradient flow w. r. t. the total interfacial energy and the second step is (P + 1)-gradient flow
w. r. t. the volume penalization (so geometrical optics leading to the Voronoi construction).

1.2 Informal summary of the proof

We now give a summary of the main steps and ideas of the convergence proof. In Sect. 2, we
draw consequences from the basic estimate (10) in a minimizing movements scheme, like
compactness, Proposition 2.1, coming from a uniform (integrated) modulus of continuity in
space, Lemma 2.4, and in time, Lemma 2.5. We also draw the first consequence from the
strengthened convergence (8) in the case of equal surface tensions in Proposition 2.2. We
strongly advise the reader to familiarize him- or herself with the argument for the modulus
of continuity in time, Lemma 2.5, since it is there that the mesoscopic time scale

√
h appears

for the first time in a simple context before being used in Sect. 4 in a more complex context.
In the same vein, the fudge factor α in the mesoscopic time scale α

√
h, which will be crucial

in Sect. 4, will first be introduced and used in the simple context when estimating the normal
velocity V of the limit in Proposition 2.2.

Starting from Sect. 3, we also use the Euler–Lagrange equation (34) of the minimizing
movement scheme. By Euler–Lagrange equation we understand the first variation w. r. t.
the independent variables, as generated by a test vector field ξ . In Sect. 3, we pass to the
limit in the energetic part of the first variation, recovering the mean curvature H via the
term

∫
�
H ξ · ν = ∫

�
∇ · ξ − ν · ∇ξ ν. This amounts to show that under our assumption

of strengthened convergence (8), the �-convergence of the functionals can be upgraded to a
distributional convergence of their first variations, cf. Proposition 3.1. It is a classical result
credited to Reshetnyak [34] that under the strengthened convergence of sets of finite perimeter,
the measure-theoretic normals and thus the distributional expression for mean curvature also
converge. The fact that this convergence of the first variation may also hold when combined
with a diffuse interface approximation is known for instance in case of the Ginzburg–Landau
approximation of the area functional (also known by the names of Modica and Mortola, who
established this �-convergence [30,31]), see [23]. In our case the convergence of the first
variations relies on a localization of the ingredients for the �-convergence worked out in
[14], like the consistency, i. e. pointwise convergence of these functionals.

Section 4 constitutes the central and, as we believe, most innovative piece of the paper;
we pass to the limit in the dissipation/metric part of the first variation, recovering the normal
velocity V via the term

∫
�
V ξ · ν. In fact, we think of the test-field ξ as localizing this

expression in time and space, and recover the desired limiting expression only up to an error
that measures how well the limiting configuration can be approximated by a configuration
with only two phases and a flat interface in the space–time patch under consideration; this
is measured both in terms of area (leading to a multi-phase excess in the language of the
regularity theory of minimal surfaces) and volume, see Proposition 4.1. The main difficulty
of recovering the metric term

∫
�
V ξ · ν in comparison to recovering the distributional form∫

�
∇ ·ξ−ν ·∇ξ ν of the energetic term is that one has to recover both the normal velocity V ,

which is distributionally characterized by ∂tχ −V |∇χ | = 0 on the level of the characteristic
function χ , and the (spatial) normal ν. In short: one has to pass to the limit in a product. More
precisely, the main difficulty is that there is no good bound on the discrete normal velocity V
at hand on the level of the microscopic time scale h; only on the level of the above-mentioned
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mesoscopic time scale
√
h, such an estimate is available. This comes from the fact that the

basic estimate yields control of the time derivative of the characteristic function χ only when
mollified on the spatial scale

√
h in u = Gh ∗ χ . The main technical ingredient to overcome

this lack of control in Proposition 4.1 is presented in Lemma 4.2 in the two-phase case and
in Lemma 4.5 in the general setting: if one of the two (spatial) functions u, ũ is not too far
from being strictly monotone in a given direction (a consequence of the control of the tilt
excess, see Lemma 4.4), then the spatial L1-difference between the level sets χ = {u > 1

2 }
and χ̃ = {ũ > 1

2 } is controlled by the squared L2-difference between u and ũ.
In Sect. 5, we combine the results of the previous two sections yielding the weak formu-

lation of V = H on some space–time patch up to an error expressed in terms of the above
mentioned (multi-phase) tilt excess of the limit on that patch. Complete localization in time
and partition of unity in space allows us to assemble this to obtain V = H globally, up to
an error expressed by the time integral of the sum of the tilt excess over the spatial patches
of finite overlap. De Giorgi’s structure theorem for sets of finite perimeter (cf. Theorem 4.4
in [17]), adapted to a multi-phase situation but just used for a fixed time slice, implies that
the error expression can be made arbitrarily small by sending the length scale of the spatial
patches to zero.

1.3 Notation

We denote by

Gh(z) := 1

(2πh)d/2 exp

(

−|z|
2

2h

)

the Gaussian kernel of variance h. Note that G2t (z) is the fundamental solution to the heat
equation and thus

∂hG − 1
2�G = 0 in (0,∞)× R

d ,

G = δ0 for h = 0.

We recall some basic properties, such as the normalization, non-negativity, boundedness and
the factorization property:

∫

Rd
Gh dz = 1, 0 ≤ Gh ≤ Ch−d/2, ∇Gh(z) = − z

h
Gh(z), G(z) = G1(z1)G

d−1(z′),

where G1 denotes the 1-dimensional and Gd−1 the (d− 1)-dimensional Gaussian kernel; let
us also mention the semi-group property

Gs+t = Gs ∗ Gt .

Throughout the paper, we will work on the flat torus [0,�)d . The thresholding scheme
for multiple phases, introduced in [14], for arbitrary surface tensions σi j and mobilities
μi j = 1/σi j is the following.

Algorithm 1 Given the partition �n−1
1 , . . . , �n−1

P of [0,�)d at time t = (n − 1)h, obtain
the new partition �n

1, . . . , �n
P at time t = nh by:
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1. Convolution step:

φi := Gh ∗
⎛

⎝
P∑

j=1

σi j1�n−1
j

⎞

⎠ . (1)

2. Thresholding step:

�n
i :=

{
x ∈ [0,�)d : φi (x) < φ j (x) for all j �= i

}
. (2)

We will denote the characteristic functions of the phases �n
i at the nth time step by χn

i
and interpolate these functions piecewise constantly in time, i. e.

χh
i (t) := χn

i = 1�n
i

for t ∈ [nh, (n + 1)h).

As in [14], we define the approximate energies

Eh(χ) := 1√
h

∑

i, j

σi j

∫
χi Gh ∗ χ j dx (3)

for admissible measurable functions:

χ = (χ1, . . . , χP ) : [0,�)d → {0, 1}P s. t.
P∑

i=1

χi = 1 a.e. (4)

Here and in the sequel
∫
dx stands short for

∫
[0,�)d

dx , whereas
∫
dz stands short for

∫
Rd dz.

The minimal assumption on the matrix of surface tensions {σi j }, next to the obvious

σi j = σ j i ≥ σmin > 0 if i �= j, σi i = 0,

is the following triangle inequality

σi j ≤ σik + σk j .

It is known that (e. g. [14]), under the conditions above, these energies �-converge w. r. t.
the L1-topology to the optimal partition energy given by

E(χ) := c0

∑

i, j

σi j
1

2

( ∫
|∇χi | +

∫
|∇χ j | −

∫
|∇(χi + χ j )|

)

for admissible χ :

χ = (χ1, . . . , χP ) : [0,�)d → {0, 1}P ∈ BV s. t.
P∑

i=1

χi = 1 a.e.

The constant c0 is given by

c0 := ωd−1

∫ ∞

0
G(r)rddr = 1√

2π
.

For our purpose we ask the matrix of surface tensions σ to satisfy a strict triangle inequality:

σi j < σik + σk j for pairwise different i, j, k.
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We recall the minimizing movements interpretation from [14] which is easy to check. The
combination of convolution and thesholding step in Algorithm 1 is equivalent to solving the
following minimization problem

χn = arg min
χ

{
Eh(χ)− Eh(χ − χn−1)

}
, (5)

where χ runs over (4). The proof will mostly be based on the interpretation (5) and only once
uses the original form (1) and (2) in Lemmas 4.2 and 4.4, respectively. Following [14], we
will additionally assume that σ is conditionally negative-definite, i. e.

σ ≤ −σ on (1, . . . , 1)⊥,

where σ > 0 is a constant. That means, that σ is negative as a bilinear form on (1, . . . , 1)⊥.
This ensures that −Eh(χ − χn−1) in (5) is non-negative and penalizes the distance to the
previous step.
In the following we write A � B to express that A ≤ CB for a (possibly large) generic
constant C < ∞ that only depends on the dimension d , the total number of phases P and
on the matrix of surface tensions σ through σmin = mini �= j σi j , σmax = max σi j , σ and
min{σik + σk j − σi j : i, j, k pairwise different}. Furthermore, we say a statement holds for
A � B if the statement holds for A ≤ 1

C B for some generic constant C < ∞ as above.

1.4 Main result

The definition of our weak notion of mean-curvature flow is a distributional formulation
which is suited to the framework of functions of bounded variation.

Definition 1.1 (Motion by mean curvature) Fix some finite time horizon T < ∞, a matrix of
surface tensions σ as above and initial data χ0 : [0,�)d → {0, 1}P with E0 := E(χ0) < ∞.
We say that the network

χ = (χ1, . . . , χP ) : (0, T )× [0,�)d → {0, 1}P

with
∑

i χi = 1 a. e. and

sup
t

E(χ(t)) < ∞

moves by mean curvature if there exist functions Vi : (0, T )× [0,�)d → R with

∫ T

0

∫
V 2
i |∇χi | dt < ∞

which satisfy

∑

i, j

σi j

∫ T

0

∫
(∇ · ξ − νi · ∇ξ νi − 2 ξ · νi Vi ) 1

2

(|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) dt = 0

(6)

123



Convergence of the thresholding scheme Page 9 of 74 129

for all ξ ∈ C∞0 ((0, T ) × [0,�)d ,Rd) and which are normal velocities in the sense that for
all ζ ∈ C∞([0, T ] × [0,�)d) with ζ(T ) = 0 and all i ∈ {1, . . . , P}

∫ T

0

∫
∂tζ χi dx dt +

∫
ζ(0)χ0

i dx = −
∫ T

0

∫
ζ Vi |∇χi | dt. (7)

Note that (7) also encodes the initial conditions as well as (6) encodes the Herring angle
condition. Indeed, for a smooth evolution, since for any interface � we have

∫

�

(∇ · ξ − ν · ∇ξ ν) =
∫

�

b · ξ +
∫

�

Hν · ξ,

where � = ∂�, b denotes the conormal and H the mean curvature of �, we do not only
obtain the equation

Hi j = 2Vi j on �i j = ∂�i ∩ ∂� j

along the smooth parts of the interfaces but also the Herring angle condition at triple junctions.
If three phases �1, �2 and �3 meet at a point x , then we have

σ12 ν12(x)+ σ23 ν23(x)+ σ31 ν31(x) = 0.

In terms of the opening angles θ1, θ2 and θ3 at the junction, this condition reads

sin θ1

σ23
= sin θ2

σ13
= sin θ3

σ12
,

so that the opening angles at triple junctions are determined by the surface tensions.

Remark 1.2 To prove the convergence of the scheme, we will need the following convergence
assumption:

∫ T

0
Eh(χ

h) dt →
∫ T

0
E(χ) dt. (8)

This assumption makes sure that there is no loss of area in the limit h → 0 as in Fig. 1.

Theorem 1.3 Let P ∈ N, let the matrix of surface tensions σ satisfy the strict triangle
inequality and be conditionally negative-definite, T < ∞ be a finite time horizon and let χ0

be given with E(χ0) < ∞. Then for any sequence there exists a subsequence h ↓ 0 and a

χh = 1

χh = 1

h → 0
χ = 1

Fig. 1 For fixed t = t0 as h → 0 there should be no loss of area. The ruled out case is illustrated here. The
dashed line is sometimes called hidden boundary
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t

#steps

0 T

0 N

h

1

2h

2

τ

K

2τ

2K

Fig. 2 The micro-, meso-, and macroscopic time scales h, τ and T

χ : (0, T )× [0,�)d → {0, 1}P with E(χ(t)) ≤ E0 such that the approximate solutions χh

obtained by Algorithm 1 converge to χ . Given (8), χ moves by mean curvature in the sense
of Definition 1.1 with initial data χ0.

Remark 1.4 An upcoming result of the authors will show that under the assumption (8) the
limit χ solves a localized energy inequality and is thus a weak solution in the sense of Brakke.

Remark 1.5 Our proof uses the following three different time scales (Fig. 2):

1. the macroscopic time scale, T < ∞, given by the finite time horizon,
2. the mesoscopic time scale, τ = α

√
h ∼ √

h > 0 and
3. the microscopic time scale, h > 0, coming from the time discretization.

The mesoscopic time scale arises naturally from the scheme: due to the parabolic scaling,
the microscopic time scale h corresponds to the length scale

√
h as can be seen from the

kernel Gh . Since for a smooth evolution, the normal velocity V is of order 1, this prompts
the mesoscopic time scale

√
h.

The parameter α will be kept fixed most of the time until the very end, where we send α → 0.
Therefore, it is natural to think of α ∼ 1, but small.
These three time scales go hand in hand with the following numbers, which we will for
simplicity assume to be natural numbers throughout the proof:

1. N : the total number of microscopic time steps in a macroscopic time interval (0, T ),
2. K: the number of microscopic time steps in a mesoscopic time interval (0, τ ) and
3. L: the number of mesoscopic time intervals in a macroscopic time interval.

The following simple identities linking these different parameters will be used frequently:

T = Nh = Lτ, τ = Kh, L = N

K
= T

τ
.

2 Compactness

In this section we prove the compactness of the approximate solutions, construct the normal
velocities and derive bounds on these velocities. In the first subsection we present all results
of this section; the proofs can be found in the subsequent subsection.

2.1 Results

The first main result of this section is the following compactness statement.

Proposition 2.1 (Compactness) There exists a sequence h ↓ 0 and a limit χ : (0, T ) ×
[0,�)d → {0, 1}P such that

χh −→ χ a. e. in (0, T )× [0,�)d (9)

and the limit satisfies E(χ(t)) ≤ E0 and χ(t) is admissible in the sense of (4) for a.e.
t ∈ (0, T ).
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The second main result of this section is the following construction of the normal velocities
and the square-integrability under the convergence assumption (8).

Proposition 2.2 If the convergence assumption (8) holds, the limit χ = limh→0 χh has the
following properties.

(i) ∂tχ is a Radon measure with
∫∫

|∂tχi | � (1+ T )E0

for each i ∈ {1, . . . , P}.
(ii) For each i ∈ {1, . . . , P}, ∂tχi is absolutely continuous w. r. t. |∇χi | dt. In particular,

there exists a density Vi ∈ L1(|∇χi | dt) such that

−
∫ T

0

∫
∂tζ χi dx dt =

∫ T

0

∫
ζ Vi |∇χi | dt

for all ζ ∈ C∞0 ((0, T )× [0,�)d).
(iii) We have a strong L2-bound: for each i ∈ {1, . . . , P}

∫ T

0

∫
V 2
i |∇χi | dt � (1+ T ) E0.

Both results essentially stem from the following basic estimate, a direct consequence of
the minimizing movements interpretation (5).

Lemma 2.3 (Energy-dissipation estimate) The approximate solutions satisfy

Eh(χ
N )−

N∑

n=1

Eh(χ
n − χn−1) ≤ E0. (10)

√−Eh defines a norm on the process space {ω : [0,�)d → R
P |∑i ωi = 0}. In particular,

the algorithm dissipates energy.

In order to prove Proposition 2.1 we derive estimates on time- and space-variations of the
approximations only using the basic estimate (10).

The estimate (10) bounds the (approximate) energies Eh(χ
h), which in turn control∫ ∣∣∇Gh ∗ χh

∣
∣ dx and thus variations of Gh ∗ χh in space. On length scales greater than√

h, this estimate also survives for the approximations χh .

Lemma 2.4 (Almost BV in space) The approximate solutions satisfy

∫ T

0

∫ ∣
∣
∣χh(x + δe, t)− χh(x, t)

∣
∣
∣ dx dt � (1+ T )E0

(
δ +√h

)
(11)

for any δ > 0 and e ∈ Sd−1.

Variations in time are controlled by the following lemma coming from interpolating the
(unbalanced) estimate (10) on time scales of order

√
h.
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129 Page 12 of 74 T. Laux, F. Otto

Lemma 2.5 (Almost BV in time) The approximate solutions satisfy

∫ T

τ

∫ ∣
∣
∣χh(t)− χh(t − τ)

∣
∣
∣ dx dt � (1+ T )E0

(
τ +√h

)
(12)

for any τ > 0.

Let us also mention that with the same methods we can prove C1/2-Hölder-regularity of the

volumes, i. e. |�(s)��(t)| � |s − t | 1
2 . For the approximations this estimate of course only

holds on time scales larger than the time-step size h.

Lemma 2.6 (C1/2-bounds) We have uniform Hölder-type bounds for the approximate solu-
tions: I.e. for any pair s, t ∈ [0, T ] with |s − t | ≥ h we have

∫ ∣
∣
∣χh(s)− χh(t)

∣
∣
∣ dx � E0 |s − t | 1

2 . (13)

In particular, χ ∈ C1/2([0, T ], L1([0,�)d)): for almost every s, t ∈ (0, T ), we have

∫
|χ(s)− χ(t)| dx � E0 |s − t | 1

2 . (14)

For the proof of the second main result of this section, Proposition 2.2, and also for later
use in Sect. 4 it is useful to define certain measures which are induced by the metric term.
These measures allow us to localize the result of Lemma 2.5. In the two-phase case this
is enough to prove that the measure ∂tχ is absolutely continuous w. r. t. the perimeter and
the existence and integrability of the normal velocity, cf. (i) and (ii) of Proposition 2.2. The
square-integrability follows then from a refinement of these estimates by localizing the fudge
factor α (cf. Remark 1.5) after passage to the limit h → 0.

Definition 2.7 (Dissipation measure) For h > 0, we define the approximate dissipation
measures (associated to the approximate solution χh) μh on [0, T ] × [0,�)d by

∫∫
ζ dμh :=

N∑

n=1

1√
h

∫
ζ
n
(∣
∣Gh/2 ∗

(
χn − χn−1)∣∣2 + ∣

∣Gh ∗
(
χn − χn−1)∣∣2

)
dx, (15)

where ζ ∈ C∞([0, T ]×[0,�)d) and ζ
n

is the time average of ζ on the interval [nh, (n+1)h).
By the monotonicity of h �→ ‖Gh ∗ u‖L2 and the energy-dissipation estimate (10), we have

μh([0, T ] × [0,�)d) � E0 (16)

and μh ⇀ μ after passage to a further subsequence for some finite, non-negative measure μ

on [0, T ] × [0,�)d with μ([0, T ] × [0,�)d) � E0. We call μ the dissipation measure.

In order to prove Proposition 2.2 also in the multi-phase case we have to ensure that
the convergence assumption implies the convergence of the individual interfacial areas
1
2

∫ (|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣).
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Ωh
1 Ωh

3Ωh
2

h → 0
Ω1 Ω3

Fig. 3 As h → 0, the two interfaces �h
12 and �h

23 merge into one interface, �13, between Phases 1 and 3.

Therefore the measure of |�h
13| jumps up in the limit h → 0 although the total interfacial energy converges

due to the choice of surface tensions

Lemma 2.8 (Implications of convergence assumption) The convergence assumption (8)
ensures that for any pair i �= j and any ζ ∈ C∞([0, T ] × [0,�)d),

∫ T

0

1√
h

∫
ζ
(
χh
i Gh ∗ χh

j + χh
j Gh ∗ χh

i

)
dx dt

→ c0

∫ T

0

∫
ζ
(|∇χi | +

∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) dt, (17)

as h → 0.

The proof of Lemma 2.8 heavily relies on the fact that σ satisfies the strict triangle inequal-
ity so that we can preserve the triangle inequality after perturbing the energy functional. The
following example shows that this is not a technical assumption but is a necessary condition
for the lemma to hold and thus plays a crucial role in identifying the normal velocities Vi .

Example 2.9 To fix ideas let us consider three sets �1, �2 and �3 in dimension d = 2 with
surface tensions σ12 = σ23 = 1, σ13 = 2 as illustrated in Fig. 3. Then, the total energy is
constant in h and due to the choice of the surface tensions the convergence assumption is
fulfilled. Nevertheless, we clearly have

|�h
12| = const. > 0 = |�12| and |�h

13| = 0 < const. = |�13|.
This example also illustrates that although the energy functional E is lower semi-continuous,
the individual interfacial energies 1

2

∫ (|∇χi | + |∇χ j | − |∇(χi + χ j )|
)

are not.

2.2 Proofs

Before proving the statements of this section we cite two results of [14] which will be used
frequently in the proofs.

The following monotonicity statement is a key tool for the �-convergence in [14]. We will
use it throughout our proofs but we seem not to rely heavily on it.

Lemma 2.10 (Approximate monotonicity) For all 0 < h ≤ h0 and any admissible χ , we
have

Eh(χ) ≥
( √

h0√
h +√h0

)d+1

Eh0(χ). (18)
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Another important tool for the �-convergence in [14] is the following consistency, or
pointwise convergence of the functionals Eh to E , which we will refine in Sect. 3.

Lemma 2.11 (Consistency) For any admissible χ ∈ BV , we have

lim
h→0

Eh(χ) = E(χ). (19)

Taking the limit h → 0 in (18) with χ = χ0 and using (19), we see that that the interfacial
energy E0 of the initial data χ(0) ≡ χ0 bounds the approximate energy of the initial data:

E0 := E(χ(0)) ≥ Eh(χ
0).

We first prove Proposition 2.1 which follows directly from the estimates in Lemmas 2.4
and 2.5. Then we give the proofs of the Lemmas used for Proposition 2.1. We present the proof
of Proposition 2.2 at the end of this section since the proof heavily relies on the techniques
developed in the proofs of the lemmas, especially in Lemma 2.5.

Proof of Proposition 2.1 The proof is an adaptation of the Riesz–Kolmogorov L p-compa-
ctness theorem. By Lemmas 2.4 and 2.5, we have

∫ T

0

∫ ∣
∣
∣χh(x + δe, t + τ)− χh(t)

∣
∣
∣ dx dt � (1+ T ) E0

(
δ + τ +√h

)
(20)

for any δ, τ > 0 and e ∈ Sd−1. For δ > 0 consider the mollifier ϕδ given by the scaling
ϕδ(x) := 1

δd+1 ϕ( x
δ
, t

δ
) and ϕ ∈ C∞0 ((−1, 0)× B1) such that 0 ≤ ϕ ≤ 1 and

∫ 0
−1

∫
B1

ϕ = 1.
We have the estimates

∣
∣
∣ϕδ ∗ χh

∣
∣
∣ ≤ 1 and

∣
∣
∣∇(ϕδ ∗ χh)

∣
∣
∣ �

1

δ
.

Hence, on the one hand, the mollified functions are equicontinuous and by Arzelà–Ascoli
precompact inC0([0, T ]×[0,�)d): for given ε, δ > 0 there exist functions ui ∈ C0([0, T ]×
[0,�)d), i = 1, . . . , n(ε, δ) such that

{
ϕδ ∗ χh : h > 0

}
⊂

n(ε,δ)⋃

i=1

Bε(ui ),

where the balls Bε(ui ) are given w. r. t. the C0-norm. On the other hand, for any function χ

we have
∫ T

0

∫
|ϕδ ∗ χ − χ | dx dt ≤

∫
ϕδ(z, s)

∫
|χ(x − z, t − s)− χ(x, t)| d(x, t) d(z, s)

≤ sup
(z,s)∈suppϕδ

∫ T

0

∫
|χ(x − z, t − s)− χ(x, t)| dx dt.

Using this for χh and plugging in (20) yields

∫ T

0

∫ ∣
∣
∣ϕδ ∗ χh − χh

∣
∣
∣ dx dt � (1+ T ) E0

(
δ +√h

)
.
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Given ρ > 0, fix δ, h0 > 0 such that
∫ T

0

∫ ∣
∣
∣ϕδ ∗ χh − χh

∣
∣
∣ dx dt ≤ ρ

2
for all h ∈ (0, h0).

Then set ε := ρ

T�d and find u1, . . . , un from above. Note that only finitely many of the
elements in the sequence {h} are greater than h0. Therefore,

{χh}h ⊂
n⋃

i=1

Bρ(ui ) ∪ {χh}h>h0 ⊂
n⋃

i=1

Bρ(ui ) ∪
⋃

h>h0

Bρ(χh)

is a finite covering of balls (w. r. t. L1-norm) of given radius ρ > 0. Therefore, {χh}h is
precompact and hence relatively compact in L1. Hence we can extract a converging subse-
quence. After passing to another subsequence, we can w. l. o. g. assume that we also have
pointwise convergence almost everywhere in (0, T )× [0,�)d . ��
Proof of Lemma 2.3 By the minimality condition (5), we have in particular

Eh(χ
n)− Eh(χ

n − χn−1) ≤ Eh(χ
n−1)

for each n = 1, . . . , N . Iterating this estimate yields (10) with Eh(χ
0) instead of E0 =

E(χ0). Then (10) follows from the short argument after Lemma 2.11.
We claim that the pairing − 1√

h

∫
ω · σ (Gh ∗ ω̃) dx defines a scalar product on the process

space. It is bilinear and symmetric thanks to the symmetry of σ and Gh . Since σ is condi-
tionally negative-definite,

− 1√
h

∫
ω · σ (Gh ∗ ω) dx = − 1√

h

∫
(
Gh/2 ∗ ω

) · σ (Gh/2 ∗ ω
)
dx

≥ σ√
h
‖Gh/2 ∗ ω‖2

L2 ≥ 0.

Furthermore, we have equality only if ω ≡ 0. Thus,
√−Eh is the induced norm on the

process space. ��
Proof of Lemma 2.4 Step 1 We claim that

∫ T

0

∫ ∣
∣
∣∇Gh ∗ χh

∣
∣
∣ dx dt � (1+ T )E0. (21)

Indeed, for any characteristic function χ : [0,�)d → {0, 1} we have

∇(Gh ∗ χ)(x) = −
∫
∇Gh(z) (χ(x + z)− χ(x)) dz.

Therefore, since |∇Gh(z)| � 1√
h
|G2h(z)|,

∫
|∇Gh ∗ χ | dx �

1√
h

∫
G2h(z)

∫
|χ(x + z)− χ(x)| dx dz.

By χ ∈ {0, 1}, we have |χ(x + z)− χ(x)| = χ(x) (1− χ) (x + z)+ (1− χ) (x)χ(x + z)
and thus by symmetry of G2h :

∫
|∇Gh ∗ χ | dx �

1√
h

∫
(1− χ) G2h ∗ χ dx .
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Applying this on χh
i , summing over i = 1, . . . , P , using χh

i = 1 −∑
j �=i χh

j and σi j ≥
σmin > 0 for i �= j we obtain

∫ ∣
∣
∣∇Gh ∗ χh(t)

∣
∣
∣ dx � E2h(χ

h) � Eh(χ
h),

where we used the approximate monotonicity of Eh , cf. Lemma 2.10. Using the energy-
dissipation estimate (10), we have

∫ ∣
∣
∣∇Gh ∗ χh(t)

∣
∣
∣ dx � E0

and integration in time yields (21).
Step 2 By (21) and Hadamard’s trick, we have on the one hand

∫ T

0

∫ ∣
∣
∣Gh ∗ χh(x + δe, t)− Gh ∗ χh(x, t)

∣
∣
∣ dx dt � (1+ T )E0δ.

Since χ ∈ {0, 1}, we have on the other hand

(χ − Gh ∗ χ)+ = χ Gh ∗ (1− χ) and (χ − Gh ∗ χ)− = (1− χ)Gh ∗ χ,

which yields

|χ − Gh ∗ χ | = (1− χ)Gh ∗ χ + χ Gh ∗ (1− χ) . (22)

Using the translation invariance and (22) for the components of χh , we have

∫ T

0

∫ ∣
∣
∣χh(x + δe, t)− χh(x, t)

∣
∣
∣ dx dt

≤ 2
∫ T

0

∫ ∣
∣
∣Gh ∗ χh − χh

∣
∣
∣ dx dt

+
∫ T

0

∫ ∣
∣
∣Gh ∗ χh(x+δe, t)−Gh ∗ χh(x, t)

∣
∣
∣ dx dt

� (1+ T ) E0

(√
h + δ

)
.

��

Proof of Lemma 2.5 In this proof, we make use of the mesoscopic time scale τ = α
√
h, see

Remark 1.5 for the notation. First we argue that it is enough to prove

∫ T

τ

∫ ∣
∣
∣χh(t)− χh(t − τ)

∣
∣
∣ dx dt � (1+ T )E0τ (23)

for α ∈ [1, 2]. If α ∈ (0, 1), we can apply (23) twice, once for τ = √
h and once for

τ = (1 + α)
√
h and obtain (12). If α > 2, we can iterate (23). Thus we may assume that

α ∈ [1, 2]. We have
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∫ T

τ

∫ ∣
∣
∣χh(t)− χh(t − τ)

∣
∣
∣ dx dt = h

K−1∑

k=0

L∑

l=1

∫ ∣
∣χKl+k − χK(l−1)+k ∣∣ dx

= 1

K

K−1∑

k=0

τ

L∑

l=1

∫ ∣
∣χKl+k − χK(l−1)+k ∣∣ dx .

Thus, it is enough to prove

L∑

l=1

∫ ∣
∣χKl+k − χK(l−1)+k ∣∣ dx � (1+ T )E0

for any k = 0, . . . ,K − 1. By the energy-dissipation estimate (10), we have Eh(χ
k) ≤ E0

for all these k’s. Hence we may assume w. l. o. g. that k = 0 and prove only

L∑

l=1

∫ ∣
∣χKl − χK(l−1)

∣
∣ dx � (1+ T )E0. (24)

Note that for any two characteristic functions χ, χ̃ we have

|χ − χ̃ | = (χ − χ̃)Gh ∗ (χ − χ̃)+ (χ − χ̃ )(χ − χ̃ − Gh ∗ (χ − χ̃))

≤ (χ − χ̃)Gh ∗ (χ − χ̃ )+ |χ − Gh ∗ χ | + |χ̃ − Gh ∗ χ̃ | . (25)

Now we post-process the energy-dissipation estimate (10). Using the triangle inequality for
the norm

√−Eh on the process space and Jensen’s inequality, we have

−Eh

(
χKl − χK(l−1)

)
≤
⎛

⎝
Kl∑

n=K(l−1)+1

(
− Eh

(
χn − χn−1)

) 1
2

⎞

⎠

2

≤ K
Kl∑

n=K(l−1)+1

−Eh
(
χn − χn−1) . (26)

Using (25) for χKl
i and χ

K(l−1)
i with (22) for the second and the third right-hand side term

and the conditional negativity of σ and the above inequality for the first right-hand side term
we obtain

L∑

l=1

∫ ∣
∣χKl

i −χ
K(l−1)
i

∣
∣ dx �

√
hK

N∑

n=1

−Eh
(
χn − χn−1)+L max

n

∫
(
1−χn

i

)
Gh ∗ χn

i dx .

Since (1 − χn
i ) = ∑

j �=i χn
j a.e. and σi j ≥ σmin > 0 for all i �= j , the energy-dissipation

estimate (10) yields

L∑

l=1

∫ ∣
∣χKl − χK(l−1)

∣
∣ dx � αE0 + 1

α
T E0 � (1+ T )E0,

which establishes (24) and thus concludes the proof. ��
Proof of Lemma 2.6 First note that (14) follows directly from (13) since we also have
χh(t) → χ(t) in L1 for almost every t . The argument for (13) comes in two steps. Let
s > t , τ := s − t and t ∈ [nh, (n + 1)h).
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Step 1 Let τ be a multiple of h. We may assume w. l. o. g. that τ = m2h for some m ∈ N. As
in the proof of Lemma 2.5, using (25) and (26) we derive

∫ ∣
∣χn+m − χn

∣
∣ dx � m

√
h

m∑

k=1

−Eh(χ
n+k − χn+k−1)+√h max

t
Eh(χ

h(t)).

As before, we sum these estimates:

∫ ∣
∣χn+m2 − χn

∣
∣ dx ≤

m−1∑

l=0

∫ ∣
∣χn+m(l+1) − χn+ml

∣
∣ dx

� m
√
h
n+m2
∑

n′=n
−Eh(χ

n′ − χn′−1)+ m
√
h max

t
Eh(χ

h(t))

� m
√
hE0 = E0

√
τ .

Step 2 Let τ ≥ h be arbitrary. Take m ∈ N such that s ∈ [(m+n)h, (m+n+1)h). From Step
2 we obtain the bound in terms of mh instead of τ . If τ ≥ mh, we are done. If h ≤ τ < mh,
then m ≥ 2 and thus mh ≤ m

m−1τ � τ . ��
Proof of Lemma 2.8 W. l. o. g. let i = 1, j = 2. We prove the statement in three steps. In the
first step we reduce the statement to a time-independent one. In the second step, we show that
due to the strict triangle inequality, the convergence of the energies implies the convergence
of the individual perimeters. In the third step, we conclude by showing that this convergence
still holds true if we localize with a test function ζ , which proves the time-independent
statement formulated in the first step.

Step 1: reduction to a time-independent problem It is enough to prove that χh → χ in
L1([0,�)d ,RP ) and Eh(χ

h) → E(χ) imply

1√
h

∫
ζ
(
χh

1 Gh ∗ χh
2 + χh

2 Gh ∗ χh
1

)
dx → c0

∫
ζ (|∇χ1| + |∇χ2| − |∇(χ1 + χ2)|)

(27)

for any ζ ∈ C∞([0,�)d).
Given χh → χ in L1((0, T )×[0,�)d ), for a subsequence we clearly have χh(t) → χ(t)

in L1([0,�)d) for a. e. t. We further claim that for a subsequence

Eh(χ
h) → E(χ) for a. e. t. (28)

Writing
∣
∣Eh(χ

h)− E(χ)
∣
∣ = 2

(
E(χ)− Eh(χ

h)
)
+ + Eh(χ

h)− E(χ) and using the lim inf-
inequality of the �-convergence of Eh to E , we have

lim
h→0

(
E(χ)− Eh(χ

h)
)

+ = 0 for a. e. t.

Then Lebesgue’s dominated convergence, cf. (10), and the convergence assumption (8) yield

lim
h→0

∫ T

0

∣
∣
∣Eh(χ

h)− E(χ)

∣
∣
∣ dt = 0

and thus (28) after passage to a subsequence. Therefore, we can apply (27) for a. e. t and the
time-dependent version follows from the time-independent one by Lebesgue’s dominated
convergence theorem and (10).
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Step 2: convergence of perimeters We claim that given χh → χ in L1([0,�)d ,RP ) and
Eh(χ

h) → E(χ), the individual perimeters converge in the following sense: we have

Fh(χ
h
1 ) → F(χ1), Fh(χ

h
2 ) → F(χ2) and Fh(χ

h
1 + χh

2 ) → F(χ1 + χ2).

where Fh and F are the two-phase analogues of the (approximate) energies:

Fh(χ̃) := 2√
h

∫
(1− χ̃ )Gh ∗ χ̃ dx and F(χ̃) := 2c0

∫
|∇χ̃ | .

We will prove this claim by perturbing the functional Eh . We recall that the functionals Fh
�-converge to F (see e. g. [29] or [14]). Since the argument for the three cases work in the
same way, we restrict ourself to the first case, Fh(χh

1 ) → F(χ1). Since the matrix of surface
tensions σ satisfies the strict triangle inequality, we can perturb the functionals Eh in the
following way: for sufficiently small ε > 0, the associated surface tensions for the functional
χ �→ Eh(χ) − εFh(χ1) satisfy the triangle inequality so that approximate monotonicity,
Lemma 2.10, and consistency, Lemma 2.11, still apply. Therefore, by Lemma 2.10, we have
for any h0 ≥ h

Eh(χ
h) = Eh(χ

h)− εFh(χ
h
1 )+ εFh(χ

h
1 )

≥
( √

h0√
h +√h0

)d+1 (
Eh0(χ

h)− εFh0(χ
h
1 )
)
+ εFh(χ

h
1 ).

By assumption, the left-hand side converges to E(χ). Since for fixed h0, χ �→ Eh0(χ) −
εFh0(χ1) is clearly a continuous functional on L2, the first right-hand side term converges
as h → 0. Thus, for any h0 > 0,

lim sup
h→0

εFh(χ
h
1 ) ≤ E(χ)− (

Eh0(χ)− εFh0(χ1)
)
.

As h0 → 0, Lemma 2.11 yields

lim sup
h→0

Fh(χ
h
1 ) ≤ F(χ1).

By the �-convergence we also have

lim inf
h→0

Fh(χ
h
1 ) ≥ F(χ1)

and thus the convergence Fh(χh
1 ) → F(χ1).

Step 3: conclusion We claim that given χh → χ in L1([0,�)d ,RP ) and Eh(χ
h) → E(χ),

for any ζ ∈ C∞([0,�)d) we have (27).
We will not prove (27) directly but prove that for any ζ ∈ C∞([0,�)d)

Fh(χ
h
1 , ζ )→F(χ1, ζ ), Fh(χ

h
2 , ζ )→F(χ2, ζ ) and Fh(χ

h
1 +χh

2 , ζ )→F(χ1+χ2, ζ )

(29)

for the localized functionals

Fh(χ̃ , ζ ) := 1√
h

∫
ζ
[
(1− χ̃ )Gh ∗ χ̃ + χ̃ Gh ∗ (1− χ̃)

]
dx and

F(χ̃ , ζ ) := 2c0

∫
ζ |∇χ̃ | (30)
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instead. This is indeed sufficient since for any χ1, χ2, we clearly have

χ1 Gh ∗ χ2 + χ2 Gh ∗ χ1 = (1− χ1)Gh ∗ χ1 + (1− χ2)Gh ∗ χ2

− (1− (χ1 + χ2))Gh ∗ (χ1 + χ2)

and (29) therefore implies (27).
Now we give the argument for (29). As before, we only prove one of the statements,

namely Fh(χh
1 , ζ ) → F(χ1, ζ ). For this we use two lemmas that we will prove in Sect. 3.

First, by applying Lemma 3.6, which is the localized version of Lemma 2.11, we have for
the functional Fh instead of Eh we have Fh(χ1) → F(χ1). Then, by Lemma 3.7 we can
estimate

∣
∣Fh(χ1)− Fh(χh

1 )
∣
∣→ 0 and thus conclude the proof.

Let us mention that one can also follow a different line of proof by localizing the
monotonicity statement of Lemma 2.10 with a test function ζ . Since Lemma 3.7 seems
more robust, we only prove the statement in this fashion. ��

Proof of Proposition 2.2 We make use of the mesoscopic time scale τ , see Remark 1.5 for
the notation.
Argument for (i) Let ζ ∈ C∞0 ((0, T )× [0,�)d). We have to show that

−
∫ T

0

∫
∂tζ χi dx dt � (1+ T )E0 ‖ζ‖∞ .

In this part we choose α = 1. Using the notation ∂τ ζ for the discrete time derivative
1
τ

(ζ(t + τ)− ζ(t)), by the smoothness of ζ ,

∂τ ζ → ∂tζ uniformly in (0, T )× [0,�)d as h → 0.

Since χh → χ in L1((0, T )× [0,�)d), the product converges:

∫ T

0

∫
∂tζ χi dx dt = lim

h→0

∫ T

0

∫
∂τ ζ χh

i dx dt.

Since suppζ is compact, by Lemma 2.5 we have

−
∫ T

0

∫
∂τ ζ χh

i dx dt =
∫ T

0

∫
ζ ∂−τ χh

i dx dt

≤ ‖ζ‖∞
∫ T

τ

∫ ∣
∣
∣∂−τ χh

i

∣
∣
∣ dx dt � (1+ T ) E0 ‖ζ‖∞

for sufficiently small h.
Argument for (ii) First we prove

−
∫ T

0

∫
∂tζ χi dx dt �

1

α

∫ T

0

∫
|ζ | |∇χi | dt + α

∫∫
|ζ | dμ (31)

for any α > 0 and any ζ ∈ C∞0 ((0, T )× [0,�)d). We fix ζ and by linearity we may assume
that ζ ≥ 0 if we prove the inequality with absolute values on the left-hand side. We use the
identity from above
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−
∫ T

0

∫
∂tζ χi dx dt = lim

h→0

∫ T

0

∫
ζ ∂−τ χh

i dx dt.

Setting

ζ n := 1

h

∫ (n+1)h

nh
ζ(t) dt

to be the time average over a microscopic time interval, we have

∣
∣
∣
∣

∫ T

0

∫
ζ ∂−τ χh

i dx dt

∣
∣
∣
∣ ≤

1

K

K∑

k=1

L∑

l=1

∫
ζKl+k ∣∣χKl+k

i − χ
K(l−1)+k
i

∣
∣ dx .

Now fix k ∈ {1, . . . ,K}. For simplicity, we will ignore k at first. We can argue as in the proof
of Lemma 2.5, here with the localization ζ : By (22) we have for any χ ∈ {0, 1}

1√
h

∫
ζ |Gh ∗ χ − χ | dx = 1√

h

∫
ζ [(1− χ)Gh ∗ χ + χ Gh ∗ (1− χ)] dx = Fh(χ, ζ )

with Fh as in (30) and furthermore
∣
∣
∣
∣

∫
(
ζK(l+1) − ζKl) (1− χ)Gh ∗ χ dx

∣
∣
∣
∣ ≤ ‖∂tζ‖∞α

√
h
∫

(1− χ)Gh ∗ χ dx .

Therefore, using (25) we obtain

L∑

l=1

∫
ζKl

∣
∣χKl

i − χ
K(l−1)
i

∣
∣ dx �

L∑

l=1

∫
ζKl(χKl

i − χ
K(l−1)
i

)
Gh ∗

(
χKl
i − χ

K(l−1)
i

)
dx

+ τ

α

L∑

l=1

Fh(χ
Kl
i , ζKl)+√h ‖∂tζ‖∞ τ

L∑

l=1

Eh(χ
Kl),

where the last right-hand side term vanishes as h ↓ 0 by (10). For the first right-hand side
term we note that for any ζ ∈ C∞([0,�)d) and any χ, χ̃ ∈ {0, 1} we have

∣
∣
∣
∣

∫
ζ
[
Gh/2 ∗ (χ − χ̃)

]2
dx −

∫
ζ (χ − χ̃)Gh ∗ (χ − χ̃) dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫
(
ζ Gh/2 ∗ (χ − χ̃ )− Gh/2 ∗

[
ζ (χ − χ̃)

])
Gh/2 ∗ (χ − χ̃ ) dx

∣
∣
∣
∣

≤
∫

Gh/2(z)
∫
|ζ(x + z)− ζ(x)| |χ − χ̃ | (x + z)

∣
∣Gh/2 ∗ (χ − χ̃)

∣
∣ (x) dx dz

� ‖∇ζ‖∞
√
h
∫ |z|√

h
Gh/2(z) dz

∫
|χ − χ̃ | dx

� ‖∇ζ‖∞
√
h
∫
|χ − χ̃ | dx,

so that we can replace the first right-hand side term by

L∑

l=1

∫
ζKl

(
Gh/2 ∗

(
χKl
i − χ

K(l−1)
i

))2
dx,
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up to an error that vanishes as h ↓ 0, due to the above calculation and e. g. Lemma 2.6. As in
(26) for −Eh , now for this localized version, we can use the triangle inquality and Jensen’s
inequality to bound this term by

L∑

l=1

K
Kl∑

n=K(l−1)+1

∫
ζKl

(
Gh/2 ∗

(
χn
i − χn−1

i

))2
dx ≤ α

∫∫
ζ dμh + o(1),

as h ↓ 0, where μh is the (approximate) dissipation measure defined in (15). Therefore we
have

L∑

l=1

∫
ζKl

∣
∣χKl

i − χ
K(l−1)
i

∣
∣ dx �

τ

α

L∑

l=1

Fh(χ
Kl
i , ζKl)+ α

∫∫
ζ dμh + o(1),

as h ↓ 0. Taking the mean over the k’s we obtain

∣
∣
∣
∣

∫ T

0

∫
ζ ∂−τ χh

i dx dt

∣
∣
∣
∣ �

1

α

∫ T

0
Fh(χ

h
i , ζ ) dt + α

∫∫
ζ dμh + o(1).

Passing to the limit h → 0, (17), which is guaranteed by the convergence assumption (8),
implies (31).
Now let U ⊂ (0, T )× [0,�)d be open such that

∫∫

U
|∇χi | dt = 0.

If we take ζ ∈ C∞0 (U ), the first term on the right-hand side of (31) vanishes and therefore

−
∫ T

0

∫
∂tζ χi dx dt � α

∫∫
|ζ | dμ.

Since the left-hand side does not depend on α, we have

−
∫ T

0

∫
∂tζ χi dx dt ≤ 0.

Taking the supremum over all ζ ∈ C∞0 (U ) yields

∫∫

U
|∂tχi | = 0.

Thus, ∂tχi is absolutely continuous w. r. t. |∇χi | dt and the Radon–Nikodym theorem com-
pletes the proof.
Argument for (iii) We refine the estimate in the argument for (ii). Instead of estimating the
right-hand side of (31) and optimizing afterwards, which leads to a weak L2-bounds, we
localize. Starting from (31), we notice that we can localize with the test function ζ . Thus, we
can post-process the estimate and obtain

∣
∣
∣
∣

∫ T

0

∫
Vi ζ |∇χi | dt

∣
∣
∣
∣ ≤ C

∫ T

0

∫
1

α
|ζ | |∇χi | dt + C

∫∫
α |ζ | dμ
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for any integrable ζ : (0, T )×[0,�)d → R, any measurable α : (0, T )×[0,�)d → (0,∞)

and some constant C < ∞ which depends only on the dimension d , the number of phases
P and the matrix of surface tensions σ . Now choose

ζ = Vi and α = 2C

|Vi | ,

where we set α := 1 if Vi = 0, in which case all other integrands vanish. Then, the first term
on the right-hand side can be absorbed in the left-hand side and we obtain

∫ T

0

∫
V 2
i |∇χi | dt � μ([0, T ] × [0,�)d) � E0. ��

3 Energy functional and curvature

It is a classical result by Reshetnyak [34] that the convergence χh → χ in L1 and

∫
|∇χh | →

∫
|∇χ | =: E(χ)

imply convergence of the first variation

δE(χ, ξ) =
∫

(∇ · ξ − ν · ∇ξ ν) |∇χ | .

A result by Luckhaus and Modica [23] shows that this may extend to a �-convergence
situation, namely in case of the Ginzburg–Landau functional

Eh(u) :=
∫

h |∇u|2 + 1

h

(
1− u2)2

dx .

We show that this also extends to our �-converging functionals Eh . Let us first address
why the first variation of the approximate energies is of interest in view of our minimiz-
ing movements scheme. We recall (5): the approximate solution χn at time nh minimizes
Eh(χ) − Eh(χ − χn−1) among all χ . The natural variations of such a minimization prob-
lem are inner variations, i. e. variations of the independent variable. Given a vector field
ξ ∈ C∞([0,�)d ,Rd) and an admissible χ , we define the deformation χs of χ along ξ by
the distributional equation

∂

∂s
χi,s + ∇χi,s · ξ = 0, χi,s

∣
∣
s=0 = χi ,

which means that the phases are deformed by the flow generated through ξ . The inner variation
δEh of the energy Eh at χ along the vector field ξ is then given by

δEh(χ, ξ) := d

ds
Eh(χs)

∣
∣
s=0 =

2√
h

∑

i, j

σi j

∫
χi Gh ∗

(−∇χ j · ξ
)
dx . (32)
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For an admissible χ̃ the inner variation of the metric term −Eh(χ − χ̃ ) is given by

−δEh( · − χ̃ )(χ, ξ) := d

ds

(− Eh(χs − χ̃)
)∣∣
s=0

= 2√
h

∑

i, j

σi j

∫
(χi − χ̃i )Gh ∗

(∇χ j · ξ
)
dx . (33)

The (chosen and not necessarily unique) minimizer χn in Algorithm 1 therefore satisfies the
Euler–Lagrange equation

δEh(χ
n, ξ)− δEh( · − χn−1)(χn, ξ) = 0 (34)

for any vector field ξ ∈ C∞([0,�)d ,Rd).

3.1 Results

The goal of this section is to prove the following statement about the convergence of the first
term in the Euler–Lagrange equation.

Proposition 3.1 Letχh, χ : (0, T )×[0,�)d → {0, 1}P be such thatχh(t), χ(t) are admis-
sible in the sense of (4) and E(χ(t)) < ∞ for a.e. t . Let

χh −→ χ a. e. in (0, T )× [0,�)d , (35)

and furthermore assume that
∫ T

0
Eh(χ

h) dt −→
∫ T

0
E(χ) dt. (36)

Then, for any ξ ∈ C∞0 ((0, T )× [0,�)d ,Rd), we have

lim
h→0

∫ T

0
δEh(χ

h, ξ) dt

= c0

∑

i, j

σi j

∫ T

0

∫
(∇ · ξ − νi · ∇ξ νi )

1

2

(|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) dt.

It is easy to reduce the statement to the following time-independent statement.

Proposition 3.2 Let χh, χ : [0,�)d → {0, 1}P be admissible in the sense of (4) with
E(χ) < ∞ such that

χh −→ χ a.e., (37)

and furthermore assume that

Eh(χ
h) −→ E(χ). (38)

Then, for any ξ ∈ C∞([0,�)d ,Rd), we have

lim
h→0

δEh(χ
h, ξ) = c0

∑

i, j

σi j

∫
(∇ · ξ − νi · ∇ξ νi )

1

2

(|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) .
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Remark 3.3 Proposition 3.2 and all other statements in this section hold also in a more
general context. We do not need the approximations χh to be characteristic functions. In fact
the statements hold for any sequence uh : [0,�)d → [0, 1]P with

∑
i u

h
i = 1 a.e. converging

to some χ : [0,�)d → {0, 1}P with E(χ) < ∞ in the sense of (37)–(38).

The following first lemma brings the first variation δEh of Eh into a more convenient
form, up to an error vanishing as h → 0 because of the smoothness of ξ . Already at this
stage one can see the structure

∇ · ξ − ν · ∇ξ ν = ∇ξ : (I d − ν ⊗ ν)

in the first variation of E in the form of ∇ξ : (Gh Id − h∇2Gh) on the level of the approxi-
mation.

Lemma 3.4 Let χ be admissible and ξ ∈ C∞([0,�)d ,Rd) then

δEh(χ, ξ)= 1√
h

∑

i, j

σi j

∫
χi ∇ξ : (Gh Id−h∇2Gh

) ∗ χ j dx+O
(
‖∇2ξ‖∞Eh(χ)

√
h
)

.

(39)

We have already seen in Lemma 2.8 that we can pass to the limit in the term involving
only the kernel Gh Id:

lim
h→0

1√
h

∑

i, j

σi j

∫
ζ χh

i Gh ∗ χh
j dx = c0

∑

i, j

σi j

∫
ζ

1

2

(|∇χi | + |∇χ j | − |∇(χi + χ j )|
)
,

where now ζ = ∇ · ξ . The next proposition shows that we can also pass to the limit in the
term involving the second derivatives h∇2Gh of the kernel, which yields the projection ν⊗ν

onto the normal direction in the limit.

Proposition 3.5 Let χh, χ satisfy the convergence assumptions (37) and (38). Then for any
A ∈ C∞([0,�)d ,Rd×d)

lim
h→0

1√
h

∑

i, j

σi j

∫
χh
i A : h∇2Gh ∗ χh

j dx

= c0

∑

i, j

σi j

∫
ν ·A ν

1

2

(|∇χi | + |∇χ j | − |∇(χi + χ j )|
)
.

The following two statements are used to prove Proposition 3.5. The following lemma
yields in particular the construction part in the �-convergence result of Eh to E . We need it
in a localized form; the proof closely follows the proof of Lemma 4 in Section 7.2 of [14].

Lemma 3.6 (Consistency) Let χ ∈ BV ([0,�)d , {0, 1}P ) be admissible in the sense of (4).
Then for any ζ ∈ C∞([0,�)d)

lim
h→0

1√
h

∑

i, j

σi j

∫
ζ χi Gh ∗ χ j dx = c0

∑

i, j

σi j

∫
ζ

1

2

(|∇χi | + |∇χ j | − |∇(χi + χ j )|
)

and for any A ∈ C∞([0,�)d ,Rd×d)

lim
h→0

1√
h

∑

i, j

σi j

∫
χi A : h∇2Gh ∗ χ j dx

= c0

∑

i, j

σi j

∫
ν · A ν

1

2

(|∇χi | + |∇χ j | − |∇(χi + χ j )|
)
.
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The next lemma shows that under our convergence assumption of χh to χ , the correspond-
ing spatial covariance functions fh and f are very close and allows us to pass from Lemmas
3.4 and 3.6 to Proposition 3.2.

Lemma 3.7 (Error estimate) Let χh, χ satisfy the convergence assumptions (37) and (38)
and let k be a non-negative kernel such that

k(z) ≤ p(|z|)G(z)

for some polynomial p. Then

lim
h→0

1√
h

∫
kh(z)| fh(z)− f (z)| dz = 0, (40)

where

fh(z) :=
∑

i, j

σi j

∫
χh
i (x)χh

j (x + z) dx and f (z) :=
∑

i, j

σi j

∫
χi (x)χ j (x + z) dx .

3.2 Proofs

Proof of Proposition 3.1 The proposition is an immediate consequence of the time-indep-
endent analogue, Proposition 3.2. Indeed, according to Step 1 in the proof of Lemma 2.8
we have Eh(χ

h) → E(χ) for a. e. t . Thus all conditions of Proposition 3.2 are fulfilled.
Proposition 3.1 follows then from Lebesgue’s dominated convergence theorem. ��
Proof of Proposition 3.2 We may apply Lemma 3.4 for χh and obtain by the energy-
dissipation estimate (10) that

δEh(χ, ξ h) = 1√
h

∑

i, j

σi j

∫
χh
i ∇ξ : (I d Gh − h∇2Gh

) ∗ χh
j dx + O

(
‖∇2ξ‖∞E0

√
h
)

.

Applying Proposition 3.5 for the kernel ∇2G with ∇ξ playing the role of the matrix field A
and Lemma 2.8 for the kernel G with ζ = ∇ · ξ , we can conclude the proof. ��
Proof of Lemma 3.4 Recall the definition of δEh in (32). Since −∇χ̃ · ξ = −∇ · (χ̃ ξ) +
χ̃ (∇ · ξ) for any function χ̃ : [0,�)d → R, we can rewrite the integral on the right-hand
side of (32):

∫
χi Gh ∗

(−∇χ j · ξ
)
dx =

∫
−χi Gh ∗

(∇ · (χ j ξ)
)+ χi Gh ∗

(
χ j ∇ · ξ

)
dx

=
∫
−χi ∇Gh ∗

(
χ j ξ

)+ χ j (∇ · ξ)Gh ∗ χi dx .

Let us first turn to the first right-hand side term. For fixed (i, j), we can collect the two terms
in the sum that belong to the interface between phases i and j and obtain by the antisymmetry
of the kernel ∇Gh that the resulting term with the prefactor

2σi j√
h

is

∫
−χi ∇Gh ∗

(
χ j ξ

)− χ j ∇Gh ∗ (χi ξ) dx

=
∫

χi (x)
∫

(ξ(x)− ξ(x − z)) · ∇Gh(z) χ j (x − z) dz dx .
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A Taylor expansion of ξ around x gives the first-order term

2σi j√
h

∫
χi (x)

∫
(∇ξ(x) z) · ∇Gh(z) χ j (x − z) dz dx .

Now we argue that the second-order term is controlled by ‖∇2ξ‖∞Eh(χ)
√
h. Indeed, since

|z|3G(z) � G2(z), the contribution of the second-order term is controlled by

‖∇2ξ‖∞ 1√
h

∑

i, j

σi j

∫
|z|2 |z|

h
Gh(z)

∫
χi (x) χ j (x + z) dx dz

� ‖∇2ξ‖∞
∑

i, j

σi j

∫
G2h(z)

∫
χi (x) χ j (x + z) dx dz

∼ ‖∇2ξ‖∞
√
h E2h(χ).

Using the approximate monotonicity (18) of Eh , we have suitable control over this term.
After distributing the first-order term on both summand (i, j) and ( j, i) we therefore have

δEh(χ, ξ) = 1√
h

∑

i, j

σi j

∫
χi (x)∇ξ(x) :

∫
(2Gh(z)I d + z ⊗∇Gh(z)) χ j (x + z) dz dx

+ O
(
‖∇2ξ‖∞Eh(χ)

√
h
)

and since ∇2G(z) = −I d G − z ⊗∇G(z), we conclude the proof. ��
Proof of Proposition 3.5 By Lemma 3.6 we know that the term converges if we take χ instead
of the approximation χh on the left-hand side of the statement. Lemma 3.7 in turn controls
the error by substituting χh by χ on the left-hand side. ��
Proof of Lemma 3.6 Our main focus in this proof lies on the anisotropic kernel ∇2G. The
statement for G is—up to the localization—already contained in the proof of Lemma 4 in
Section 7.2 of [14].
Step 1: reduction of the statement to a simpler kernel Since ∇2G(z) is a symmetric matrix,
the inner product

A : ∇2G(z) = Asym : ∇2G(z).

depends only the symmetric part Asym of A; hence w. l. o. g. let A be a symmetric matrix
field. But then there exist functions ζi j ∈ C∞([0,�)d), such that

A(x) =
∑

i, j

1

2
ζi j (x)

(
ei ⊗ e j + e j ⊗ ei

)
.

We also note

ei ⊗ e j + e j ⊗ ei =
(
ei + e j

)⊗ (
ei + e j

)− (
ei ⊗ ei + e j ⊗ e j

)
.

Hence by linearity it is enough to prove the statement for A of the form

A(x) = ζ(x) ξ ⊗ ξ

for some ξ ∈ Sd−1. By rotational invariance we may assume

A(x) = ζ(x) e1 ⊗ e1.
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Hence the statement can be reduced to

lim
h→0

1√
h

∑

i, j

σi j

∫
ζ χi h∂2

1Gh ∗ χ j dx

= c0

∑

i, j

σi j

∫
ζ ν2

1
1

2

(|∇χi | + |∇χ j | − |∇(χi + χ j )|
)

(41)

for any ζ ∈ C∞([0,�)d). In the following we will show that for any such ζ and χ, χ̃ ∈
BV ([0,�)d , {0, 1}) such that

χ χ̃ = 0 a.e. (42)

and for the anisotropic kernel k(z) = z2
1G(z) we have

lim
h→0

1√
h

∫
ζ χ̃ kh ∗ χ dx = c0

∫
ζ
(
ν2

1 + 1
) 1

2
(|∇χ | + |∇χ̃ | − |∇(χ + χ̃ )|) . (43)

The analogous statement for the Gaussian kernel G instead of the anisotropic kernel k is—
up to the localization with ζ—contained in [14]. In that case the right-hand side of (43)
turns into the localized energy, i.e. replacing the anisotropic term (ν2

1 + 1) by 1. Since
∂2

1G(z) = (
z2

1 − 1
)
G(z) it is indeed sufficient to prove (43). We will prove this in five steps.

Before starting, we introduce spherical coordinates z = rξ on the left-hand side:

1√
h

∫
ζ χ̃ kh ∗ χ dx = 1√

h

∫
k(z)

∫
ζ(x)χ̃(x)χ(x +√hz) dx dz

=
∫ ∞

0
G(r)rd+2 1√

hr

∫

Sd−1
ξ2

1

∫
ζ(x)χ̃(x)χ(x +√hrξ) dx dξ dr.

(44)

In the following two steps of the proof, we simplify the problem by disintegrating in r (Step 2)
and ξ (Step 3). Then we explicitly calculate an integral that arises in the second reduction
and which translates the anisotropy of the kernel k into a geometric information about the
normal (Step 4). We simplify further by disintegration in the vertical component (Step 5) and
conclude by solving the one-dimensional problem (Step 6).
Step 2: disintegration in r We claim that it is sufficient to show

lim
h→0

1√
h

∫

Sd−1
ξ2

1

∫
ζ(x)χ̃(x)χ(x +√hξ) dx dξ

= |Bd−1|
d + 1

∫
ζ
(
ν2

1 + 1
) 1

2
(|∇χ | + |∇χ̃ | − |∇(χ + χ̃)|) . (45)

Indeed, note that since G(z) = G(|z|) and d
dr G(r) = −rG(r) we have, using integration by

parts,

∫ ∞

0
G(r)rd+2 dr = −

∫ ∞

0

d

dr
(G(r))rd+1 dr = (d + 1)

∫ ∞

0
G(r)rd dr.

Replacing
√
h by

√
h r on the left-hand side of (45) and integrating w. r. t. the non-negative

measure G(r)rddr and using the equality from above shows that (45), in view of (44),
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formally implies (43). To make this step rigorous, we use Lebesgue’s dominated convergence
theorem. A dominating function can be obtained as follows:

∣
∣
∣
∣

1√
hr

∫

Sd−1
ξ2

1

∫
ζ(x)χ̃(x)χ(x +√hrξ) dx dξ

∣
∣
∣
∣

(42)=
∣
∣
∣
∣

1√
hr

∫

Sd−1
ξ2

1

∫
ζ(x)χ̃(x)

(
χ(x +√hrξ)− χ(x)

)
dx dξ

∣
∣
∣
∣

≤ ‖ζ‖∞ 1√
hr

∫

Sd−1

∫ ∣
∣
∣χ(x +√hrξ)− χ(x)

∣
∣
∣ dx dξ

≤ ‖ζ‖∞ |Sd−1|
∫
|∇χ |,

which is finite and independent of r . Hence, it is integrable w. r. t. the finite measure
G(r)rd+2dr .
Step 3: disintegration in ξ We claim that it is sufficient to show that for each ξ ∈ Sd−1,

lim
h→0

1√
h

∫
ζ(x)χ̃(x)

(
χ(x +√hξ)+ χ(x −√hξ)

)
dx

=
∫

ζ |ξ · ν| 1

2
(|∇χ | + |∇χ̃ | − |∇(χ + χ̃ )|) . (46)

Indeed, if we integrate w. r. t. the non-negative measure 1
2 ξ2

1 dξ we obtain the left-hand side of
(45) from the left-hand side of (46). At least formally, this is obvious because of the symmetry
under ξ �→ −ξ . The dominating function to interchange limit and integration is obtained as
in Step 1:

∣
∣
∣
∣

1√
h

∫
ζ(x)χ̃(x)

(
χ(x +√hξ)+ χ(x −√hξ)

)
dx

∣
∣
∣
∣

(42)≤ 1√
h

sup |ζ |
∫ ∣
∣
∣χ(x +√hξ)−χ(x)

∣
∣
∣+
∣
∣
∣χ(x −√hξ)−χ(x)

∣
∣
∣ dx≤2‖ζ‖∞

∫
|∇χ |.

For the passage from the right-hand side of (46) to the right-hand side of (45) we note that
since

∫

Sd−1
ξ2

1

∫
ζ |ξ · ν| |∇χ |1

2
dξ = 1

2

∫ ∫

Sd−1
ξ2

1 |ξ · ν| dξ ζ |∇χ |

and |ν| = 1 |∇χ |- a. e. it is enough to prove

1

2

∫

Sd−1
ξ2

1 |ξ · ν| dξ = |Bd−1|
d + 1

(
ν2

1 + 1
)

for all ν ∈ Sd−1 (47)

to obtain the equality for the right-hand side.

123



129 Page 30 of 74 T. Laux, F. Otto

Step 4: argument for (47) By symmetry of
∫
Sd−1 dξ under the reflection that maps e1 into ν,

we have

∫

Sd−1
ξ2

1 |ξ · ν| dξ =
∫

Sd−1
(ξ · ν)2|ξ1| dξ.

Applying the divergence theorem to the vector field |ξ1| (ξ · ν) ν, we have

∫

Sd−1
(ξ · ν)2|ξ1| dξ =

∫

B
∇ · (|ξ1| (ξ · ν) ν

)
dξ.

Since ∇ · (|ξ1| (ξ · ν) ν) = signξ1 (ξ · ν) ν1 + |ξ1|, the right-hand side is equal to

(∫

B
signξ1 ξ dξ

)

· ν ν1 +
∫

B
|ξ1| dξ.

By symmetry of dξ under rotations that leave e1 invariant, we see that
∫
B signξ1 ξ dξ points

in direction e1, so that the above reduces to

(
ν2

1 + 1
)
∫

B
|ξ1| dξ.

We conclude by observing

∫

B
|ξ1| dξ =

∫ 1

−1
|ξ1| |Bd−1| (1− ξ2

1

) d−1
2 dξ1

= 2|Bd−1|
∫ 1

0

d

dξ1

[

− 1

d + 1

(
1− ξ2

1

) d−1
2

]

dξ1 = 2
|Bd−1|
d + 1

.

Step 5: one-dimensional reduction The problem reduces to the one-dimensional analogue,
namely: for all χ, χ̃ ∈ BV ([0,�), {0, 1}) such that

χ χ̃ = 0 a.e. (48)

and every ζ ∈ C∞([0,�)) we have

lim
h→0

1√
h

∫ �

0
ζ(s)χ̃(s)

(
χ(s+√h)+χ(s−√h)

)
ds=

∫ �

0
ζ

1

2

(
|dχ

ds
|+|dχ̃

ds
|−|d(χ+χ̃ )

ds
|
)
.

(49)

Indeed, by symmetry, it suffices to prove (46) for ξ = e1. Using the decomposition x =
se1 + x ′ we see that (46) follows from (49) using the functions χx ′(s) := χ(se1 + x ′), χ̃x ′ ,
ζx ′ in (49) and integrating w. r. t. dx ′. For the left-hand side, this is formally clear. For the
right-hand side, one uses BV -theory: if χ ∈ BV ([0,�)d), we have χx ′ ∈ BV ([0,�)) for a.
e. x ′ ∈ [0,�)d−1 and

123



Convergence of the thresholding scheme Page 31 of 74 129

∫

[0,�)d−1

∫ �

0
ζx ′(s) |dχx ′

ds
| dx ′ =

∫

[0,�)d
ζ |e1 · ν| |∇χ |

for any ζ ∈ C∞([0,�)d). To make the argument rigorous, we use again Lebesgue’s domi-
nated convergence. As before, using (48), we obtain

∣
∣
∣
∣

1√
h

∫ �

0
ζx ′(s)χ̃x ′(s)

(
χx ′(s +

√
h)+ χx ′(s −

√
h)
)
ds

∣
∣
∣
∣

≤ ‖ζ‖∞ 1√
h

∫ �

0

∣
∣
∣χx ′(s +

√
h)− χx ′(s)

∣
∣
∣+

∣
∣
∣χx ′(s −

√
h)− χx ′(s)

∣
∣
∣ ds

≤ 2‖ζ‖∞
∫ �

0
|dχx ′

ds
|.

Since

∫

[0,�)d−1

∫ �

0
|dχx ′

ds
|dx ′ =

∫

[0,�)d
|e1 · ν| |∇χ | ≤

∫

[0,�)d
|∇χ |,

this is indeed an integrable dominating function.
Step 6: argument for (49) Since χ, χ̃ are {0, 1}-valued, every jump has height 1 and since
χ, χ̃ ∈ BV ([0,�)), the total number of jumps is finite. Let J, J̃ ⊂ [0,�) denote the jump
sets of χ and χ̃ , respectively. Now, if

√
h is smaller than the minimal distance between two

different points in J ∪ J̃ , then in view of (48), the only contribution to the left-hand side of
(49) comes from neighborhoods of points where both, χ and χ̃ , jump:

1√
h

∫ �

0
ζ(s) χ̃(s)

(
χ(s +√h)+ χ(s −√h)

)
ds

=
∑

s∈J∩ J̃

1√
h

∫ s+√h

s−√h
ζ(σ ) χ̃(σ )

(
χ(σ +√h)+ χ(σ −√h)

)
dσ.

Note that χ(σ +√h)+ χ(σ −√h) ≡ 1 on each of these intervals and that

χ̃ = 1I hs on (s −√h, s +√h)

for intervals of the form

I hs = (s −√h, s) or I hs = (s, s +√h).

Since |I hs | =
√
h, we have

1√
h

∫ �

0
ζ(s)χ̃(s)

(
χ(s +√h)+ χ(s −√h)

)
ds =

∑

s∈J∩ J̃

1√
h

∫

I hs

ζ(σ ) dσ →
∑

s∈J∩ J̃
ζ(s).
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Note that by (48), χ + χ̃ jumps precisely where either χ or χ̃ jumps. Thus

∫ �

0
ζ

1

2

( ∣∣
∣
∣
dχ

ds

∣
∣
∣
∣+

∣
∣
∣
∣
dχ̃

ds

∣
∣
∣
∣−

∣
∣
∣
∣
d(χ + χ̃ )

ds

∣
∣
∣
∣

)

= 1

2

(∑

s∈J
ζ(s)+

∑

s∈ J̃
ζ(s)−

∑

s∈J� J̃

ζ(s)

)

=
∑

s∈J∩ J̃
ζ(s).

Therefore, (49) holds, which concludes the proof. ��

Proof of Lemma 3.7 The proof is divided into two steps. First, we prove the claim for k = G,
to generalize this result for arbitrary kernels k in the second step.
Step 1: k = G By Lemma 3.6 and the convergence assumption (38), we already know

lim
h→0

1√
h

∫
Gh(z) ( fh(z)− f (z)) dz = 0.

Hence, it is sufficient to show that

lim
h→0

1√
h

∫
Gh(z) ( f (z)− fh(z))+ dz = 0.

Fix h0 > 0 and N ∈ N and set h := 1
N2 h0. We will make use of the following triangle

inequality for f(h) = f, fh :

f(h)(z + w) ≤ f(h)(z)+ f(h)(w) for all z, w ∈ R
d . (50)

This inequality has been proven in the proof of Lemma 3 in Section 7.1 of [14]. For the
convenience of the reader we reproduce the argument here: using the admissibility of χ in
the form of

∑
k χk = 1, we obtain the following identity for any pair 1 ≤ i, j ≤ P of phases

and any points x, x ′, x ′′ ∈ [0,�)d :

χi (x)χ j (x
′′)− χi (x)χ j (x

′)− χi (x
′)χ j (x

′′)

= χi (x)
∑

k

χk(x
′)χ j (x

′′)− χi (x)χ j (x
′)
∑

k

χk(x
′′)−

∑

k

χk(x)χi (x
′)χ j (x

′′)

=
∑

k

[
χi (x)χk(x

′)χ j (x
′′)− χi (x)χ j (x

′)χk(x
′′)− χk(x)χi (x

′)χ j (x
′′)
]
.

Note that the contribution of k ∈ {i, j} to the sum has a sign:
∑

k∈{i, j}

[
χi (x)χk(x

′)χ j (x
′′)− χi (x)χ j (x

′)χk(x
′′)− χk(x)χi (x

′)χ j (x
′′)
]

= χi (x)χi (x
′)χ j (x

′′)− χi (x)χ j (x
′)χi (x

′′)− χi (x)χi (x
′)χ j (x

′′)
+ χi (x)χ j (x

′)χ j (x
′′)− χi (x)χ j (x

′)χ j (x
′′)− χ j (x)χi (x

′)χ j (x
′′)

= − [χi (x)χ j (x
′)χi (x

′′)+ χ j (x)χi (x
′)χ j (x

′′)
] ≤ 0.

We now fix z, w ∈ R
d and use the above inequality for x ′ = x + z, x ′′ = x + z +w so that

after multiplication with σi j , summation over 1 ≤ i, j ≤ P and integration over x , we obtain
f (z + w)− f (z)− f (w) on the left-hand side. Indeed, using the translation invariance for
the term appearing in fζ (w), we have
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f (z + w)− f (z)− f (w)

=
∫ ∑

i �= j

σi j
[
χi (x)χ j (x + z + w)− χi (x)χ j (x + z)− χi (x + z)χ j (x + z + w)

]
dx

≤
∫ ∑

i �= j,k �=i, j
σi j
[
χi (x)χk(x + z)χ j (x + z + w)− χi (x)χ j (x + z)χk(x + z + w)

− χk(x)χi (x + z)χ j (x + z + w)
]
dx .

Using the triangle inequality for the surface tensions, we see that the first right-hand side
integral is non-positive:

∑

i �= j,k �=i, j
σi j

(
χi (x)χk(x

′)χ j (x
′′)− χi (x)χ j (x

′)χk(x
′′)− χk(x)χi (x

′)χ j (x
′′)
)

≤
∑

i �= j,k �=i, j
σikχi (x)χk(x

′)χ j (x
′′)+

∑

i �= j,k �=i, j
σk jχi (x)χk(x

′)χ j (x
′′)

−
∑

i �= j,k �=i, j
σi jχi (x)χ j (x

′)χk(x
′′)−

∑

i �= j,k �=i, j
σi jχk(x)χi (x

′)χ j (x
′′) = 0.

Indeed, the first and the third term, and the second and the last term cancel since the domain
of indices in the sums is symmetric and thus we have (50).

By iterating the triangle inequality (50) for f(h) = f, fh we have

f(h)(Nz) ≤ N f(h)(z) for all z ∈ R
d .

Hence, by the definition of h,

1√
h0

f(h)(
√
h0z) ≤ 1√

h
f(h)(

√
hz) for all z ∈ R

d . (51)

Therefore, using (51) for fh , the subadditivity of u �→ u+ and finally (51) for f , we obtain

( 1√
h
f (
√
hz)− 1√

h
fh(
√
hz)

)

+ ≤
( 1√

h
f (
√
hz)− 1√

h0
fh(
√
h0z)

)

+

≤
( 1√

h
f (
√
hz)− 1√

h0
f (
√
h0z)

)

+

+
( 1√

h0
f (
√
h0z)− 1√

h0
fh(
√
h0z)

)

+

≤ 1√
h
f (
√
hz)− 1√

h0
f (
√
h0z)

+ 1√
h0

∣
∣
∣ f (

√
h0z)− fh(

√
h0z)

∣
∣
∣.
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Integrating w. r. t. the positive measure G(z) dz yields

1√
h

∫
Gh(z) ( f (z)− fh(z))+ dz ≤ 1√

h

∫
G(z) f (

√
hz) dz − 1√

h0

∫
G(z) f (

√
h0z) dz

+ 1√
h0

∫
G(z)

∣
∣
∣ f (

√
h0z)− fh(

√
h0z)

∣
∣
∣ dz

= Eh(χ)− Eh0(χ)+ 1√
h0

∫
Gh0(z) | f (z)− fh(z)| dz.

(52)

Given δ > 0, by Lemma 3.6 we may first choose h0 > 0 such that for all 0 < h < h0:

∣
∣Eh(χ)− Eh0(χ)

∣
∣ <

δ

2
.

We note that we may now choose N ∈ N so large that for all 0 < h < 1
N2 h0:

∣
∣
∣ f (

√
h0z)− fh(

√
h0z)

∣
∣
∣ ≤ δ

2

√
h0 for all z ∈ R

d .

Indeed, using the triangle inequality and translation invariance we have
∣
∣
∣ f (

√
h0z)− fh(

√
h0z)

∣
∣
∣ ≤

∑

i, j

σi j

∫ ∣
∣
∣χi (x)χ j (x + z)− χi (x)χ

h
j (x + z)

∣
∣
∣

+
∣
∣
∣χi (x)χ

h
j (x + z)− χh

i (x)χh
j (x + z)

∣
∣
∣ dx

�
P∑

i=1

∫ ∣
∣
∣χi (x)− χh

i (x)
∣
∣
∣ dx,

which tends to zero as h → 0 because by Lebesgue’s dominated convergence and (37).
Hence also the second term on the right-hand side of (52) is small:

1√
h0

∫
Gh0(z) | f (z)− fh(z)| dz ≤ δ

2
.

Step 2: k = p G Fix ε > 0. Since G is exponentially decaying, we can find a number
M = M(ε) < ∞ such that

k(z) ≤ ε G
( z√

2

) = ε G2(z) for all |z| > M. (53)

Hence we can split the integral into two parts. On the one hand, using (40) for k = G,

1√
h

∫

{|z|≤M}
k(z) | fh(

√
hz)− f (

√
hz)| dz ≤

(

sup
[0,M]

p

)
1√
h

∫
G(z)| fh(

√
hz)

− f (
√
hz)| dz → 0, as h → 0,

and on the other hand, using (53) and the approximate monotonicity in Lemma 2.10,

1√
h

∫

{|z|>M}
k(z) | fh(

√
hz)− f (

√
hz)| dz ≤ ε

1√
h

∫
G2(z)

(
fh(
√
hz)+ f (

√
hz)

)
dz

� ε
(
Eh(χ

h)+ Eh(χ)
)

.
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By the convergence assumption (38) and the consistency, cf. Lemma 2.11, we can take the
limit h → 0 on the right-hand side and obtain

lim sup
h→0

1√
h

∫
kh(z)| fh(z)− f (z)| dz � ε

∑

i, j

σi j

∫
1

2

(|∇χi | + |∇χ j | − |∇(χi + χ j )|
)
.

Since the left-hand side does not depend on ε > 0, this implies (40). ��

4 Dissipation functional and velocity

As for any minimizing movements scheme, the time derivative of the solution should arise
from the metric term in the minimization scheme. For the minimizing movements scheme
of our interfacial motion, the time derivative is the normal velocity. The goal of this section,
which is the core of the paper, is to compare the first variation of the dissipation functional
to the normal velocity.

4.1 Idea of the proof

Let us first give an idea of the proof in a simplified setting with only two phases, a constant
test vector field ξ and no localization. Then the first variation (33) of the metric term reads

2√
h

∫
(
χn − χn−1)Gh ∗

(−∇χn · ξ) dx .

Using the distributional equation ∇χ · ξ = ∇ · (χξ)− (∇ · ξ) χ , this is equal to

2√
h

∫
(
χn − χn−1) (−∇Gh ∗

(
χnξ

)+ Gh ∗ (χnξ)
)
dx ≈

− 2
∫

χn − χn−1

h
ξ · √h∇Gh ∗ χndx

as h → 0. We will prove this in Lemma 4.7. Since ∂−ht χh = χn−χn−1

h ⇀ V |∇χ | dt and√
h∇Gh ∗ χn ≈ c0ν only in a weak sense, we cannot pass to the limit a priori. Our strategy

is to freeze the normal and to control

∫ T

0

∫
∂−ht χh ξ · √h∇Gh ∗ χh dx dt −

∫ T

0

∫
∂−ht χh c0 ξ · ν∗ dx dt (54)

by the excess

ε2 :=
∫ T

0

(
Eh(χ

h)− Eh(χ
∗)
)
dt,

where χ∗ = 1{x ·ν∗>λ} is a half space in direction of ν∗. By the convergence assumption ε2

converges to

E 2 := c0

∫ T

0

(∫
|∇χ | −

∫ ∣
∣∇χ∗

∣
∣
)

dt,
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as h → 0, which is small by De Giorgi’s structure theorem—at least after localization in space
and time; i. e. sets of finite perimeter have (approximate) tangent planes almost everywhere.
To be self-consistent we will prove this application of De Giorgi’s result in Sect. 5.

The main difficulty in controlling (54) lies in finding good bounds on

∫ T

0

∫ ∣
∣
∣∂ht χh

∣
∣
∣ dx dt.

For the sake of simplicity we set E0 = T = � = 1 and write χ instead of χh in the following.
In Sect. 2 we have seen the bound

∫∫ ∣
∣∂τ

t χ
∣
∣ dx dt = O(1) for τ ∼ √

h. (55)

For this, we used the energy-dissipation estimate (10) to bound the dissipation

√
h
∫∫ (

Gh/2 ∗ ∂ht χ
)2

dx dt =
∑

n

1√
h

∫
(
χn − χn−1)Gh ∗

(
χn − χn−1) dx � 1

and Jensen’s inequality gave us control over the function

α2(t) := 1√
h

∫
(
Gh/2 ∗ (χ(t + τ)− χ(t))

)2
dx = α2

√
h
∫
(
Gh/2 ∗ ∂τ

t χ
)2

dx (56)

by the fudge factor α appearing in the definition of the mesoscopic time scale τ = α
√
h:

∫ T

0
α2(t) dt � α2. (57)

This estimate is the reason for the slight abuse of notation: we call the function in (56) α2(t)
in order to keep the relation (57) between the two quantities in mind. In the following we
will always carry along the argument t of the function α2(t) to make the difference clear.
Writing χτ short for χ( · + τ) we have shown in the proof of Lemma 2.5 that (55) holds in
the more precise form of

∫∫ ∣
∣χτ − χ

∣
∣ dx dt �

√
h
∫

α2(t) dt +√h
∫

Eh(χ) dt �
√
h
(
ε2 + 1

)+ τ 2

√
h

. (58)

In this section we will derive the following more subtle bound:

∫∫ ∣
∣∂τ

t χ
∣
∣ dx dt = O(1) for τ = o(

√
h). (59)

While the argument for (55) was based on

χτ − χ = Gh ∗ (χτ − χ)+ (χ − Gh ∗ χ)+ (χτ − Gh ∗ χτ )

we now start from the thresholding scheme:

χτ − χ = 1{uτ > 1
2 } − 1{u> 1

2 } with uτ := Gh ∗ χτ−h and u := Gh ∗ χ−h .
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We will use an elementary one-dimensional estimate, Lemma 4.2 (cf. Corollary 79 for this
rescaled version), in direction ν∗ = e1 (w. l. o. g.) and integrate transversally to obtain

1√
h

∫ ∣
∣χτ − χ

∣
∣ dx �

1√
h

∫

1
3≤u≤ 2

3

(√
h∂1u − c

)2

− dx + s + 1

s2

1√
h

∫
(uτ − u)2dx .

(60)

The first right-hand side term measures the monotonicity of the phase function u in normal
direction in the transition zone { 1

3 ≤ u ≤ 2
3 }. It is clear that this term vanishes for χ−h = χ∗,

provided the universal constant c > 0 is sufficiently small. In Lemma 4.4 we will indeed
bound this term by the excess

ε2(−h) := Eh(χ
−h)− Eh(χ

∗)

at the previous time step. Compared to the first approach which yielded (58), where the
limiting factor is that the first right-hand side term is only O(

√
h), the result of the latter

approach yields the improvement
∫∫ ∣

∣χτ − χ
∣
∣ dx dt �

√
h
(
ε2 + s

)+ 1

s2

τ 2

√
h

(61)

for an arbitrary (small) parameter s > 0. Now we show how to use the bound (61) in order
to estimate (54). First, in Lemma 4.7 by freezing time for χ on the mesoscopic time scale
τ = α

√
h and using a telescoping sum for the first term ∂ht χ we will show that
∫∫

∂ht χ ξ · √h∇Gh ∗ χ dx dt =
∫∫

∂τ
t χ ξ · √h∇Gh ∗ χ + χτ

2
dx dt

+ O

((
τ√
h

∫∫ ∣
∣∂τ

t χ
∣
∣ dx dt

) 1
2
)

. (62)

By (61) the error term is controlled by

(

ε2 + s + 1

s2 α2
) 1

2

�
1

α
ε2 + α

1
3 (63)

by choosing s ∼ α
2
3 . Second, in Lemma 4.8 we will show how to use the algebraic relation

(χτ − χ)(χτ + χ) = χτ − χ for the product (χτ − χ)
√
h∇Gh ∗ (χτ + χ) so that we can

rewrite the right-hand side of (62) as
∫∫

∂τ
t χ c0 ξ · e1 dx dt + O

(∫∫ ∣
∣∂τ

t χ
∣
∣ kh ∗

∣
∣χτ − χ

∣
∣ dx dt

)

+ O
(
ε2) (64)

for some kernel k. Third, in Lemma 4.9 we will control the first error term by using its
quadratic structure and the estimate (61) before the transversal integration in x ′:

∫ ∣
∣∂τ

t χ
∣
∣ kh ∗

∣
∣χτ − χ

∣
∣ dx

�
1

τ

∫ (∫ ∣
∣χτ − χ

∣
∣ dx1

)

k′h ∗′
[

1 ∧
(

1√
h

∫ ∣
∣χτ − χ

∣
∣ dx1

)]

dx ′

�
1

α

[

ε2 + 1

s2 α2 + s

(√
h
(
s̃ + ε2)+ 1

s̃2 α2
)]

�
1

α
ε2 + 1

α
ss̃ +

(
s

s̃2 +
1

s2

)

α ∼ 1

α
ε2 + α

1
9 , (65)
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Ω1

Ω∗ Ω2

(Ω∗)c

ν∗

B2r

Fig. 4 The majority phases �1 and �2 and the half space �∗ = {x · ν∗ > λ} approximating �1 inside the
ball B2r . Its complement

(
�∗

)c approximates �2 inside B2r

by choosing s̃ ∼ α
2
3 and s ∼ α

4
9 . We note that the values of the exponents of α in (63) and

(65) do not play any role and can be easily improved. We only need the extra terms, here α
1
3

and α
1
9 , to be o(1) as α → 0; the prefactor of the excess ε2, here 1

α
, can be large. Indeed,

after sending h → 0 we will obtain the error 1
α
E 2 + α

1
9 . We will handle this term in Sect. 5

by first sending the fineness of the localization to zero so that E 2 vanishes, and then sending
the parameter α → 0.

In the following we will make the above steps rigorous and give a full proof in the multi-
phase case. First we state the main result, Proposition 4.1, then we explain the tools we will
be using more carefully in the subsequent lemmas. We turn first to the two-phase case to
present the one-dimensional estimate (60) in Lemma 4.2, its rescaled and localized version
Corollary 4.3 and the estimate for the error term Lemma 4.4. Subsequently we state the same
results in Lemma 4.5 and Corollary 4.6 for the multi-phase case. These estimates are the
core of the proof of Proposition 4.1 and use the explicit structure of the scheme. Let us note
that in these estimates we are using the two steps of the scheme, the convolution step (1)
and the thresholding step (2), in a well-separated way. Indeed, the one-dimensional estimate,
Lemma 4.5, analyzes the thresholding step (2); and Corollary 4.6 brings the (transversally
integrated) error term in the form of the excess ε2 at the previous time step by analyzing the
convolution step (1).

4.2 Results

The main result of this section is the following proposition which will be used for small
time intervals in Sect. 5 where we will control the limiting error terms which appear here
with soft arguments from geometric measure theory. In view of the definition of E 2 below,
the proposition assumes that χ3, . . . , χP are the minority phases in the space–time cylinder
(0, T ) × Br (Fig. 4); likewise it assumes that the normal between χ1 and χ2 is close to the
first unit vector e1. This can be assumed since on the one hand we can relabel the phases in
case we want to treat another pair of phases as the majority phases. On the other hand, due
to the rotational invariance, it is no restriction to assume that e1 is the approximate normal.

Proposition 4.1 For any α � 1, T > 0, ξ ∈ C∞0 ((0, T )× Br ,Rd) and any η ∈ C∞0 (B2r )

radially symmetric and radially non-increasing cut-off for Br in B2r with |∇η| � 1
r and∣

∣∇2η
∣
∣ � 1

r2 , we have
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lim sup
h→0

∣
∣
∣
∣

∫ T

0
−δEh( · − χh(t − h))(χh(t), ξ(t)) dt

+ 2c0σ12

∫ T

0

(∫
ξ1 V1 |∇χ1| −

∫
ξ1 V2 |∇χ2|

)

dt

∣
∣
∣
∣

� ‖ξ‖∞
[∫ T

0

( 1

α2 E
2(t)+ α

1
9 rd−1

)
dt + α

1
9

∫∫
η dμ

]

. (66)

Here we use the notation

E 2(t) :=
P∑

i=3

∫
η |∇χi (t)| + inf

χ∗

{ ∣∣
∣
∣

∫
η
(|∇χ1(t)| −

∣
∣∇χ∗

∣
∣)
∣
∣
∣
∣+

1

r

∫

B2r

∣
∣χ1(t)− χ∗

∣
∣ dx

+
∣
∣
∣
∣

∫
η
(|∇χ2(t)| −

∣
∣∇χ∗

∣
∣)
∣
∣
∣
∣+

1

r

∫

B2r

∣
∣χ2(t)−

(
1− χ∗

)∣∣ dx

}

,

where the infimum is taken over all half spaces χ∗ = 1{x1>λ} in direction e1.

The exponents of α in this statement are of no importance and can be easily improved. It
is only relevant that the two extra error terms, i. e. rd−1T and

∫∫
η dμ, are equipped with

prefactors which vanish as α → 0. In Sect. 5 we will show that—even after summation—
the excess will vanish as the fineness of the localization, i. e. the radius r of the ball in the
statement of Proposition 4.1 tends to zero. There we will take first the limit r → 0 and then
α → 0 to prove Theorem 1.3. The prefactor of the excess, here 1

α2 differs from the one in
the two-phase case since the one-dimensional estimate is slightly different in the multi-phase
case.

Let us comment on the structure of E 2. The first term, describing the surface area of Phases
3, . . . , P inside the ball B2r , will be small in the application when χ3, . . . , χP are indeed
the minority phases. The second term, sometimes called the excess energy describes how far
χ1 and χ2 are away from being half spaces in direction e1 or −e1, respectively. The terms
comparing the surface energy inside B2r do not see the orientation of the normal, whereas
the bulk terms measuring the L1-distance inside the ball B2r do see the orientation of the
normal.

The estimates in Sect. 2 are not sufficient to understand the link between the first variation
of the metric term and the normal velocities. For this, we need refined estimates which we
will first present for the two-phase case, where only one interface evolves. The main tool of
the proof is the following one-dimensional lemma. For two functions u, ũ, it estimates the
L1-distance between the characteristic functions χ = 1{u≥ 1

2 } and χ̃ = 1{ũ≥ 1
2 } in terms of the

L2-distance between the u’s - at the expense of a term that measures the strict monotonicity
of one of the functions u. We will apply it in a rescaled version for x1 being the normal
direction.
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Lemma 4.2 Let I ⊂ R be an interval, Let u, ũ ∈ C0,1(I ), χ := 1{u≥ 1
2 } and χ̃ := 1{ũ≥ 1

2 }.
Then

∫

I
|χ − χ̃ | dx1 �

∫

|u− 1
2 |<s

(∂1u − 1)2− dx1 + s + 1

s2 I (u − ũ)2 dx1 (67)

for every s > 0.

The following modified version of Lemma 4.2 is the estimate one would use in the two-
phase case.

Corollary 4.3 Let u, ũ ∈ C0,1(I ), χ := 1{u≥ 1
2 }, χ̃ := 1{ũ≥ 1

2 } and η ∈ C∞0 (R), 0 ≤ η ≤ 1
radially non-increasing. Then

1√
h

∫
η |χ−χ̃ | dx1 �

1√
h

∫

|u− 1
2 |<s

η
(√

h ∂1u−1
)2

− dx1+s+ 1

s2

1√
h

∫
η (u − ũ)2 dx1

for any s > 0.

In the previous corollary, it was crucial to control strict monotonicity of one of the two
functions via the term

1√
h

∫

|u− 1
2 |<s

η
(√

h ∂1u − 1
)2

− dx1.

In the following lemma, we consider the d-dimensional version, i. e. dx1 replaced by dx , of
this term in case of u = Gh ∗ χ . We show that this term can be controlled in terms of the
excess, measuring the energy difference to a half space χ∗ in direction e1.

Lemma 4.4 Let χ : [0,�)d → {0, 1}, χ∗ = 1{x1>λ} a half space in direction e1 and η ∈
C∞0 (B2r ) a cut-off of Br in B2r with |∇η| � 1

r and
∣
∣∇2η

∣
∣ � 1

r2 . Then there exists a universal
constant c > 0 such that

1√
h

∫

z1≶0
Gh(z)

∫
η(x) (χ(x + z)− χ(x))± dx dz � ε2 +√h

1

r2 , (68)

1√
h

∫

1
3≤Gh∗χ≤ 2

3

η
(√

h ∂1(Gh ∗ χ)− c
)2

− dx � ε2 +√h
1

r2 +
√
h

1

r
Eh(χ), (69)

where ε2 is defined via

ε2 := 1√
h

∫
η [(1− χ)Gh ∗ χ + χ Gh ∗ (1− χ)] dx

− 1√
h

∫
η
[(

1− χ∗
)
Gh ∗ χ∗ + χ∗ Gh ∗

(
1− χ∗

)]
dx + 1

r

∫

B2r

∣
∣χ − χ∗

∣
∣ dx

and the integral on the left-hand side of (68) with the two cases <,+ and >,−, respectively
is a short notation for the sum of the two integrals.

In our application, we use the following lemma which is valid for any number of phases
with arbitrary surface tensions instead of Lemma 4.2 or Corollary 4.3. Nevertheless, the core
of the proof is already contained in the respective estimates in the two-phase case above.
As in Proposition 4.1, we assume that χ1 and χ2 are the majority phases and that e1 is the
approximate normal to �1 = {χ1 = 1}.
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Lemma 4.5 Let I ⊂ R be an interval, h > 0, η ∈ C∞0 (R), 0 ≤ η ≤ 1 radially non-
increasing and u, ũ : I → R

P be two smooth maps into the standard simplex {Ui ≥
0,
∑

i Ui = 1} ⊂ R
P . We define φi := ∑

j σi j u j , φ̃i := ∑
j σi j ũ j , χi := 1{φi<φ j ∀ j �=i}

and χ̃i := 1{φ̃i<φ̃ j ∀ j �=i}. Then

1√
h

∫
η |χ − χ̃ | dx1 �

1√
h

∫

1
3≤u1≤ 2

3

η
(√

h∂1u1 − c
)2

− dx1

+ 1

s

1√
h

∑

j≥3

∫
η
[
u j ∧ (1−u j )

]
dx1+s+ 1

s2

1√
h

∫
η |u−ũ|2 dx1

(70)

for any s � 1.

As Lemma 4.4 can be used to estimate the integrated version of the error in Corollary
4.3 against the excess, the following corollary shows that the integrated version of the cor-
responding error term in the multi-phase version, Lemma 4.5, can be estimated against a
multi-phase version of the excess ε2.

Corollary 4.6 Let χ be admissible, χ∗ = 1{x1>λ} a half space in direction e1 and η ∈
C∞0 (B2r ) a cut-off of Br in B2r with |∇η| � 1

r and
∣
∣∇2η

∣
∣ � 1

r2 . Then there exists a universal
constant c > 0 such that for u = Gh ∗ χ

1√
h

∫

1
3≤u1≤ 2

3

η
(√

h ∂1u1 − c
)2

− dx + 1√
h

∑

j≥3

∫
η
[
u j ∧ (1− u j )

]
dx

� ε2(χ)+√h
1

r2 +
√
h

1

r
Eh(χ),

where the functional ε2(χ) is defined via

ε2(χ) :=
∑

i≥3

Fh(χ j , η)+ Fh(χ1, η)− Fh(χ
∗, η)+ 1

r

∫

B2r

∣
∣χ1 − χ∗

∣
∣ dx

+ Fh(χ2, η)− Fh(χ
∗, η)+ 1

r

∫

B2r

∣
∣χ2 − (1− χ∗)

∣
∣ dx

and the functional Fh is the following localized version of the approximate energy in the
two-phase case

Fh(χ̃ , η) := 1√
h

∫
η
[
(1− χ̃)Gh ∗ χ̃ + χ̃ Gh ∗ (1− χ̃ )

]
dx, χ̃ ∈ {0, 1}.

With these tools we can now turn to the rigorous proof of (62)–(65) in the following
lemmas. In the next two lemmas, we approximate the first variation of the metric term by an
expression that makes the normal velocity appear. The main idea is to work, as for Lemma
2.5, on a mesoscopic time scale τ ∼ √

h, introducing a fudge factor α, cf. Remark 1.5. The
first lemma shows that we may coarsen the first variation from the microscopic time scale
h to the mesoscopic time scale α

√
h and is therefore the rigorous analogue of (62). It also

shows that we may pull the test vector field ξ out of the convolution.
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Lemma 4.7 Let ξ ∈ C∞0 ((0, T )× Br ,Rd). Then

∫ T

0
−δEh( · − χh(t − h))(χh(t), ξ(t)) dt

≈
∑

i, j

σi jτ

L∑

l=1

∫
χKl
i − χ

K(l−1)
i

τ
ξ(lτ) ·

(√
h ∇Gh

)
∗
(
χ
K(l−1)
j + χKl

j

)
dx

in the sense that the error is controlled by

‖ξ‖∞
(

1

α
τ

L∑

l=1

ε2(χKl−1)+ α
1
3 rd−1T + α

1
3

∫∫
η dμh

)

+ o(1), as h → 0,

where η ∈ C∞0 (B2r ) is a radially symmetric, radially non-increasing cut-off for Br in B2r

with |∇η| � 1
r and the functional ε2(χ) is defined in Corollary 4.6.

While the first lemma made the mesoscopic time derivative 1
τ

(
χKl
i − χ

K(l−1)
i

)
appear,

the upcoming second lemma makes the approximate normal, here e1, appear. This is the
analogue of (64).

Lemma 4.8 Given ξ and η as in Lemma 4.7 we have

∑

i, j

σi j τ

L∑

l=1

∫
χKl
i − χ

K(l−1)
i

τ
ξ(lτ) ·

(√
h ∇Gh

)
∗
(
χ
K(l−1)
j + χKl

j

)
dx

≈ −2c0 σ12 τ

L∑

l=1

(∫
ξ1(lτ)

χKl
1 − χ

K(l−1)
1

τ
dx −

∫
ξ1(lτ)

χKl
2 − χ

K(l−1)
2

τ
dx

)

,

in the sense that the error is controlled by

‖ξ‖∞
[

1

α
τ

L∑

l=1

ε2(χKl)+ α

∫∫
η dμh

+ τ

L∑

l=1

1

τ

∫
η
∣
∣χKl − χK(l−1)

∣
∣ kh ∗

(
η
∣
∣χKl − χK(l−1)

∣
∣
)
dx

]

+ o(1),

as h → 0, where 0 ≤ k(z) ≤ |z|G(z) and the functional ε2(χ) is defined in Corollary 4.6.

Let us comment on the error term: the first part of the error term arises because e1 is only
the approximate normal. The last part arises in the passage from a diffuse to a sharp interface
and formally is of quadratic nature.

The following lemma deals with the error term in the foregoing lemma and brings it into
the standard form. The only difference to the two-phase case in (65) is the prefactor in front of
the excess ε2 which comes from the slight difference in the two one-dimensional estimates.
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Lemma 4.9 With η as in Lemma 4.7 we have

τ

L∑

l=1

1

τ

∫
η
∣
∣χKl − χK(l−1)

∣
∣kh ∗

(
η
∣
∣χKl − χK(l−1)

∣
∣
)
dx

�
1

α2 τ

L∑

l=1

ε2(χKl−1)+ α
1
9 rd−1T + α

1
9

∫∫
η dμh,

where the functional ε2(χ) is defined in Corollary 4.6.

With the above lemma we can conclude the proof of Proposition 4.1. Since one of the error
terms includes the factor rd−1 we will only use the proposition in case there the behavior
in the ball Br is non-trivial. In the trivial case—meaning that the measure of the boundary
inside B is much smaller than rd−1—we can use the following easy estimate.

Lemma 4.10 In the situation as in Proposition 4.1, we have

∣
∣
∣
∣
∣
∣

∑

i, j

σi j

∫ T

0

∫
(∇ · ξ − νi · ∇ξ νi − 2 ξ · νi Vi )

(|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) dt

∣
∣
∣
∣
∣
∣

� ‖ξ‖∞
[

P∑

i=1

∫ T

0

∫
η

(
1

α
+ α V 2

i

)

|∇χi | dt + α

∫∫
η dμ

]

.

4.3 Proofs

Proof of Proposition 4.1 Step 1: the discrete analogue of (66) The statement follows easily
from

∣
∣
∣
∣

∫ T

0
−δEh( · − χh(t − h))(χh(t), ξ(t)) dt

+ 2c0σ12

∫ T

0

(∫
ξ1 V1 |∇χ1| −

∫
ξ1 V2 |∇χ2|

)

dt

∣
∣
∣
∣

� ‖ξ‖∞
[

1

α2

∫ T

0
ε2(t) dt + α

1
9 rd−1T + α

1
9

∫∫
η dμh

]

+ o(1), as h → 0. (71)

Here we use the notation ε2(t) := ε2(χh(t)), where the functional ε2(χ) is defined in
Corollary 4.6. The infimum is taken over all half spaces χ∗ = 1{x1>λ} in direction e1. All
terms appearing in ε2 correspond to terms in E 2. The first term is the sum of the localized
approximate energies of χ3, . . . , χP , the second term describes the approximate energy
excess of Phases 1 and 2. The convergence of these terms as h → 0 for a fixed half space χ∗
follows as in the proof of Lemma 2.8. Taking the infimum over the half spaces yields (66).

Step 2: choice of appropriately shifted mesoscopic time slices In order to prove (71), we use
the machinery that we develop later on in this section. There we work on the mesoscopic time
scale τ = α

√
h instead of the microscopic time scale h, see Remark 1.5 for the notation. To

apply these results, we have to adjust the time shift of time slices of mesoscopic distance. At
the end, we will choose a microscopic time shift k0 ∈ {1, . . . ,K} such that the average over
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time slices of mesoscopic distance is controlled by the average over all time slices:

τ

L∑

l=1

[
ε2(χKl+k0)+ ε2(χKl+k0−1)

]
� h

N∑

n=1

ε2(χn) =
∫ T

0
ε2(t) dt. (72)

This follows from the simple fact that ε2(k0) ≤ 1
K

∑K
k=1 ε2(k) for some k0. For notational

simplicity, we shall assume that k0 = 0 in (72).
Step 3: argument for (71) Using Lemmas 4.7, 4.8 and 4.9, we obtain

∫ T

0
−δEh( · , χh(t − h))(χh(t), ξ(t)) dt

≈ −2c0σ12 τ

L∑

l=1

(∫
ξ1(lτ)

χKl
1 − χ

K(l−1)
1

τ
dx −

∫
ξ1(lτ)

χKl
2 − χ

K(l−1)
2

τ
dx

)

(73)

up to an error

‖ξ‖∞
(

1

α2

∫ T

0
ε2(t) dt + α

1
9 rd−1T + α

1
9

∫∫
η dμh

)

+ o(1), as h → 0,

where we used the choice of time slices (72). Since ξ has compact support in (0, T ), a discrete
integration by parts yields

τ

L∑

l=1

∫
ξ1(lτ)

1

τ

(
χKl
i − χ

K(l−1)
i

)
dx = −τ

L−1∑

l=0

∫
1

τ
(ξ1((l + 1)τ )− ξ1(lτ)) χKl

i dx .

By the Hölder-type bounds in Lemma 2.6 we can replace the mesoscopic scale on the right-
hand side by the microscopic scale for χ :

∣
∣
∣
∣
∣
τ

L−1∑

l=0

∫
1

τ
(ξ1((l + 1)τ )− ξ1(lτ)) χKl

i dx − τ

×
L−1∑

l=0

1

K

K∑

k=1

∫
1

τ
(ξ1((l + 1)τ )− ξ1(lτ)) χKl+k

i dx

∣
∣
∣
∣
∣

≤ ‖∂tξ‖∞h
L−1∑

l=0

K∑

k=1

∫ ∣
∣
∣χKl − χKl+k

∣
∣
∣ dx � ‖∂tξ‖∞E0T

√
τ .

By the smoothness of ξ , we can easily do the same for ξ to obtain by (iii) in Proposition 2.2
that for h → 0

τ

L−1∑

l=0

∫
1

τ
(ξ1((l + 1)τ )−ξ1(lτ)) χKl

i dx→
∫ T

0

∫
∂tξ1 χi dx dt=−

∫ T

0

∫
ξ1Vi |∇χi | dt.

Using this for the right-hand side of (73) establishes (71) and thus concludes the proof. ��
Proof of Lemma 4.2 Step 1: an easier inequalityWe claim that for any function u ∈ C0,1(I ),
we have

|{|u| ≤ 1}| �
∫

{|u|≤1}
(∂1u − 1)2− dx1 + 1. (74)
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x1

1

−1

→ ∂

u(x1)

Fig. 5 The four cases (i)–(iv) for an interval J ⊂ I (from left to right)

In order to prove (74), we decompose the set that we want to measure on the left-hand side

{|u| ≤ 1} =
⋃

J∈J
J

into countably many pairwise disjoint intervals. As illustrated in Fig. 5, we distinguish the
following four different cases for an interval J = [a, b] ∈J :

(i) J ∈J↗: u(a) = −1 and u(b) = 1
(ii) J ∈J↘: u(a) = 1 and u(b) = −1

(iii) J ∈J→: u(a) = u(b),
(iv) J ∈J∂ : J contains a boundary point of I .

By Jensen’s inequality for the convex function z �→ z2−, we have

1

|J |
∫

J
(∂1u − 1)2− dx1 ≥

(
1

|J |
∫

J
(∂1u − 1) dx1

)2

−
=
(

1− u(b)− u(a)

|J |
)2

+

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1− 2

|J |
)2

+ , if J ∈J↗,
(

1+ 2
|J |
)2

, if J ∈J↘,

1, if J ∈J→.

If |J | ≥ 4, then −1 ≤ 2(u(b)− u(a))/|J | ≤ 1 and so

1

|J |
∫

J
(∂1u − 1)2− dx1 ≥ 1

4
. (75)

Thus, we have

|J | � 1 ∨
∫

J
(∂1u − 1)2− dx1

for any interval J ∈J . Since #J∂ ≤ 2, we have

∑

J∈J∂

|J | � 1+
∫

J
(∂1u − 1)2− dx1,

which is enough in case (iv). In case (iii), we immediately have

|J | �
∫

J
(∂1u − 1)2− dx1, (76)
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while in case (ii) we even have the stronger estimate

∫

J
(∂1u − 1)2− dx1 � |J |

(

1+ 2

|J |
)2

� 1 ∨ |J |

since 1 + s2 ≥ 1 and 1 + s2 ≥ 2s for all s ∈ R. Thus on the one hand we can estimate the
measure of such an interval J ∈ J↘ as in (76). On the other hand, we can bound the total
number of these intervals:

#J↘ �
∑

J∈J↘

∫

J
(∂1u − 1)2− dx1 ≤

∫

|u|≤1
(∂1u − 1)2− dx1, (77)

which clearly yields

#J↗ ≤ #J↘ + 1 �
∫

|u|≤1
(∂1u − 1)2− dx1 + 1.

Hence, using (75) for those J ∈J↗ with |J | ≥ 4, we have
∑

J∈J↗
|J | =

∑

J∈J↗
|J |≥4

|J | +
∑

J∈J↗
|J |<4

|J |

�
∫

|u|≤1
(∂1u − 1)2− dx1 + #J↗ �

∫

|u|≤1
(∂1u − 1)2− dx1 + 1.

Using these estimates, we derive

|{|u| ≤ 1}| =
∑

J∈J
|J | �

∫

|u|≤1
(∂1u − 1)2− dx1 + 1.

Step 2: rescaling (74) Let s > 0. We use Step 1 for û and set u := sû, x1 = sx̂1. Then
∂1u = ∂̂1û and

|{|u| ≤ s}| = s
∣
∣{û ≤ 1}∣∣

(74)

� s
∫

|û|≤1

(
∂̂1û − 1

)2

− dx̂1 + s =
∫

|u|≤s
(∂1u − 1)2− dx1 + s.

Therefore, using this for u − 1
2 instead of u, we have

|{|u − 1
2 | ≤ s}| �

∫

|u− 1
2 |≤s

(∂1u − 1)2− dx1 + s. (78)

Step 3: introducing ũ By Chebyshev’s inequality, we have

|{|u − ũ| ≥ s}| ≤ 1

s2

∫

I
(u − ũ)2dx1

for all s > 0. Set

E := {|u − 1
2 | ≤ s} ∪ {|u − ũ| ≥ s} ⊂ I.

Then, since e. g. u ≥ 1
2 > ũ and |u − 1

2 | > s imply |ũ − u| > s,

{χ �= χ̃} = {u ≥ 1
2 }�{ũ ≥ 1

2 } ⊂ E .
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Hence,
∫

I
|χ − χ̃ | dx1 ≤ |E | �

∫

|u− 1
2 |<s

(∂1u − 1)2− dx1 + s + 1

s2

∫

I
(u − ũ)2 dx1,

which concludes the proof. ��
Proof of Corollary 4.3 By rescaling x1 =

√
h x̂1, û(x̂1) = u(

√
h x̂1), and analogously for ũ

and using Lemma 4.2 for the transformed functions we obtain:

1√
h

∫

I
|χ − χ̃ | dx1 �

1√
h

∫

|u− 1
2 |<s

(√
h ∂1u − 1

)2

− dx1 + s + 1

s2

1√
h

∫

I
(u − ũ)2 dx1.

(79)

Now we approximate η by simple functions: let

η̃ := [Nη]
N

= 1

N

N∑

n=1

1Jn , where Jn :=
{
x ∈ I : η(x) >

n

N

}
.

Then 0 ≤ η̃ ≤ η, |η − η̃| ≤ 1
N and since η is radially non-increasing, each Jn is an open

interval. We can apply (79) with Jn playing the role of I . By linearity we have

1√
h

∫
η̃ |χ − χ̃ | dx1 �

1√
h

∫

|u− 1
2 |<s

η̃
(√

h ∂1u−1
)2

− dx1+s+ 1

s2

1√
h

∫
η̃ (u−ũ)2 dx1

≤ 1√
h

∫

|u− 1
2 |<s

η
(√

h ∂1u−1
)2

− dx1+s+ 1

s2

1√
h

∫
η (u−ũ)2 dx1.

Passing to the limit N → ∞, the left-hand side converges to 1√
h

∫
η |χ − χ̃ | dx1 and we

obtain the claim. ��
Proof of Lemma 4.4 Argument for (68) As in Step 1 of the proof of Lemma 2.4, by (22) we
have

1√
h

∫
η
[
(1− χ̃)Gh ∗ χ̃ + χ̃ Gh ∗ (1− χ̃ )

]
dx

= 1√
h

∫
Gh(z)

∫
η(x) |χ̃ (x + z)− χ̃ (x)| dx dz. (80)

Using |χ∗(x + z)− χ∗(x)| = sign(z1) (χ∗(x + z)− χ∗(x)), and 2u+ = |u| + u on the set
{z1 > 0} and 2u− = |u| − u on {z1 < 0}, we thus obtain

2√
h

∫

z1≶0
Gh(z)

∫
η(x) (χ(x + z)− χ(x))± dx dz

= 1√
h

∫
Gh(z)

∫
η(x)

(|χ(x + z)− χ(x)| − ∣
∣χ∗(x + z)− χ∗(x)

∣
∣) dx dz

− 1√
h

∫
sign(z1)Gh(z)

∫
η(x)

(
(χ∗ − χ)(x + z)− (χ∗ − χ)(x)

)
dx dz

≤ ε2 − 1√
h

∫
sign(z1)Gh(z)

∫
(η(x)− η(x − z)) (χ∗ − χ)(x) dx dz,

where we used again <,+ and >,−, respectively as a short notation for the sum of the two
integrals. Now we can apply a Taylor expansion for η around x , i. e. write η(x)−η(x− z) =
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∇η(x) · z + O(|z|2), where the constant in the O(|z|2)-term depends linearly on
∥
∥∇2η

∥
∥∞.

By symmetry, the first-order term is

1√
h

∫
sign(z1) z Gh(z) dz ·

∫
∇η(x)(χ∗ − χ)(x) dx

=
∫ |z1|√

h
Gh(z) dz

∫
∂1η(x)(χ∗ − χ)(x) dx .

Note that the right-hand side can be controlled by

‖∂1η‖∞
∫

B2r

∣
∣χ − χ∗

∣
∣ dx �

1

r

∫

B2r

∣
∣χ − χ∗

∣
∣ dx ≤ ε2.

The second-order term is controlled by

∥
∥∇2η

∥
∥∞

1√
h

∫
|z|2Gh(z) dz =

∥
∥∇2η

∥
∥∞

√
h
∫
|z|2G(z) dz �

√
h

1

r2 ,

which completes the proof of (68).
Argument for (69). For the first arguments let w. l. o. g. h = 1. The first ingredient is the
identity

∂1(G ∗ χ)(x) =
∫
|z1|G(z) |χ(x + z)− χ(x)| dz

− 2
∫

z1≶0
|z1|G(z) (χ(x + z)− χ(x))± dz, (81)

where the last term is the sum of the two integrals. Indeed, since ∂1G(z) = −z1G(z) is odd
in z1,

∂1(G ∗ χ)(x) =
∫

∂1G(z)χ(x − z) dz =
∫

z1G(z) (χ(x + z)− χ(x)) dz

and splitting the integrand in the form u = |u|−2u− on the set {z1 > 0} and−u = |u|−2u+
on {z1 < 0}, respectively, we derive

∂1(G ∗ χ)(x)

=
∫

z1>0
|z1|G(z) |χ(x + z)− χ(x)| dz +

∫

z1<0
|z1|G(z) |χ(x + z)− χ(x)| dz

− 2
∫

z1>0
|z1|G(z) (χ(x + z)− χ(x))− dz − 2

∫

z1<0
|z1|G(z) (χ(x + z)− χ(x))+ dz,

which is (81).
The second ingredient for (69) is

∫
|z1|G(z)|χ(x + z)− χ(x)|dz �

(∫
G(z)|χ(x + z)− χ(x)|dz

)2

. (82)
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To obtain (82), we estimate
∫
|z1|G(z)|χ(x + z)− χ(x)|dz ≥

∫

|z1|≥ε

|z1|G(z)|χ(x + z)− χ(x)|dz

≥ ε

∫

|z1|≥ε

G(z)|χ(x + z)− χ(x)|dz

= ε

∫
G(z)|χ(x + z)− χ(x)|dz

− ε

∫

|z1|<ε

G(z)|χ(x + z)− χ(x)|dz.

We recall that we G factorizes in a one-dimensional Gaussian G1 and a (d − 1)-dimensional
Gaussian Gd−1, i. e. G(z) = G1(z1)Gd−1(z′) so that the second integral can be estimated
from above by 2G1(0)ε. Therefore we have

∫
|z1|G(z)|χ(x + z)− χ(x)|dz ≥ ε

∫
G(z)|χ(x + z)− χ(x)|dz − 2G1(0)ε2.

Optimizing in ε yields (82).
Using the fact that χ ∈ {0, 1},

∫
G(z)|χ(x + z)− χ(x)|dz = (1− χ)(x)(G ∗ χ)(x)+ χ(x)(G ∗ (1− χ))(x)

implies the third ingredient:
∫

G(z) |χ(x + z)− χ(x)| dz ≥ (G ∗ χ)(x) ∧ (1− G ∗ χ)(x). (83)

Combining (81), (82) and (83), one finds a positive constant c such that

∂1(G ∗ χ)(x) ≥ 18 c [(G ∗ χ)(x) ∧ (1− G ∗ χ)(x)]2

− 2
∫

z1≶0
|z1|G(z) (χ(x + z)− χ(x))± dz,

where we recall that the last term is the sum of the two integrals. We consider the “bad” set

E :=
{

x :
∫

z1≶0
|z1|G(z) (χ(x + z)− χ(x))± dz ≥ c

2

}

.

By construction of E we have a good estimate on Ec:

∂1(G ∗ χ)(x) ≥ 18 c [min {(G ∗ χ)(x), (1− G ∗ χ)(x)}]2 − c on Ec,

and thus we obtain strict monotonicity of G ∗ χ in e1-direction outside E as long as the first
term on the left-hand side dominates the second term:

∂1(G ∗ χ) ≥ c on Ec ∩
{

1

3
≤ G ∗ χ ≤ 2

3

}

.

Therefore
∫

1
3≤G∗χ≤ 2

3

η (∂1G ∗ χ − c)2− dx =
∫

E∩
{

1
3≤G∗χ≤ 2

3

} η (∂1G ∗ χ − c)2− dx �
∫

E
η dx .
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We introduce the parameter h again. Then this turns into

1√
h

∫

1
3≤Gh∗χ≤ 2

3

η
(√

h∂1Gh ∗ χ − c
)2

− dx �
1√
h

∫

Eh

η dx,

with now

Eh :=
{

x : 1√
h

∫

z1≶0

|z1|√
h
Gh(z) (χ(x + z)− χ(x))± dz ≥ c

2

}

.

By construction of E and since |z|Gh(z) �
√
h Gh(

z
2 ), we have

1√
h

∫

Eh

η dx �
1

h

∫

z1≶0
|z1|Gh(z)

∫
η(x) (χ(x + z)− χ(x))± dx dz

�
1√
h

∫

z1≶0
Gh(z/2)

∫
η(x) (χ(x + z)− χ(x))± dx dz

�
1√
h

∫

z1≶0
Gh(z)

∫
η(x) (χ(x + z)− χ(x))± dx dz

+ 1√
h

∫

z1≶0
Gh(z)

∫
η(x) (χ(x + 2z)− χ(x + z))± dx dz (84)

by a change of coordinates z �→ 2z and the subadditivity of the functions u �→ u±. The last
term can be handled using a Taylor expansion of η around x :

1√
h

∫

z1≶0
Gh(z)

∫
η(x) (χ(x + 2z)− χ(x + z))± dx dz

= 1√
h

∫

z1≶0
Gh(z)

∫
η(x − z) (χ(x + z)− χ(x))± dx dz

= 1√
h

∫

z1≶0
Gh(z)

∫
η(x) (χ(x + z)− χ(x))± dx dz + O

(√
h
)
,

where the constant in the O(
√
h)-term depends linearly on Eh(χ) and ‖∇η‖∞. Indeed, the

error in the equation above is—up to a constant times ‖∇η‖∞—estimated by
∫ |z|√

h
Gh(z)

∫
|χ(x + z)− χ(x)| dx dz

�
∫

Gh(
z

2
)

∫
|χ(x + z)− χ(x)| dx dz

(18)

�
√
hEh(χ).

Using (68), we obtain

1√
h

∫

Eh

η dx � ε2 +√h
1

r2 +
√
h

1

r
Eh(χ)

and thus (69) holds. ��
Proof of Lemma 4.5 By the same argument as in Corollary 4.3, we can ignore the cut-off η

and the parameter h > 0 and reduce the claim to the following version:
∫

I
|χ − χ̃ | dx1 �

∫

|u1− 1
2 |�s

(∂1u1 − c)2− dx1

+ 1

s

∫

I

∑

j≥3

[
u j ∧ (1− u j )

]
dx1 + s + 1

s2

∫

I
|u − ũ|2 dx1. (85)
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We will prove

{χ �= χ̃} ⊂
{
|u1 − 1

2 | � s
}
∪
{∑

j≥3

[
u j ∧ (1− u j )

]
� s

}
∪ {|u − ũ| � s}. (86)

Then (85) follows from the one-dimensional case in the form of (78) for the first right-hand
side set and Chebyshev’s inequality for the second and third right-hand side set. The fact
that we replaced the 1 in (78) by the universal constant c > 0 can be justified by a simple
rescaling.

In order to prove (86), we fix i ∈ {1, . . . , P} and define the functions

v := min
j �=i φ j − φi ∈ C0,1(I )

and ṽ in the same way, so that χi = 1{v>0}, χ̃i = 1{ṽ>0} and

{χi �= χ̃i } ⊂ {|v| < s} ∪ {|v − ṽ| ≥ s}. (87)

We clearly have

|v − ṽ| ≤ ∣
∣φi − φ̃i

∣
∣+ ∣

∣min
j �=i φ j −min

j �=i φ̃ j
∣
∣ ≤

P∑

i=1

∣
∣φi − φ̃i

∣
∣ � |u − ũ| ,

which together with Chebyshev’s inequality yields the desired bound on the measure of the
second right-hand side set of (87). Therefore our goal is to prove

|u1 − 1
2 | � s or

∑

j≥3

[
u j ∧ (1− u j )

]
� s on {|v| < s}, (88)

which then implies (86).
Now we give the argument for (88). First, we decompose the set {|v| < s} in the following

way:

{|v| < s} =
⋃

j �=i
E j , E j :=

{ ∣∣φi − φ j
∣
∣ < s, φ j = min

k �=i φk
}
.

We claim that

ui , u j ≤ 1

2
+ s

2σi j
, uk ≤ 1

2
, k /∈ {i, j} on E j . (89)

Indeed, plugging in the definition of φ, using the triangle inequality for the surface tensions
and

∑
l ul = 1, for k /∈ {i, j}, we have on E j

φ j ≤ φk =
∑

l �=k
σklul ≤

∑

l �=k
σ jlul + σ jk

∑

l �=k
ul

= φ j − σ jkuk + σ jk(1− uk) = φ j + σ jk(1− 2uk).

Subtracting φ j on both sides, we obtain uk ≤ 1
2 . Since φ j − s ≤ φi on E j with the same

chain of inequalities as before we obtain

−s ≤ σi j (1− 2ui ).

The same inequality holds for u j since φi − s ≤ φ j , which concludes the argument for (89).
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On the one hand, (89) gives us the upper bound for u1 on {|v| < s}. On the other
hand, since u ∧ (1 − u) = u − (2u − 1)+ for any u we infer from (89) that on the set
{u1 ≤ 1

2 − Cs} ∩ {|v| < s} we have

∑

j≥3

[
u j ∧ (1− u j )

] = 1− u1 − u2 −
∑

j≥3

(2u j − 1)+ ≥
(

C − 1

σmin

)

s � s,

if C ≥ 2
σmin

. This concludes the argument for (88) and therefore the proof of the
lemma. ��

Proof of Corollary 4.6 By Lemma 4.4, the claim follows from the obvious inequality

u j ∧ (1− u j ) = Gh ∗ χ j ∧ Gh ∗ (1− χ j ) ≤ (1− χ)Gh ∗ χ j + χ Gh ∗
(
1− χ j

)
.

��

Proof of Lemma 4.7 We recall the definition of the inner variation of −Eh(χ − χ̃ ) in (33):
we have for any pair of admissible functions χ, χ̃ and any test function ξ ∈ C∞([0,�)d ,Rd)

−δEh( · − χ̃)(χ, ξ) = 2√
h

∑

i, j

σi j

∫
(χi − χ̃i )Gh ∗

(
ξ · ∇χ j

)
dx

= 2√
h

∑

i j

σi j

∫
(χi − χ̃i )

[∇Gh ∗
(
ξ χ j

)− Gh ∗
(
(∇ · ξ) χ j

)]
dx .

In our case, after integration in time, this yields

∫ T

0
−δEh( · − χh(t − h))(χh(t), ξ(t)) dt

=
∑

i, j

σi j h
N∑

n=1

2√
h

∫ (
χn
i − χn−1

i

) [
∇Gh ∗

(
ξ
n
χn
j

)
− Gh ∗

((
∇ · ξn

)
χn
j

)]
dx,

where

ξ
n := 1

h

∫ (n+1)h

nh
ξ(t) dt

denotes the time average of ξ over a microscopic time interval [nh, (n + 1)h).
Now we prove step by step that

1. the (∇ · ξ)-term is negligible as h → 0;
2. we can freeze mesoscopic time for ξ , that is, substitute ξ

n
by some nearby value ξ(lnτ)

at the expense of an o(1)-term;
3. we can smuggle in η at the expense of an o(1)-term;
4. we can freeze mesoscopic time for χh and substitute χn in the second factor by the mean

1
2

(
χh((ln − 1)τ )+ χh(lnτ)

)
, which is the main step;

5. we can get rid of η again at the expense of an o(1)-term; and finally;
6. we can pull ξ out of the convolution at the expense of an o(1)-term.

Note that Step 3 and Step 5 are just auxiliary steps for Step 4.
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Step 1: the (∇ · ξ)-term vanishes as h → 0 By Jensen’s inequality, for any pair i, j we have

∣
∣
∣
∣
∣
h

N∑

n=1

1√
h

∫ (
χn
i − χn−1

i

)
Gh ∗

((
∇ · ξn

)
χn
j

)
dx

∣
∣
∣
∣
∣

≤ ‖∇ξ‖∞T
1√
h

1

N

N∑

n=1

∫ ∣
∣
∣Gh ∗

(
χn
i − χn−1

i

)∣∣
∣ dx

� ‖∇ξ‖∞T
1√
h

(
1

N

N∑

n=1

∫ ∣
∣Gh ∗

(
χn − χn−1)∣∣2 dx

) 1
2

.

Since the L2-norm of Gh ∗ u is decreasing in h and by the energy-dissipation estimate (10),
the error is controlled by

‖∇ξ‖∞T
1√
h

(
1

N

√
hE0

) 1
2 ≤ ‖∇ξ‖∞E

1
2
0 T

1
2 h

1
4 = o(1).

Step 2: time freezing for ξ We can approximate ξ
n

by a nearby value ξ(lnτ), where ln ∈
{1, . . . L} is chosen such that K(ln − 1) < n ≤ Kln . Note that |ξn − ξ ln | ≤ τ‖∂tξ‖∞.
Therefore, by Jensen’s inequality, we have for any pair i, j

∣
∣
∣
∣
∣
h

N∑

n=1

1√
h

∫ (
χn
i − χn−1

i

)
∇Gh ∗

(
(ξ ln − ξ

n
) χn

j

)
dx

∣
∣
∣
∣
∣

≤ α‖∂tξ‖∞T
1

N

N∑

n=1

∫ ∣
∣
∣∇Gh ∗

(
χn
i − χn−1

i

)∣∣
∣ dx

� α‖∂tξ‖∞T

(
1

N

N∑

n=1

∫ ∣
∣∇Gh ∗

(
χn − χn−1)∣∣2 dx

) 1
2

.

But
√
h‖∇Gh ∗ u‖L2 � ‖Gh/2 ∗ u‖L2 yields

∫ ∣
∣∇Gh ∗

(
χn − χn−1)∣∣2 dx �

1

h

∫
[
Gh/2 ∗

(
χn − χn−1)]2

dx .

Using the energy-dissipation estimate (10), the error is controlled by

α‖∂tξ‖∞T

(
1

N

1√
h
E0

) 1
2 = α‖∂tξ‖∞E

1
2
0 T

1
2 h

1
4 = o(1).

Step 3: smuggling in η We claim

h
N∑

n=1

1√
h

∫ (
χn
i − χn−1

i

)
∇Gh ∗

(
ξ(lnτ)χn

j

)
dx

= h
N∑

n=1

1√
h

∫
ηGh/2 ∗

(
χn
i − χn−1

i

)
∇Gh/2 ∗

(
ξ(lnτ)χn

j

)
dx + o(1) as h → 0.
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Using ∇Gh = Gh/2 ∗ ∇Gh/2, the left-hand side is equal to

h
N∑

n=1

1√
h

∫
Gh/2 ∗

(
χn
i − χn−1

i

)
∇Gh/2 ∗

(
ξ(lnτ)χn

j

)
dx .

Note that since η ≡ 1 on the support of ξ and |z| ∣∣∇G1/2(z)
∣
∣ � |z|2 G(z) has finite integral,

we have for any χ ∈ {0, 1},
∣
∣(1− η)∇Gh/2 ∗ (ξχ)

∣
∣ =

∣
∣
∣
∣

∫
∇Gh/2(z)(η(x + z)− η(x))ξ(x + z)χ(x + z) dz

∣
∣
∣
∣

� ‖∇η‖∞‖ξ‖∞
∫
|z| ∣∣∇Gh/2(z)

∣
∣ dz �

1

r
‖ξ‖∞.

Thus, using the Cauchy–Schwarz inequality and the energy-dissipation estimate (10), the
error is controlled by

h
1
4

(
N∑

n=1

1√
h

∫ ∣
∣Gh/2 ∗

(
χn − χn−1)∣∣2 dx

) 1
2
(

h
N∑

n=1

(
1

r
‖ξ‖∞

)2
) 1

2

� E
1
2
0 T

1
2

1

r
‖ξ‖∞h

1
4 = o(1).

Step 4: time freezing for χh We claim that for any pair of indices i, j

h
N∑

n=1

2√
h

∫
ηGh/2 ∗

(
χn
i − χn−1

i

)
∇Gh/2 ∗

(
ξ(lnτ)χn

j

)
dx

≈ h
N∑

n=1

1√
h

∫
ηGh/2 ∗

(
χn
i −χn−1

i

)
∇Gh/2 ∗

(
ξ(lnτ)

(
χh
j ((ln−1)τ )+χh

j (lnτ)
))

dx,

in the sense that the error is controlled by

‖ξ‖∞
(

1

α
τ

L∑

l=1

ε2(χKl−1)+ α
1
3

∫∫
η dμh + α

1
3 rd−1T

)

+ o(1), as h → 0.

Here, we assumed that Phases 1 and 2 are the majority phases in the support of η. Indeed,
we can control the error using the Cauchy–Schwarz inequality by

(
N∑

n=1

1√
h

∫
η2
∣
∣Gh/2 ∗

(
χn − χn−1)∣∣2 dx

) 1
2

×
(

τ

L∑

l=1

1

K

K∑

k=1

1√
h

∫ [√
h∇Gh/2 ∗

(
ξ(lτ)

[
χ
K(l−1)+k
j − 1

2

(
χ
K(l−1)
j + χKl

j

)])]2
dx

) 1
2

.

Since 0 ≤ η ≤ 1, the term in the first parenthesis is controlled by
∫∫

η dμh . For the term in
the second parenthesis, we fix the mesoscopic block index l and the microscopic time step
index k and sum at the end. Let l = 1 and write ξ instead of ξ(lτ) for notational simplicity.
We use the L2-convolution estimate and introduce η in the second integral, which is equal to
1 on the support of ξ :
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1√
h

∫ [√
h∇Gh/2 ∗

(
ξ(lτ)

[
χk
j − 1

2

(
χ0
j + χK

j

)])]2
dx

≤ 1√
h

(∫ ∣
∣
√
h∇Gh/2

∣
∣dz

)2 ∫
|ξ |2

[
χk
j − 1

2

(
χ0
j + χK

j

)]2
dx

� ‖ξ‖2∞
(

1√
h

∫
η

∣
∣
∣χk − χ0

∣
∣
∣ dx + 1√

h

∫
η

∣
∣
∣χK − χk

∣
∣
∣ dx

)

.

With Lemma 4.5 in the integrated form and Corollary 4.6, we can estimate these terms in the
following way. We set for abbreviation

α2(k, k′) := 1√
h

∫
η
(
Gh ∗

(
χk − χk′)

)2
dx .

By Minkowski’s triangle inequality w. r. t. the measure η dx , we see that α also satisfies a
triangle inequality. Thus, thanks to Jensen’s inequality,

α2(k − 1,−1) ≤
(
k−1∑

n=0

α(n, n − 1)

)2

≤ k
k−1∑

n=0

α2(n, n − 1) ≤ K
K−1∑

n=0

α2(n, n − 1).

Therefore, by integrating Lemma 4.5 over the tangential directions x2, . . . , xd and using
Corollary 4.6, we have

1√
h

∫
η

∣
∣
∣χk − χ0

∣
∣
∣ dx �

1

s
ε2(χ−1)+ srd−1 + 1

s2 K
K−1∑

n=0

α2(n, n − 1)+ o(1). (90)

By (15) we have
∑

n α2(n, n − 1) ≤ ∫∫
η dμh and the relation K τ = α2, we have

τ

L∑

l=1

α2(Kl − 1,K(l − 1)− 1) ≤ α2
∫∫

η dμh . (91)

This justifies the name α2(k, k′), since the term arising from α2(k, k′) is estimated in (91) by
α2, the square of the fudge factor in the definition of the mesoscopic time scale τ = α

√
h.

Therefore, after summation over the mesoscopic block index l, (90) in conjunction with (91)
yields

τ

L∑

l=1

1

K

K∑

k=1

1√
h

∫
η

∣
∣
∣χKl+k−χKl

∣
∣
∣ dx �

1

s
τ

L∑

l=1

ε2(χKl−1)+srd−1T+ 1

s2 α2
∫∫

η dμh .

Using Young’s inequality, the total error in this step is controlled by ‖ξ‖∞ times

(∫∫
η dμh

) 1
2
(

1

s
τ

L∑

l=1

ε2(χKl−1)+ srd−1T +
(α

s

)2
∫∫

η dμh

) 1
2

≤ 1

α
τ

L∑

l=1

ε2(χKl−1)+ s2

α
rd−1T + α

s

∫∫
η dμh .

If we now choose s = α
2
3 � 1, this is the desired error term.
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Step 5: getting rid of η again As in Step 3, we can estimate

h
N∑

n=1

1√
h

∫
ηGh/2 ∗

(
χn
i − χn−1

i

)
∇Gh/2 ∗

[
ξ(lnτ)

(
χh
j ((ln − 1)τ )+ χh

j (lnτ)
)]

dx

= h
N∑

n=1

1√
h

∫ (
χn
i − χn−1

i

)
∇Gh ∗

[
ξ(lnτ)

(
χh
j ((ln − 1)τ )+ χh

j (lnτ)
)]

dx + o(1),

as h → 0.
Step 6: pulling out ξ First, fix l and write ξ = ξ(lτ). For simplicity of the formula, we will
ignore l and formally set l = 1. Note that since ∇G is antisymmetric, we have for any two
functions χ, v,

∫
v [ξ · ∇Gh ∗ χ − ∇Gh ∗ (ξ χ)] dx

=
∫
∇Gh(z)

∫
v(x + z) χ(x) (ξ(x + z)− ξ(x)) dx dz.

Set K (z) := z ⊗ z G(z), take a Taylor-expansion of ξ around x : ξ(x + z) − ξ(x) =
∇ξ(x) z+O(|z|2), where the constant in the O(|z|2)-term is depending linearly on ‖∇2ξ‖∞.
Then the error on this single time interval splits into two terms.
The one coming from the first-order term in the expansion of ξ is

∣
∣
∣
∣
∣

1

K

K∑

k=1

1√
h

∫
∇ξ : Kh ∗

(
χk
i − χk−1

i

) (
χ0
j + χK

j

)
dx

∣
∣
∣
∣
∣

� ‖∇ξ‖∞ 1√
h

(
1

K

K∑

k=1

∫ ∣
∣
∣Kh ∗

(
χk − χk−1

)∣∣
∣
2
dx

) 1
2

,

where we used Jensen’s inequality. Since Kh = h∇2Gh + Gh Id , ‖h∇2Gh ∗ u‖L2 �
‖Gh/2 ∗ u‖L2 for any u and since the L2-norm of Gh ∗ u is non-increasing in h, we have for
any function v

∫
|Kh ∗ v|2 dx ≤

∫ ∣
∣h∇2Gh ∗ v

∣
∣2 dx +

∫
(Gh ∗ v)2 dx �

∫
(
Gh/2 ∗ v

)2
dx .

Plugging this into the inequality above with v playing the role of χk
i − χk−1

i , multiplying
by τ , summing over the block index l and using Jensen’s inequality, we can control the
contribution to the error coming from the first-order term by

T ‖∇ξ‖∞ 1√
h

(
1

N

N∑

n=1

∫ ∣
∣Gh/2 ∗

(
χn − χn−1)∣∣2 dx

) 1
2

≤ ‖∇ξ‖∞E
1
2
0 T

1
2 h

1
4 = o(1).

By Lemma 2.5, the contribution coming from the second-order term in the expansion of ξ is
controlled by

‖∇2ξ‖∞h
N∑

n=1

∫ ( |z|√
h

)3

Gh(z)
∫ ∣
∣χn − χn−1

∣
∣ dx dz

� ‖∇2ξ‖∞
∫ T

0

∫ ∣
∣
∣χh(t)− χh(t − h)

∣
∣
∣ dx dt � ‖∇2ξ‖∞E0(1+ T )

√
h = o(1).
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Finally, we note that by the time freezing in Step 4, we constructed a telescope sum: rewriting
the summation over the microscopic time step index n = 1, . . . , N as the double sum over
the microscopic time step index k = 1, . . . ,K in the respective mesoscopic time intervals
and the mesoscopic block index l = 1, . . . , L , we have for each l,

K∑

k=1

(
χ
K(l−1)+k
i − χ

K(l−1)+k−1
i

)
ξ(lτ) · ∇Gh ∗

(
χ
K(l−1)
j + χKl

j

)

=
(
χKl
i − χ

K(l−1)
i

)
ξ(lτ) · ∇Gh ∗

(
χ
K(l−1)
j + χKl

j

)
.

Thus we obtain

h
N∑

n=1

1√
h

∫ (
χn
i − χn−1

i

)
∇Gh ∗

(
ξ(lnτ)

(
χh
j ((ln − 1)τ )+ χh

j (lnτ)
))

dx

= τ

L∑

l=1

1

τ

∫ (
χKl
i − χ

K(l−1)
i

)
ξ(lτ) ·

(√
h∇Gh

)
∗
(
χ
K(l−1)
j + χKl

j

)
dx + o(1),

which concludes the proof. ��

Proof of Lemma 4.8 Step 1: rough estimate for minority phasesWe first argue that if {i, j} �=
{1, 2}, that is if the product involves at least one minority phase, then we can estimate this
term. Let us first assume that j /∈ {1, 2}. By a manipulation as in the proof of Lemma 4.7
and the Cauchy–Schwarz inequality, we have

∣
∣
∣
∣
∣
τ

L∑

l=1

∫
χKl
i − χ

K(l−1)
i

τ
ξ(lτ) ·

(√
h ∇Gh

)
∗
(
χ
K(l−1)
j + χKl

j

)
dx

∣
∣
∣
∣
∣

� ‖ξ‖∞
(

L∑

l=1

∫
η

∣
∣
∣Gh/2 ∗

(
χKl
i − χ

K(l−1)
i

)∣∣
∣
2
dx

) 1
2

×
(

L∑

l=0

∫
η

∣
∣
∣
√
h∇Gh/2 ∗ χKl

j

∣
∣
∣
2
dx

) 1
2

+ o(1),

as h → 0. Note that for any characteristic function χ ∈ {0, 1}, since
∫ ∇G(z) dz = 0,

1√
h

∫
η

∣
∣
∣
√
h∇Gh/2 ∗ χ

∣
∣
∣
2
dx �

1√
h

∫
η

∣
∣
∣
√
h∇Gh/2 ∗ χ

∣
∣
∣ dx

�
1√
h

∫ ∣
∣
∣
√
h∇Gh/2(z)

∣
∣
∣

∫
η(x) |χ(x + z)− χ(x)| dx dz

�
1√
h

∫
Gh(z)

∫
η(x) |χ(x + z)− χ(x)| dx dz

= 1√
h

∫
η [(1− χ)Gh ∗ χ + χ Gh ∗ (1− χ)] dx .
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Treating the metric term as in the proof of Lemma 4.7 with the triangle inequality and Jensen’s
inequality afterwards, we obtain the bound

‖ξ‖∞
(∫∫

η dμh

) 1
2
(

τ

L∑

l=1

ε2(χKl)

) 1
2

+ o(1)

≤ ‖ξ‖∞
(

1

α
τ

L∑

l=1

ε2(χKl)+ α

∫∫
η dμh

)

+ o(1).

If instead i /∈ {1, 2}, using a discrete integration by parts, the antisymmetry of ∇G and a
manipulation as in the proof of Lemma 4.7 for ξ , we can exchange the roles of Phase i and
Phase j :

τ

L∑

l=1

∫
χKl
i − χ

K(l−1)
i

τ
ξ(lτ) ·

(√
h ∇Gh

)
∗
(
χ
K(l−1)
j + χKl

j

)
dx

= −τ

L∑

l=1

∫
χKl
j − χ

K(l−1)
j

τ
ξ(lτ) ·

(√
h ∇Gh

)
∗
(
χ
K(l−1)
i + χKl

i

)
dx + o(1).

Thus, we can use the above argument also in this case and the only terms contributing to the
sum as h → 0 are the terms involving both majority phases.
In the following we assume that i = 1 and j = 2. In the other case, we can just exchange
the roles of χ1 and χ2 in the following steps and use −e1 as the approximate normal to χ2

instead and the proof is the same.
Step 2: substituting χ2 by 1− χ1 We claim that

τ

L∑

l=1

∫
χKl

1 − χ
K(l−1)
1

τ
ξ(lτ) ·

(√
h ∇Gh

)
∗
(
χ
K(l−1)
2 + χKl

2

)
dx

= −τ

L∑

l=1

∫
χKl

1 − χ
K(l−1)
1

τ
ξ(lτ) ·

(√
h ∇Gh

)
∗
(
χ
K(l−1)
1 + χKl

1

)
dx + o(1).

Since∇G ∗1 = 0, the claim is clearly equivalent to proving that we can replace χ2 by 1−χ1

in the second left-hand side term of the claim. But by
∑

i χi = 1 and linearity the resulting
error term is

∣
∣
∣
∣
∣
∣

P∑

j=3

τ

L∑

l=1

∫
χKl

1 − χ
K(l−1)
1

τ
ξ(lτ) ·

(√
h ∇Gh

)
∗
(
χ
K(l−1)
j + χKl

j

)
dx

∣
∣
∣
∣
∣
∣
,

which can be handled by Step 1.
Step 3: substitution of∇G We want to replace the convolution with∇G on the left-hand side
of the claim by a convolution with the anisotropic kernel

K (z) := sign(z1) z G(z).

To that purpose, we claim that for any characteristic function χ ∈ {0, 1},
1√
h

∫
η

∣
∣
∣
√
h ∇Gh ∗ χ−(χ Kh ∗ (1−χ)+(1− χ)Kh ∗ χ)

∣
∣
∣dx�ε2 +

√
h

r2 +
√
h

r
Eh(χ).

(92)
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Here,

ε2 := inf
χ∗

{
1√
h

∫
η [χ Gh ∗ (1− χ)+ (1− χ)Gh ∗ χ] dx

− 1√
h

∫
η
[
χ∗ Gh ∗ (1− χ∗)+ (1− χ∗)Gh ∗ χ∗

]
dx + 1

r

∫

B2r

∣
∣χ − χ∗

∣
∣ dx

}

,

where the infimum is taken over all half spaces χ∗ = 1{x1>λ} in direction e1. Using this

inequality for χ
K(l−1)
1 and χKl

1 , we can substitute those two summands and the error is
estimated as desired:

1

α
‖ξ‖∞τ

L∑

l=0

1√
h

∫
η

∣
∣
∣
√
h ∇Gh ∗ χKl

1 −
[
χKl

1 Kh ∗
(

1− χKl
1

)
+
(

1−χKl
1

)
Kh ∗ χKl

1

]∣∣
∣ dx

�
1

α
‖ξ‖∞τ

L∑

l=0

ε2(χKl)+ o(1), as h → 0.

Now we give the argument for (92). By measuring length in terms of
√
h, we may assume

that h = 1. Since
∫ ∇G dz = 0 and ∇G(z) = −z G(z), using the identities u = |u| − 2u−

and u = −|u| + 2u+ on the sets {z1 > 0} and {z1 < 0}, respectively,

∇G ∗ χ =
∫

z G(z) (χ(x + z)− χ(x)) dz

=
∫

{z1>0}
K (z) |χ(x + z)− χ(x)| dz − 2

∫

{z1>0}
z G(z) (χ(x + z)− χ(x))− dz

+
∫

{z1<0}
K (z) |χ(x + z)− χ(x)| dz + 2

∫

{z1<0}
z G(z) (χ(x + z)− χ(x))+ dz.

Using |χ1 − χ2| = (1− χ1)χ2 + χ1(1− χ2) for χ1, χ2 ∈ {0, 1}, this implies the pointwise
identity

∇G ∗ χ = χ K ∗ (1− χ)+ (1− χ)K ∗ χ − 2
∫

{z1≶0}
sign(z1) z G(z) (χ(x + z)− χ(x))± dz,

where the last term stands for the sum of the two integrals. Integration w. r. t. η dx now yields:
∫

η

∣
∣
∣∇G ∗ χ − (χK ∗ (1− χ)+ (1− χ)K ∗ χ)

∣
∣
∣dx

�
∫

{z1≶0}
|z|G(z)

∫
η(x) (χ(x + z)− χ(x))± dx dz.

As in the argument for (69), we can follow the lines from (84) on so that (68) yields (92).
Step 4: an identity for K We claim that for any two characteristic functions χ, χ̃ ∈ {0, 1},
we have the pointwise identity

(χ − χ̃ )
(
χ Kh ∗ (1− χ)+ (1− χ)Kh ∗ χ + χ̃ Kh ∗ (1− χ̃ )+ (1− χ̃ )Kh ∗ χ̃

)

= 2c0 e1 (χ − χ̃)− |χ − χ̃ | Kh ∗ (χ − χ̃ ) .
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Indeed, by scaling, we may w. l. o. g. assume h = 1 and start with

(χ − χ̃) χ̃ K ∗ (1− χ̃ )+ (χ − χ̃) (1− χ̃) K ∗ χ̃

= (χ − 1) χ̃

(∫
K − K ∗ χ̃

)

+ χ (1− χ̃ ) K ∗ χ̃

= (χ − 1) χ̃

(∫
K

)

+ (
(1− χ) χ̃ + χ (1− χ̃ )

)
K ∗ χ̃

= (χ − 1) χ̃

(∫
K

)

+ |χ − χ̃ | K ∗ χ̃ .

Exchanging the roles of χ and χ̃ , one obtains for the second part

(χ−χ̃ ) χ K ∗ (1− χ)+(χ − χ̃) (1− χ) K ∗ χ=− (χ̃ − 1) χ

(∫
K

)

− |χ − χ̃ | K ∗ χ.

Using the factorization property of G and the symmetry
∫
z′Gd−1(z′)dz′ = 0, one computes

that for any vector ξ ∈ R
d

ξ ·
∫

K =
∫

sign(z1)

∫
(
ξ1 z1 + ξ ′ · z′)Gd−1(z′) dz′ G1(z1) dz1 = ξ1

∫
|z1|G1(z1) dz1

= 2 ξ1

∫ ∞

0
z1 G

1(z1) dz1 = 2 ξ1

∫ ∞

0
− d

dz1
G1(z1) dz1 = 2 ξ1G

1(0) = 2 ξ1
1√
2π

= 2 c0ξ1.

Hence the identity follows from (χ − 1) χ̃ − (χ̃ − 1) χ = χ − χ̃ .
Step 5: conclusion Applying Steps 1 and 2, using the identity in Step 3 for the remaining two
terms involving Phases 1 and 2, we end up with the right-hand side of the claim. The error
is controlled by

‖ξ‖∞
(

1

α
τ

L∑

l=1

ε2(χKl)+ α

∫∫
η dμh

+ τ

L∑

l=1

1

τ

∫
η2
∣
∣χKl − χK(l−1)

∣
∣ |Kh | ∗

∣
∣χKl − χK(l−1)

∣
∣ dx

)

+ o(1),

as h → 0. Note that |K | = k, where k is the kernel defined in the statement of the lemma.
It remains to argue that η can be equally distributed on both copies of

∣
∣χKl − χK(l−1)

∣
∣. For

this, note that for u = ∣
∣χKl − χK(l−1)

∣
∣ ∈ [0, 1],

1√
h

∣
∣
∣
∣

∫
η2u kh ∗ u dx −

∫
η u kh ∗ (η u) dx

∣
∣
∣
∣

≤ 1√
h

∫
kh(z)

∫
η(x) u(x) u(x + z) |η(x + z)− η(x)| dx dz

≤ ‖∇η‖∞
∫ |z|√

h
kh(z) dz

∫
η u dx �

1

r

∫
u dx .

Thus, in our case, we can use Lemma 2.6 and bound the error by
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1

α
‖ξ‖∞ 1

r
τ

L∑

l=1

∫ ∣
∣
∣χKl − χK(l−1)

∣
∣
∣ dx �

1

α
1
2

‖ξ‖∞ 1

r
E0Th

1
4 = o(1). ��

Proof of Lemma 4.9 First, we note that it is enough to prove the following similar statement
for a fixed mesoscopic time interval:

1

τ

∫
η
∣
∣χK − χ0

∣
∣ kh ∗

(
η
∣
∣χK − χ0

∣
∣) dx �

1

α2 ε2(χ−1)+ α
1
9 rd−1 + α

1
9

1

τ

∫ τ

0

∫
η dμh .

(93)

Indeed, if we multiply (93) by τ and sum over the mesoscopic block index l we obtain the
statement.

In the proof of (93), we will exploit the convolution in the normal direction e1 in Step 1,
which will allow us in Step 2 to make use of the quadratic structure of this term.
Step 1 We can estimate the kernel k by a kernel that factorizes in two kernels k1, k′ in normal-
and tangential direction, respectively, which are of the form

k1(z1) := (1+ z2
1)

1
2 G1(z1),

k′(z′) := (1+ |z′|2) 1
2 Gd−1(z′).

Let us still denote the kernel by k. We have

kh ∗
(
η|χK − χ0|) ≤ sup

x1

{
k′h ∗′ k1

h ∗1
(
η|χK − χ0|)} ≤ k′h ∗′ sup

x1

{
k1
h ∗1

(
η|χK − χ0|)} .

The second factor in the right-hand side convolution can be estimated in two ways:

sup
x1

{
k1
h ∗1

(
η|χK − χ0|)}

≤ min

{∫
k1
h dz1 sup

x1

(
η|χK − χ0|) ,

(

sup
x1

k1
h

)∫
η
∣
∣χK − χ0

∣
∣ dx1

}

� min

{

1,
1√
h

∫
η
∣
∣χK − χ0

∣
∣ dx1

}

.

Therefore, we obtain a quadratic term with two copies of 1√
h

∫
η
∣
∣χK − χ0

∣
∣ dx1:

1

τ

∫
η
∣
∣χK − χ0

∣
∣ kh ∗

(
η
∣
∣χK − χ0

∣
∣) dx

�
1

α

∫ (
1√
h

∫
η
∣
∣χK − χ0

∣
∣ dx1

)

k′h ∗′
(

1 ∧ 1√
h

∫
η
∣
∣χK − χ0

∣
∣ dx1

)

dx ′. (94)

Step 2 Now we use Lemma 4.5 before integration in x ′. We write ε2(x ′) for the first error
term in (70) and set

α2(x ′) := 1√
h

∫
η
∣
∣Gh ∗

(
χK−1 − χ−1)∣∣2 dx1,

so that the statement of Lemma 4.5 turns into

1√
h

∫
η
∣
∣χK − χ0

∣
∣ dx1 �

1

s
ε2(x ′)+ s1{|x ′|<2r} + 1

s2 α2(x ′).
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We recall the link between the function α2(x ′) and the fudge factor α as mentioned in (91)
but now before summation over the mesoscopic block index l:

∫
α2(x ′) dx ′ ≤ α2

τ

∫ τ

0

∫
η dμh . (95)

Then for any two parameters s, s̃ � 1 the right-hand side of (94) is estimated by

1

α

∫ (
1

s
ε2(x ′)+ s + 1

s2 α2(x ′)
)

k′h ∗′
(

1 ∧
(

1

s̃
ε2(x ′)+ s̃1{|x ′|<2r} + 1

s̃2 α2(x ′)
))

dx ′.

(96)

For the first and the last summand in the first factor, 1
s ε

2(x ′) and 1
s2 α2(x ′), we use the 1 in

the minimum on the right. For the second summand on the left, s, we use the second term
in the minimum for the pairing. Using the L1-convolution estimate and (95) we can control
(96) by

1

α

(
1

s
+ s

s̃

)∫
ε2(x ′) dx ′ + ss̃

α
rd−1 +

(αs

s̃2 +
α

s2

) 1

τ

∫ τ

0

∫
η dμh .

By Corollary 4.6 we can estimate
∫

ε2(x ′) dx ′ as desired and thus obtain (93) by choosing

s̃ = α
2
3 � 1 and then s = α

4
9 � 1. ��

Proof of Lemma 4.10 Thanks to the convergence assumption (8), we can apply Proposition
3.1. Using the Euler–Lagrange equation (34) for χn and (36), we can identify the first term
on the left-hand side as the limit of the first variation of the dissipation functional as h → 0.
Following Step 1 of the proof of Lemma 4.7 and then estimating directly as in Step 3, but
for ξ instead of η, we obtain

c0

∑

i, j

σi j

∫ T

0

∫
(∇ · ξ − νi · ∇ξ νi )

1

2

(|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) dt

= lim
h→0

∑

i, j

σi j

N∑

n=1

∫ [
Gh/2 ∗ (χn

i − χn−1
i )

]
ξ
n ·
[(√

h∇Gh/2

)
∗ χn

j

]
dx .

Using the Cauchy–Schwarz inequality, for any pair i, j we have
∣
∣
∣
∣
∣

N∑

n=1

∫ [
Gh/2 ∗ (χn

i − χn−1
i )

]
ξ
n ·
[(√

h∇Gh/2

)
∗ χn

j

]
dx

∣
∣
∣
∣
∣

� ‖ξ‖∞
(

N∑

n=1

1√
h

∫
η
[
Gh/2 ∗ (χn

i − χn−1
i )

]2
dx

) 1
2

×
(

h
N∑

n=1

1√
h

∫
η
[√

h∇Gh/2 ∗ χn
j

]2
dx

) 1
2

.

The first right-hand side factor is bounded by
∫∫

η dμh . As in Step 1 in the proof of Lemma
4.8, the second right-hand side factor can be controlled by

h
N∑

n=1

1√
h

∫
η
[(

1− χn
j

)
Gh ∗ χn

j + χn
j Gh ∗

(
1− χn

j

)]
dx → 2c0

∫ T

0

∫
η
∣
∣∇χ j

∣
∣ dt,
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as h → 0, where we used Lemma 2.8 to pass to the limit. Thus, using Young’s inequality,
we have

∣
∣
∣
∣
∣
∣

∑

i, j

σi j

∫ T

0

∫
(∇ · ξ − νi · ∇ξ νi )

(|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) dt

∣
∣
∣
∣
∣
∣

� ‖ξ‖∞
(

1

α

P∑

i=1

∫ T

0

∫
η |∇χi | dt + α

∫∫
η dμ

)

.

To estimate the second term in the lemma, note that by Young’s inequality we have

|ξ · νi Vi | ≤ ‖ξ‖∞η

(
1

α
V 2
i + α

)

.

Integrating w. r. t. |∇χi | dt yields
∣
∣
∣
∣

∫ T

0

∫
ξ · νi Vi |∇χi | dt

∣
∣
∣
∣ ≤ ‖ξ‖∞

(∫ T

0

∫
η V 2

i |∇χi | dt +
∫ T

0

∫
η |∇χi | dt

)

,

which concludes the proof. ��

5 Convergence

In Sect. 3, we identified the limit of the first variation of the energy; in Sect. 4, we identified the
limit of first variation of the metric term up to an error that measures the local approximability
by a half space. In this section, we show by soft arguments from geometric measure theory
that this error can be made arbitrarily small. Before that, we will state the main ingredients
of the proof here.

Definition 5.1 Given r > 0, we define the covering

Br := {Br (i) : i ∈ Lr }
of [0,�)d , where Lr = [0,�)d ∩ r√

d
Z
d is a regular grid of midpoints on [0,�)d . By

construction, for each n ≥ 1 and each r > 0, the covering

{Bnr (i) : i ∈ Lr } is locally finite, (97)

in the sense that for each point in [0,�)d , the number of balls containing this point is bounded
by a constant c(d, n) which is independent of r . For given δ > 0 and χ : [0,�)d → {0, 1} ∈
BV , we define Br,δ to be the subset of Br consisting of all balls B such that the following
two conditions hold:

inf
ν∗

∫
η2B

∣
∣ν − ν∗

∣
∣2 |∇χ | ≤ δ rd−1 and (98)

∫

2B
|∇χ | ≥ 1

2
ωd−1(2r)

d−1, (99)

where η2B is a cut-off for 2B.
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Lemma 5.2 For every ε > 0 and χ : [0,�)d → {0, 1}, there exists an r0 > 0 such that for
all r ≤ r0 there exist unit vectors νB ∈ Sd−1 such that

∑

B∈Br

1

2

∫
η2B |ν − νB |2 |∇χ | � ε2

∫
|∇χ | .

The following lemma will be used to control the error terms obtained in Sect. 4 on the
“bad” balls B ∈ Br −Br,δ .

Lemma 5.3 For any δ > 0 and any χ : [0,�)d → {0, 1} ∈ BV , we have

lim
r→0

∑

B∈Br−Br,δ

∫

2B
|∇χ | = 0.

In a rescaled version, the following lemma can be used to control the error terms on the
“good” balls B ∈ Br,δ.

Lemma 5.4 Let η be a radially symmetric cut-off for the unit ball B. Then for any ε > 0
there exists δ = δ(d, ε) > 0 such that for any χ : [0,�)d → {0, 1} with

∫
η |ν − e1|2 |∇χ | ≤ δ2 (100)

there exists a half space χ∗ in direction e1 such that
∣
∣
∣
∣

∫

B

(|∇χ | − ∣
∣∇χ∗

∣
∣)
∣
∣
∣
∣ ≤ ε2,

∫

B

∣
∣χ − χ∗

∣
∣ dx ≤ ε2. (101)

Lemma 5.5 Let η be a cut-off for the unit ball B. Then for any ε > 0 there exists δ =
δ(d, P, ε) > 0 such that for any χ : [0,�)d → {0, 1}P with

∑
i χi = 1, the following

statement holds: whenever we can approximate each normal separately, i. e.

P∑

i=1

inf
ν∗i

1

2

∫
η
∣
∣νi − ν∗i

∣
∣2 |∇χi | ≤ δ2,

then we can do so with one normal ν∗ ∈ Sd−1 and its inverse −ν∗:

min
i �= j

inf
ν∗

{ ∑

k /∈{i, j}

∫

B
|∇χk | + 1

2

∫

B

∣
∣νi − ν∗

∣
∣2 |∇χi | + 1

2

∫

B

∣
∣ν j + ν∗

∣
∣2
∣
∣∇χ j

∣
∣
}

≤ ε2.

5.1 Proof of Theorem 1.3

Using Proposition 4.1 and the lemmas from above, we can give the proof of the main result.
The proof consists of three steps:

1. Post-processing Propositions 3.1 and 4.1, using the Euler–Lagrange equation (34) and
by making the half space time-dependent,

2. Estimates for fixed time and
3. Integration in time.
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Proof of Theorem 1.3 Step 1: post-processing propositions 3.1 and 4.1 Let us first link the
results we obtained in Sects. 3 and 4. For any fixed vector ν∗ ∈ Sd−1 and any test function
ξB ∈ C∞0 ((0, T )× B,Rd), supported in a space–time cylinder (0, T )× B, we claim
∣
∣
∣
∣
∣
∣

∑

i, j

σi j

∫ T

0

∫
(∇ · ξB − νi · ∇ξB νi − 2 ξB · νi Vi )

(|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) dt

∣
∣
∣
∣
∣
∣

� ‖ξB‖∞
[(

min
i �= j

∫ T

0

(
1

α2 E
2
i j (ν

∗, t)+ α
1
9 rd−1

)

dt

)

∧
(

1

α

P∑

i=1

∫ T

0

∫

B
|∇χi | dt

)

+ α
1
9

∫∫
ηB dμ+ α

P∑

i=1

∫ T

0

∫
ηB V 2

i |∇χi | dt
]

, (102)

where E 2
i j is defined via

E 2
i j (ν

∗, t) :=
∑

k /∈{i, j}

∫
η2B |∇χk(t)| +

∫
η2B

∣
∣νi (t)− ν∗

∣
∣2 |∇χi (t)|

+
∫

η2B
∣
∣ν j (t)+ ν∗

∣
∣2
∣
∣∇χ j (t)

∣
∣

+ inf
χ∗

{ ∣∣
∣
∣

∫
ηB

(|∇χi (t)| −
∣
∣∇χ∗

∣
∣)
∣
∣
∣
∣+

1

r

∫

2B

∣
∣χi (t)− χ∗

∣
∣ dx

+
∣
∣
∣
∣

∫
ηB

(∣∣∇χ j (t)
∣
∣− ∣

∣∇χ∗
∣
∣)
∣
∣
∣
∣+

1

r

∫

2B

∣
∣χ j (t)−

(
1− χ∗

)∣∣ dx

}

.

The infimum is taken over all half spaces χ∗ = 1{x ·ν∗>λ} in direction ν∗.
Argument for (102): by symmetry, we may assume w. l. o. g. that the minimum on the right-
hand side of (102) is realized for i = 1 and j = 2. The Euler–Lagrange equation (34) of the
minimizing movements interpretation (5) links Proposition 3.1 with the metric term:

lim
h→0

∫ T

0
−δEh( · − χh(t − h))(χh(t), ξB(t)) dt

= −c0

∑

i, j

σi j

∫ T

0

∫
(∇ · ξB − νi · ∇ξB νi )

1

2

(|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) dt.

Before applying the results of Sect. 4 we symmetrize the second term on the left-hand side
of (66): we claim that we can replace

σ12

(∫
ξB · ν∗ V1 |∇χ1| +

∫
ξB · (−ν∗) V2 |∇χ2|

)

(103)

which appears on the left-hand side of (66) by the symmetrized term

∑

i, j

σi j

∫
ξB · νi Vi 1

2

(|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) (104)

which appears in the weak formulation (6). Then using Proposition 4.1 and this symmetriza-
tion or the rough estimate Lemma 4.10 yields (102). Now we show how to replace (103) by
(104).
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We start by noting that the sum in (104) contains two terms involving only Phases 1 and 2.
The contribution to the sum is

σ12

∫
ξB · (ν1 V1 + ν2 V2)

1

2
(|∇χ1| + |∇χ2| − |∇(χ1 + χ2)|) ,

which can be brought into the form of (103) at the expense of an error which is controlled
by ‖ξB‖∞ times

∫
ηB

∣
∣ν1 − ν∗

∣
∣ |V1| |∇χ1| +

∫
ηB

∣
∣ν2 + ν∗

∣
∣ |V2| |∇χ2| .

Note that by Young’s inequality we have

∣
∣ν1 − ν∗

∣
∣ |V1| ≤ 1

α

∣
∣ν1 − ν∗

∣
∣2 + αV 2

1 ,

so that we can estimate both terms after integration in time by

1

α

∫ T

0

(∫
ηB

∣
∣ν1−ν∗

∣
∣2 |∇χ1|+

∫
ηB

∣
∣ν2+ν∗

∣
∣2 |∇χ2|

)

dt+α

P∑

i=1

∫ T

0

∫
ηB V 2

i |∇χi | dt.

We are left with estimating the summands in (104) with {i, j} �= {1, 2}. For those terms we
can use Young’s inequality in the following form

|νi | |Vi | ≤ 1

α
+ αV 2

i

so that after integration in time these terms are controlled by ‖ξB‖∞ times

1

α

P∑

i=3

∫
ηB |∇χi | + α

P∑

i=1

∫ T

0

∫
ηB V 2

i |∇χi | dt,

which concludes the argument for the symmetrization and thus for (102).
Here, we see, why we needed to introduce extra terms in E1 compared to the terms that were
already present in the definition of E1 in Sect. 4. These different terms are sometimes called
tilt-excess and excess energy, respectively.

Now let ξ ∈ C∞0 ((0, T )×[0,�)d ,Rd) be given. First, we localize ξ in space according to
the covering Br from Definition 5.1. To do so, we introduce a subordinate partition of unity
{ϕB}B∈Br and set ξB := ϕBξ . Then ξ = ∑

B∈Br
ξB , ξB ∈ C∞0 (B) and ‖ξB‖∞ ≤ ‖ξ‖∞.

Given a radially symmetric and radially non-increasing cut-off η of B1(0) in B2(0), for
each ball B in the covering, we can construct a cut-off ηB of B in 2B by shifting and
rescaling. Given any measurable function ν∗ : (0, T ) → Sd−1 and any α ∈ (0, 1) we
claim
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∣
∣
∣
∣
∣
∣

∑

i, j

σi j

∫ T

0

∫
(∇ · ξB − νi · ∇ξB νi − 2 ξB · νi Vi )

(|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) dt

∣
∣
∣
∣
∣
∣

� ‖ξ‖∞
[∫ T

0

(
1

α2 E
2
B(ν∗(t), t)+ α

1
9 rd−1

)

∧
(

1

α

P∑

i=1

∫

B
|∇χi |

)

dt + α
1
9

∫∫
η dμ

+ α

P∑

i=1

∫ T

0

∫
η V 2

i |∇χi | dt
]

, (105)

where E 2
B(ν∗, t) := mini �= j E

2
i j (ν

∗, t) for ν∗ ∈ Sd−1.
Now we give the argument that (102) implies (105). We approximate the measurable function
ν∗ in time by a piecewise constant function. Let 0 = T0 < · · · < TM = T denote a partition
of (0, T ) such that the approximation ν∗M of ν∗ is constant on each interval [Tm−1, Tm). Since
the measures on the left-hand side are absolutely continuous in time, we can approximate
ξB by vector fields which vanish at the points Tm and both, the curvature and the velocity
term converge. Therefore, we can apply (102) on each time interval (Tm−1, Tm). Lebesgue’s
dominated convergence gives us the convergence of the integral on the right-hand side and
thus (105) holds.
Step 2: estimates for fixed time Let t ∈ (0, T ) be fixed. We will omit the argument t in the
following. Let ε > 0 and let δ = δ(ε) (to be determined later). Let Br,δ be defined as the set
of good balls in the lattice:

Br,δ :=
{

B ∈ Br :
P∑

i=1

inf
ν∗

∫
η2B

∣
∣νi − ν∗

∣
∣2 |∇χi | ≤ δrd−1 and

P∑

i=1

∫

2B
|∇χi | ≥ 1

2
ωd−1(2r)

d−1

}

.

For B ∈ Br,δ , and i = 1, . . . , P , we denote by νB,i the vector ν∗ for which the infimum is
attained, so that

P∑

i=1

1

2

∫
η2B

∣
∣νi − νB,i

∣
∣2 |∇χi | ≤ δ rd−1.

By a rescaling and since η is radially symmetric, we can upgrade Lemma 5.5, so that for
given γ > 0, we can find δ = δ(d, γ ) > 0 (independent of χ) and νB ∈ Sd−1, such that

min
i �= j

⎧
⎨

⎩

∑

k /∈{i, j}

∫
ηB |∇χk | + 1

2

∫
ηB |νi − νB |2 |∇χi | + 1

2

∫
ηB

∣
∣ν j + νB

∣
∣2
∣
∣∇χ j

∣
∣

⎫
⎬

⎭

≤ γ rd−1.

Rescaling Lemma 5.4, we can define γ = γ (ε) > 0 and a half space χ∗ in direction νB ,
such that

E 2
B(νB , t) ≤ ε2rd−1.

These two steps give us the dependence of δ on ε. Using the lower bound on the perimeters
on B ∈ Br,δ(t), we obtain
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∑

B∈Br,δ

(
1

α2 E
2
B(νB , t)+ α

1
9 rd−1

)

�
∑

B∈Br,δ

(
1

α2 ε2 + α
1
9

)

rd−1

�
(

1

α2 ε2 + α
1
9

) P∑

i=1

∫
|∇χi | .

Note that for the balls B ∈ Br −Br,δ , we have by Lemma 5.3:

∑

B∈Br−Br,δ

P∑

i=1

∫

B
|∇χi | → 0, as r → 0. (106)

The speed of convergence depends on χ and ε (through δ).
Step 3: integration in time Using Lebesgue’s dominated convergence theorem, we can inte-
grate the pointwise-in-time estimates of Step 2. Recalling the decomposition ξ = ∑

B ξB
and using the finite overlap (97), we have
∣
∣
∣
∣
∣
∣

∑

i, j

σi j

∫ T

0

∫
(∇ · ξ − νi · ∇ξ νi − 2 ξ · νi Vi )

(|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) dt

∣
∣
∣
∣
∣
∣

�
∑

B∈Br

∣
∣
∣
∣
∣
∣

∑

i, j

σi j

∫ T

0

∫
(∇ · ξB − νi · ∇ξB νi − 2 ξB · νi Vi )

× (|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) dt

∣
∣
∣
∣
∣
∣

� ‖ξ‖∞
⎡

⎣
(

1

α2 ε2 + α
1
9

)∫ T

0

P∑

i=1

∫
|∇χi | dt +

∫ T

0

∑

B∈Br−Br,δ (t)

1

α

P∑

i=1

∫

B
|∇χi | dt

+α
1
9

∫∫
dμ+ α

P∑

i=1

∫ T

0

∫
V 2
i |∇χi | dt

⎤

⎦ .

Since by the energy-dissipation estimate (10) we have E(χ(t)) ≤ E0 and can control the first
term. By Lebesgue’s dominated convergence and (106), the second term vanishes as r → 0.
By (16) and Proposition 2.2, we can handle the last two terms. Thus we obtain

∣
∣
∣
∣
∣
∣

∑

i, j

σi j

∫ T

0

∫
(∇ · ξ − νi · ∇ξ νi − 2 ξ · νi Vi )

(|∇χi | +
∣
∣∇χ j

∣
∣− ∣

∣∇(χi + χ j )
∣
∣) dt

∣
∣
∣
∣
∣
∣

� ‖ξ‖∞
(

1

α2 ε2E0T + α
1
9 (1+ T )E0

)

.

Taking first the limit ε to zero and then α to zero yields (6), which concludes the proof of
Theorem 1.3. ��
5.2 Proofs of the lemmas

Proof of Lemma 5.2 Let ε > 0 be given and w. l. o. g.
∫ |∇χ | > 0. Since the normal ν is

measurable, we can approximate it by a continuous vector field ν̃ : [0,�)d → B in the sense
that
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∑

B∈Br

1

2

∫

B
|ν − ν̃|2 |∇χ | �

∫
|ν − ν̃|2 |∇χ | ≤ ε2

∫
|∇χ | ,

where we have used the finite overlap property (97). Since ν̃ is continuous, we can find r0 > 0
such that for any r ≤ r0 we can find vectors ν̃B with |ν̃B | ≤ 1 with

∑

B∈Br

1

2

∫

B
|ν̃ − ν̃B |2 |∇χ | ≤ ε2

∫
|∇χ | .

The only missing step is to argue that we can also choose νB ∈ Sd−1. If |ν̃B | ≥ 1/2, this is
clear because then |ν − ν̃B/|ν̃B || ≤ 2 |ν − ν̃B |. If |ν̃B | ≤ 1/2, we have the easy estimate

|ν − ν̃B | ≥ 1

2
≥ 1

4
(|ν| + |νB |) ≥ 1

4
|ν − νB |

for any νB ∈ Sd−1. ��
Proof of Lemma 5.3 Let ε, δ > 0 be arbitrary. Note that a ball in Br −Br,δ satisfies

inf
ν∗

∫

2B

∣
∣ν − ν∗

∣
∣2 |∇χ | ≥ δrd−1 or (107)

∫

2B
|∇χ | ≤ 1

2
ωd−1r

d−1. (108)

Step 1: balls satisfying (107) By Lemma 5.2, for any γ > 0, to be chosen later, there exists
r0 = r0(γ, δ, χ) > 0, such that for every r ≤ r0 we can find vectors νB ∈ Sd−1 such that

∑

B∈Br

∫

2B
|ν − νB |2 |∇χ | � γ δ

∫
|∇χ | . (109)

Thus we have

#

{

B :
∫

2B
|ν − νB |2 |∇χ | ≥ δrd−1

}

≤
∑

B

1

δrd−1

∫

2B
|ν − νB |2 |∇χ |

(109)

�
γ

rd−1

∫
|∇χ | .
(110)

Using that the covering is locally finite and De Giorgi’s structure result, we have

∑

B:(107)

∫

2B
|∇χ | �

∫

⋃
(107) 2B

|∇χ | = H d−1
(

∂∗� ∩
⋃

(107)

2B

)

.

Since ∂∗� is rectifiable, we can find Lipschitz graphs �n such that ∂∗� ⊂⋃∞
n=1 �n . There-

fore,

H d−1
(

∂∗� ∩
⋃

(107)

2B

)

≤
N∑

n=1

H d−1
(

�n ∩
⋃

(107)

2B

)

+H d−1
(

∂∗�−
⋃

n≤N

�n

)

.

Note that for any ball B

H d−1 (�n ∩ 2B) � (1+ Lip �n) r
d−1

and thus

H d−1
(

�n ∩
⋃

(107)

2B

)

≤
∑

B:(107)

H d−1 (�n ∩ 2B) �
(

1+max
n≤N

Lip �n

)

rd−1# {B : (107)} .
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Using (110), we have

∑

B:(107)

∫

2B
|∇χ | � N

(

1+max
n≤N

Lip �n

)

γ

∫
|∇χ | +H d−1

⎛

⎝∂∗�−
⋃

n≤N

�n

⎞

⎠ .

Now, choose N large enough such that

H d−1
(

∂∗�−
⋃

n≤N

�n

)

≤ ε2.

Then, choose γ > 0 small enough, such that

N

(

1+max
n≤N

Lip �n

)

γ

∫
|∇χ | ≤ ε2.

Step 2: balls satisfying (108) By De Giorgi’s structure theorem (Theorem 4.4 in [17]), we
may restrict to balls B which in addition satisfy ∂∗� ∩ 2B �= ∅ and pick x ∈ ∂∗� ∩ 2B.
Note that since B has radius r we have

B2r (x) ⊂ 4B ⊂ B6r (x).

Therefore, if (108) holds,
∫

B2r (x)
|∇χ | ≤

∫

4B
|∇χ | ≤ 1

2
ωd−1(2r)

d−1.

For x ∈ ∂∗� we have

lim inf
r→0

1

rd−1

∫

Br (x)
|∇χ | ≥ ωd−1

and thus in particular

1
({

x ∈ ∂∗� :
∫

Br (x)
|∇χ | ≤ 1

2
ωd−1r

d−1
})

→ 0

pointwise as r → 0. By De Giorgi’s structure theorem (Theorem 4.4 in [17]), the finite
overlap and Lebesgue’s dominated convergence theorem, we thus have

∑

B:(108)

∫

2B
|∇χ | � H d−1

(
∂∗� ∩

⋃

B:(108)

2B
)
→ 0

as r → 0. ��

Proof of Lemma 5.4 Let us first prove that for any χ satisfying (100), we have

(1− δ)

∫
η |∇χ | ≤

∣
∣
∣
∣

∫
χ ∇η dx

∣
∣
∣
∣+ δ. (111)

Indeed, we have
∣
∣
∣
∣

∫
η ν |∇χ |

∣
∣
∣
∣ ≥

∣
∣
∣
∣

∫
η e1 |∇χ |

∣
∣
∣
∣−

∣
∣
∣
∣

∫
η (ν − e1) |∇χ |

∣
∣
∣
∣ =

∫
η |∇χ | −

∣
∣
∣
∣

∫
η (ν − e1) |∇χ |

∣
∣
∣
∣ .
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By Young’s inequality we have |ν − e1| ≤ 1
δ
|ν − e1|2 + δ, so that by (100) we can estimate

the last right-hand side term
∣
∣
∣
∣

∫
η (ν − e1) |∇χ |

∣
∣
∣
∣ ≤

∫
η |ν − e1| |∇χ | (100)≤ δ + δ

∫
η |∇χ | .

Therefore
∣
∣
∣
∣

∫
η ν |∇χ |

∣
∣
∣
∣ ≥ (1− δ)

∫
η |∇χ | − δ,

which is (111).
Now we give an indirect argument for the lemma. Suppose there exists an ε > 0 and a
sequence {χn}n such that

∫
η |νn − e1|2 |∇χn | ≤ 1

n2 (112)

while for all half spaces χ∗ in direction e1,
∫

B
|∇χn | ≥ ε2 +

∫

B

∣
∣∇χ∗

∣
∣ ,

∫

B

∣
∣∇χ∗

∣
∣ ≥ ε2 +

∫

B
|∇χn | , or

∫

B

∣
∣χn − χ∗

∣
∣ dx ≥ ε2.

(113)

By (112), we can use (111) for χn and obtain:
∫

η |∇χn | ≤ 1

1− 1/n

(∫
|∇η| dx + 1

n

)

stays bounded as n →∞.

Therefore, after passage to a subsequence and a diagonal argument to exhaust the open ball
{η > 0}, we find χ such that

χn → χ pointwise a.e. on {η > 0}. (114)

By (112) we have

2
∫

η |∇χn | − 2
∫
∇η · e1 χn dx =

∫
η |νn − e1|2 |∇χn | ≤ 1

n2 → 0.

Since the first term on the left-hand side is lower semi-continuous and the second one is
continuous, we can pass to the limit in the above inequality and obtain

∫
η |ν − e1|2 |∇χ | = 2

∫
η |∇χ | − 2

∫
∇η · e1 χ dx ≤ 0.

Hence

ν = e1 |∇χ | -a.e. in {η > 0}.
A mollification argument shows that there exists a half space χ∗ in direction e1 such that

χ = χ∗ a.e. in {η > 0}.
Because of (114), this rules out

∫

B

∣
∣χn − χ∗

∣
∣ ≥ ε2
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on the one hand. On the other hand, by lower semi-continuity of the perimeter, also
∫

B

∣
∣∇χ∗

∣
∣ ≥ ε2 +

∫

B
|∇χn |

is ruled out. To obtain a contradiction also w. r. t. the first statement in (113), let η̃ ≤ η be a
cut-off for B in (1+ δ)B. Since (111) holds also for η̃ instead of η, we have

ε2 +
∫

B

∣
∣∇χ∗

∣
∣ (113)≤

∫

B
|∇χn | ≤

∫
η̃ |∇χn |

(111)≤ 1

1− 1/n

(∣∣
∣
∣

∫
χn ∇η̃ dx

∣
∣
∣
∣+

1

n

)

(114)→
∣
∣
∣
∣

∫
χ∗ ∇η̃ dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫
η̃∇χ∗

∣
∣
∣
∣ ≤

∫

(1+δ)B

∣
∣∇χ∗

∣
∣ .

Since χ∗ is a half space and therefore has no mass on ∂B, we have
∫

(1+δ)B

∣
∣∇χ∗

∣
∣→

∫

B

∣
∣∇χ∗

∣
∣ , as δ → 0,

which is a contradiction. ��
Proof of Lemma 5.5 We give an indirect argument. Assume there exists a sequence of char-
acteristic functions {χn}n with

∑
i χ

n
i = 1 a.e., a number ε > 0 such that we can find

approximate normals ν∗ni ∈ Sd−1 with

P∑

i=1

1

2

∫
η
∣
∣νni − ν∗ni

∣
∣2
∣
∣∇χn

i

∣
∣ ≤ 1

n2

while for all ν∗ ∈ Sd−1, n ∈ N and any pair of indices i �= j , we have

∑

k /∈{i, j}

∫

B

∣
∣∇χn

k

∣
∣+ 1

2

∫

B

∣
∣νni − ν∗

∣
∣2
∣
∣∇χn

i

∣
∣+ 1

2

∫

B

∣
∣
∣νnj + ν∗

∣
∣
∣
2 ∣∣
∣∇χn

j

∣
∣
∣ ≥ ε2. (115)

Since Sd−1 is compact, we can find vectors ν∗ ∈ Sd−1, such that, after passing to a subse-
quence if necessary, ν∗ni → ν∗i as n →∞. Following the lines of the proof of Lemma 5.4,
we find

∫
η
∣
∣∇χn

i

∣
∣ ≤ 1

1− 1/n

(∫
|∇η| dx + 1

n

)

stays bounded as n →∞

so that there exist χi ∈ {0, 1} with

χn
i → χi pointwise a.e. on {η > 0} (116)

and

1

2

∫
η
∣
∣νi − ν∗i

∣
∣2 |∇χi | ≤ lim inf

n→∞
1

2

∫
η
∣
∣νni − ν∗ni

∣
∣2
∣
∣∇χn

i

∣
∣ = 0.

Therefore, νi = ν∗i |∇χi |- a. e. and each χi = χ∗i is a half space in direction ν∗i . Continuing in
our setting now, we note that the condition

∑
i χ

n
i = 1 carries over to the limit:

∑
i χ

∗
i = 1.

Therefore there exists a pair of indices i �= j (w. l. o. g. i = 1, j = 2) such that for all k ≥ 3
χ∗k = 0 in B. Then the other two half spaces are complementary, χ∗2 = (

1− χ∗1
)

and in
particular ν∗1 = −ν∗2 =: ν∗. As in the proof of Lemma 5.4, we have

∫

B

∣
∣∇χn

i

∣
∣→

∫

B

∣
∣∇χ∗i

∣
∣ .
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Together with (116), we can take the limit n →∞ in (115) and obtain

∑

k≥3

∫

B

∣
∣∇χ∗1

∣
∣+ 1

2

∫

B

∣
∣ν∗1 − ν∗

∣
∣2
∣
∣∇χ∗1

∣
∣+ 1

2

∫

B

∣
∣ν∗2 + ν∗

∣
∣2
∣
∣∇χ∗2

∣
∣ ≥ ε2,

which is a contradiction since the left-hand side vanishes by construction. ��
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