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Abstract An additive coloring of a graph G is an assignment of positive integers
{1, 2, . . . , k} to the vertices of G such that for every two adjacent vertices the sums of
numbers assigned to their neighbors are different. The minimum number k for which
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there exists an additive coloring of G is denoted by η(G). We prove that η(G) � 468
for every planar graph G. This improves a previous bound η(G) � 5544 due to
Norin. The proof uses Combinatorial Nullstellensatz and the coloring number of planar
hypergraphs. We also demonstrate that η(G) � 36 for 3-colorable planar graphs, and
η(G) � 4 for every planar graph of girth at least 13. In a group theoretic version of
the problem we show that for each r � 2 there is an r -chromatic graph Gr with no
additive coloring by elements of any abelian group of order r .

Keywords Additive coloring · Planar graphs

1 Introduction

Let G be a simple graph, and let k be a positive integer. By a coloring of G we mean
any function f from the set of vertices V (G) to the set {1, 2, . . . , k}. Given a coloring
f , consider the induced function S = S( f ) on the set V (G) defined by the formula

S(v) =
∑

x∈N (v)

f (x),

where N (v) denotes the set of neighbors of the vertex v in G. The initial coloring f
is called an additive coloring of G if S(u) �= S(v) for every pair of adjacent vertices
u and v. The minimum number k for which there exists an additive coloring of G is
denoted by η(G).

The notion of additive coloring was introduced in [5] as a vertex version of the
1–2–3-conjecture of Karoński et al. [8]. In the original problem the numbers are
assigned to the edges of a graph, and prospective color of a vertex v is derived as
the sum of numbers assigned to the edges incident to v. It is conjectured that for
every connected graph (except K2) one can produce a proper vertex coloring in this
way using only three numbers: 1, 2, and 3. Currently best bound is 5, as proved by
Kalkowski et al. [7].

In the related additive coloring problem no finite bound is possible since for cliques
we have η(Kn) = n. We conjecture however, that perhaps η(G) � χ(G) for every
graph G, where χ(G) denotes the usual chromatic number. This conjecture is widely
open as it is not known whether η(G) is bounded for bipartite graphs. In [5] we proved
that η(G) � 3 for planar bipartite graphs, and also that η(G) � 100280245065 for
general planar graphs. The later bound was improved to 5544 by Norin (personal
communication). We present his argument in Sect. 2 for completeness.

In this note we obtain a further improvement of this bound. Our main result asserts
that η(G) � 468 for every planar graph G. The proof uses Combinatorial Nullstel-
lensatz of Alon [1], and the coloring number of hyperhraphs represented by planar
bipartite graphs. For planar graphs of girth at least 13 we get a much better bound by
4, using a decomposition theorem of Bu et al. [3].

Let us finally mention that additive colorings have been recently introduced inde-
pendently by Chartrand et al. [4], under a different name of sigma colorings (but with
the same inspiration coming from 1–2–3-conjecture). However, the main parameter
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σ(G) studied there is different than η(G), as it is defined by the number of different
colors used by the coloring f rather than the range of a color set.

2 Coloring Number of Graphs and Hypergraphs

We start with presenting an unpublished result of Norin. Recall that the coloring
number col(G) of a graph G is the least integer k such that there exists a linear
ordering of the vertices v1, . . . , vn such that the number of backward neighbors of vi

(those contained in the set {v1, . . . , vi−1}) is at most k − 1, for every i = 1, 2, . . . , n.
It is well known that col(G) � 6 for every planar graph G.

Theorem 1 (S. Norin) Let G be a graph with chromatic number χ(G) = r and
coloring number col(G) = k. Let n1, . . . , nr be r pairwise coprime integers, with
ni � k for all i = 1, 2, . . . , k. Then η(G) � n1 × . . .×nr . In particular, η(G) � 5544
for every planar graph G (by taking n1 = 7, n2 = 8, n3 = 9, and n4 = 11).

Proof Fix a proper coloring c of a graph G using colors {1, 2, . . . , r}. Also, fix a linear
ordering of the vertices realizing col(G) = k. Let n1, . . . , nr be any positive integers
such that gcd(ni , n j ) = 1 for every pair i �= j , with ni � k for all i = 1, 2, . . . , r .
Suppose now that each vertex v is assigned with a certain weight n(v) ∈ Zn j , with
j = c(v). Denote by Si (v) the sum of weights of all the neighbors of v in color i .
More formally,

Si (v) =
∑

x∈N (v)∩c−1(i)

n(x),

where the summation is in the group Zni . Finally, let S(v) = (S1(v), . . . , Sr (v)).
Since no neighbor of v is colored with c(v), we have S j (v) = 0 for j = c(v).

Our aim is to modify weights n(v) greedily so that Sc(v)(u) �= 0 for every backward
neighbor u of v. This will imply that S(u) �= S(v) for every pair of adjacent vertices
u and v.

Suppose we have achieved this property for all vertices up to vi−1 by choosing
appropriate weights n(v1), . . . , n(vi−1). Now we have to find a weight for the vertex
vi . Let j = c(vi ). For every backward neighbor u of vi there is only one value of n(vi )

making S j (u) ≡ 0 (mod n j ). Since there are at most k − 1 backward neighbors of
vi , there are only k − 1 forbidden values for n(vi ). Since n j > k − 1, there is a free
element of Zn j for the weight n(vi ).

To get an additive coloring of the graph G we assign to every vertex v, an element
f (v) = ( f1(v), . . . , fr (v)) of the group Zn1 × . . . × Znr , defined by f j (v) = n(v)

if j = c(v), and f j (v) = 0, otherwise. This completes the proof, as the group
Zn1 × . . . × Znr is isomorphic to ZN , where N = n1 × . . . × nr . ��

The notion of coloring number can be generalized in a natural way for hypergraphs.
Given a hypergraph H and a linear ordering of its vertices v1, . . . , vn , define the
backward degree of a vertex vi as the number of different hyperedges of the form
{vi } ∪ A, with A ⊆ {v1, . . . , vi−1} (we allow A to be empty). The coloring number
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col(H) of the hypergraph H is the minimum k such that in some linear ordering of the
vertices all backward degrees are at most k − 1. This definition differs slightly from
the one given in [9], but it is appropriate for our purposes.

Lemma 1 Let H be a hypergraph with col(H) = k. Then there is a function f :
V (H) → Zk such that every hyperedge B satisfies

∑

v∈B

f (v) �≡ 0 (mod k).

Proof Start with a linear ordering of the vertices realizing col(H) and proceed greedily
with respect to it. At each step there are at most k − 1 partial sums we have to take
into account, and each of them is reset by exactly one value. Hence, there is always a
good choice for the next value of f . ��

Now we give an upper bound for the coloring number of hypergraphs arising from
bipartite planar graphs.

Lemma 2 Let G be a bipartite planar graph with bipartition classes X and Y . Let H be
a hypergraph on the set of vertices X whose incidence graph is G. Then col(H) � 12.
In particular, there exists a coloring f : X → Z12 satisfying condition:

∑

x∈N (y)

f (x) �≡ 0 (mod 12)

for every non-isolated vertex y ∈ Y .

Proof We may assume that no two vertices in Y are twins (have exactly the same
nonempty neighborhood), as multiple hyperedges do not count in backward degree.
We shall prove that the hypergraph H always contains a vertex of the usual degree at
most 11. This is sufficient since a hypergraph H − x still does not contain multiple
hyperedges (therefore the incidence graph of H − x does not contain twins), and we
may order the vertices of H by a sequential deletion of such vertices.

Fix an embedding of G in the plane. Transform this embedding into a new plane
graph P in the following way. For every vertex y ∈ Y , draw a simple closed curve
C(y) through the neighbors of y within ε-distance from the connecting edges (see
Fig. 1), so that a simply connected region F(y) arises with the following properties:

1. All neighbors of y belong to C(y).
2. All other points of the edges connecting y to its neighbors (and y itself) are in the

interior of F(y).
3. No other points of the embedding of G are in F(y).

Forget now about y’s and their edges inside regions F(y). In this way we get a plane
(pseudo)graph P on the set of vertices X whose faces can be properly 2-colored: color
the faces F(y) by black and all other faces by white. Notice that hyperedges of H
turned into black faces in P . Hence, degH (v) is just the number of black faces incident
to v.
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Fig. 1 Filled closed curves
C(y) routed around every white
vertex y ∈ Y

We claim that there is always a vertex in P incident to at most 11 black faces.
First, shrink all loops and all 2-sided faces of P to get a new pseudograph Q whose
faces have at least three vertices. Let v, e, and f denote the number of vertices, edges,
and faces in Q, respectively. So, we have 3 f � 2e, and by Euler’s formula we get
e � 3v − 6. Hence, there must be a vertex x of degree at most 5 in Q. Now, by the
lack of twins in G, each edge incident to x in Q has multiplicity at most 4 in P . Also,
there can be at most one loop at each vertex in P , by the same reason. Therefore the
degree of x in P is at most 22, and there are at most 11 black faces incident to x . The
proof of the lemma is complete. ��

It is worth noticing that the above lemma is tight. To see this take the icosahedron
on the vertex set X and modify it in the following way: (1) subdivide each edge and
each face of the icosahedron with one new vertex, (2) append a hanging edge to each
vertex from X . The resulting graph is a twin-free planar bipartite graph in which every
vertex in X has degree 11.

3 Combinatorial Nullstellensatz

For the proof of our main result we will need a simple consequence of the celebrated
Combinatorial Nullstellensatz of Alon.

Theorem 2 (Combinatorial Nullstellensatz) Let F be an arbitrary field, and let
P(x1, . . . , xn) be a polynomial in the ring of polynomials F[x1, . . . , xn]. Suppose that
there is a nonvanishing monomial xk1

1 . . . xkn
n in P such that k1 + . . . + kn = deg(P).

Then for every subsets A1, . . . , An of the field F, with |Ai | � ki +1, there are elements
ai ∈ Ai such that P(a1, . . . , an) �= 0.

The above theorem has many surprising applications in geometry, combinatorics,
and number theory [1]. An elegant and simple proof of this can be also found in [10].
We used it in [5] to prove that every planar bipartite graph has an additive coloring
from arbitrary lists of size at least three. Below we give a slight extension of this result,
which will be useful later.

Theorem 3 Let G be a bipartite graph whose edges can be oriented so that each
vertex has indegree at most k. Suppose that each vertex v is assigned with a list L(v)

of k + 1 real numbers. Then for every function q : V (G) → R there is a coloring f
of the vertices such that
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q(u) +
∑

x∈N (u)

f (x) �= q(v) +
∑

x∈N (v)

f (x)

for every pair of adjacent vertices u and v.

Proof Let U = {u1, . . . , um} and V = {v1, . . . , vn} be the bipartition classes of a
graph G. Let {x1, . . . , xm} and {y1, . . . , yn} be the variables assigned to the vertices
of these classes, respectively. Denote by S(u) the sum of variables assigned to the
neighbors of u. Consider a polynomial P over the field of reals defined by

P(x1, . . . , xm, y1, . . . , yn) =
∏

ui v j ∈E(G)

(q(ui ) + S(ui ) − q(v j ) − S(v j )).

We claim that P contains a nonvanishing monomial with exponents bounded by k.
Let

−→
G be an orientation of G with indegrees bounded by k. In every factor of P

corresponding to an edge uiv j choose one of the variables xi or y j —the one that cor-
responds to the vertex on which the arrow points. In this way we obtain the monomial
M = xk1

1 . . . xkm
m yl1

1 . . . yln
n satisfying 0 � ki , l j � k. Why is this monomial nonva-

nishing in P It is because each variable occurs in factors of P with a uniform sign
(xi with minus sign, y j with plus sign). Hence, the sign of the monomial M in P is
uniquely determined by the sequence of exponents, and therefore its copies cannot
cancel. Finally, to apply Combinatorial Nullstellensatz, notice that deg(P) equals the
number of edges in G, which is the same as k1 + . . . + km + l1 + . . . + ln since
q(ui ) − q(v j ) are constants. ��
Corollary 1 Every tree has an additive coloring from arbitrary lists of size two. Every
bipartite planar graph has an additive coloring from arbitrary lists of size three.

Proof Every tree has an orientation with at most one incoming edge to every vertex.
Every bipartite planar graph has an orientation with indegrees bounded by two. ��

4 Main Results

Let us start with a simpler case of planar 3-colorable graphs.

Theorem 4 Every planar graph G with χ(G) � 3 satisfies η(G) � 36.

Proof Let V (G) = A∪B∪C be a partition of the vertex set of G into three independent
sets. Let H be a subgraph of G on the set of vertices V (H) = A ∪ B ∪ C with the
edge set

E(H) = {uv ∈ E(G) : u ∈ A ∪ B and v ∈ C}.

Clearly H is a bipartite graph. Hence, by Lemma 2, there is a function h : C →
{1, 2, . . . , 12} such that the sum

Sh(u) =
∑

x∈NH (u)

h(x)
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satisfies Sh(u) �≡ 0 (mod 12) for every vertex u ∈ A∪ B having at least one neighbor
in C . For other vertices the above sum is empty and we adopt Sh(u) = 0 by convention.

Consider now a bipartite subgraph F of G induced by the vertices A ∪ B. Assign
to each vertex u in F the list L(u) = {12, 24, 36}, and apply Theorem 3 with function
q(u) = Sh(u). Let f be a coloring satisfying the assertion of Theorem 3. That is, f
satisfies the condition S f (u) + Sh(u) �= S f (v) + Sh(v) for every edge uv ∈ E(F),
where

S f (u) =
∑

x∈NF (u)

f (x).

Finally, let g be a function defined on the whole set of vertices V (G) by joining f
and h:

g(x) =
{

h(x) if x ∈ C
f (x) if x ∈ A ∪ B

.

We claim that g is an additive coloring of G over the set {1, 2, . . . , 36}. Let S(u) be the
sum of g-labels over the whole neighborhood N (u), that is, S(u) = Sh(u) + S f (u).
Let uv be any edge in G. If u ∈ A ∪ B and v ∈ C , then Sh(u) �≡ 0 (mod 12)

and S f (u) ≡ 0 (mod 12), thus S(u) �≡ 0 (mod 12). On the other hand, Sh(v) ≡
S f (v) ≡ 0 (mod 12), so S(v) ≡ 0 (mod 12). In the other case, if u ∈ A and v ∈ B,
the condition S(u) �= S(v) is guaranteed by the construction of f . This completes the
proof. ��

The proof for 4-colorable planar graphs is similar in spirit, though a bit more
technical.

Theorem 5 Every planar graph satisfies η(G) � 468.

Proof Let V (G) = A ∪ B ∪ C ∪ D be a partition of the vertex set of G into four
independent sets. Let H1 be a subgraph of G on the set of vertices (A ∪ B) ∪ C with
the edge set

E(H1) = {uv ∈ E(G) : u ∈ A ∪ B and v ∈ C}.

Clearly H1 is a bipartite graph. Hence, by Lemma 2, there is a function h1 : C → Z12
such that the sum

Sh1(u) =
∑

x∈NH1 (u)

h1(x)

satisfies Sh1(u) �≡ 0 (mod 12) for every vertex u ∈ A ∪ B with at least one neighbor
in C . Now, let H2 be a subgraph of G on the set of vertices (A ∪ B ∪ C) ∪ D with the
edge set

E(H2) = {uv ∈ E(G) : u ∈ A ∪ B ∪ C and v ∈ D}.
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Clearly H2 is a bipartite graph. Hence, by Lemma 2, there is a function h2 : D → Z13
such that the sum

Sh2(u) =
∑

x∈NH2 (u)

h2(x)

satisfies Sh2(u) �≡ 0 (mod 13) for every vertex u ∈ (A ∪ B ∪ C) having a neighbor
in D.

Now, using functions h1 and h2, we define a new function h : C ∪ D →
{1, 2, . . . , 156} as follows. First we extend h1 and h2 to the whole set C ∪ D by
putting h1(x) = 0 for x ∈ D and h2(x) = 0 for x ∈ C . Let σ be a group isomorphism
from Z12×Z13 to Z156. Notice that σ(a, b) ≡ a (mod 12) and σ(a, b) ≡ b (mod 13)

(σ(a, b) ≡ 13a−12b (mod 156) is such an isomorphism). For each x ∈ C ∪D define
h(x) as the unique number in the range {1, 2, . . . , 156} satisfying the congruence

h(x) ≡ σ(h1(x), h2(x)) (mod 156).

In particular, h(u) ≡ h1(u) (mod 12) and h(u) ≡ h2(u) (mod 13) for every u ∈
C ∪ D. Let

Sh(u) =
∑

x∈N (u)∩(C∪D)

h(x)

for every u ∈ A ∪ B ∪ C , where, as before, Sh(u) = 0 if N (u) ∩ (C ∪ D) = ∅.
Consequently, Sh(u) satisfies

Sh(u) ≡

⎧
⎪⎪⎨

⎪⎪⎩

Sh1(u) (mod 12), for u ∈ (A ∪ B) ∩ N (C),

Sh2(u) (mod 13), for u ∈ (A ∪ B ∪ C) ∩ N (D),

0 (mod 12), for u ∈ C,

0 (mod 13), for u ∈ D.

Consider now a bipartite subgraph F of G induced by the vertices A ∪ B. Assign to
each vertex u in F the list L(u) = {156, 312, 468}, and apply Theorem 3 with function
q(u) = Sh(u). Let f be a coloring satisfying the assertion of Theorem 3. That is, f
satisfies the condition S f (u) + Sh(u) �= S f (v) + Sh(v) for every edge uv ∈ E(F),
where

S f (u) =
∑

x∈NF (u)

f (x).

Putting things together we define a function g on the whole set of vertices V (G) by
joining f and h:

g(x) =
{

h(x) if x ∈ C ∪ D
f (x) if x ∈ A ∪ B

.
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We claim that g is an additive coloring of G over the set {1, 2, . . . , 468}. Let S(u) be
the sum of g-labels over the whole neighborhood N (u), that is, S(u) = Sh(u)+S f (u).
Let uv be any edge in G. If u ∈ A∪ B and v ∈ C , then Sh(u) ≡ Sh1(u) �≡ 0 (mod 12)

while S f (u) ≡ 0 (mod 12). Thus, S(u) �≡ 0 (mod 12); the other end of the edge
satisfies S(v) = Sh(v) + Sg(v) ≡ S f (v) ≡ 0 (mod 12). Likewise, if u ∈ A ∪ B ∪ C
and v ∈ D, then S(u) ≡ Sh2(u) �≡ 0 (mod 13) while S(v) ≡ 0 (mod 13). If u ∈ A
and v ∈ B, condition S(u) �= S(v) is guaranteed by construction of f . This completes
the proof. ��

A set of vertices I in a graph G is called two-independent if the distance between
any two vertices of I is at least three. In [3] it was proved that every planar graph
of girth at least 13 has a vertex decomposition into two sets I and F such that I is
two-independent and F induces a forest. Our last theorem follows easily from this
result.

Theorem 6 Every planar graph of girth at least 13 satisfies η(G) � 4.

Proof Let V (G) = I ∪ F , where I is 2-independent and F induces a forest. By
Corollary 1 there is an additive coloring f of the forest F using labels {2, 4}. Extend
this coloring to the whole graph G by putting f (i) = 1 for each vertex i ∈ I . It is
easy to see that f is an additive coloring of G. ��

5 Finite Abelian Groups

The problem of additive coloring can be considered in a more general setting of abelian
(additive) groups. We may use elements of any such group � as the labels of vertices
and define the additive coloring the same way as before. Accordingly to our main
conjecture, as well as to the methods we have develop so far, one could expect that
perhaps every graph has an additive coloring over some group whose order is equal
to the chromatic number of the graph. We prove below that this is not true.

Theorem 7 For every r � 2 there is a graph Gr such that χ(Gr ) = r , and there is
no additive coloring of Gr over any finite abelian group of order r , but there is an
additive coloring of Gr in Zr+1.

Proof Let P denote a path on five vertices a, x, b, y, c (in that order). Consider a graph
H = H(r) obtained by blowing up each of the two vertices x and y to the clique Kr−1.
Now, take r copies of H , chose one vertex vi in any of the two cliques Kr−1 in each
copy of H , and join all these vertices mutually to form a new clique Kr . We claim that
in this way we constructed a graph Gr satisfying the assertion of the theorem. It is not
hard to see that χ(Gr ) = r . To prove the first part of the theorem, suppose that � is
any abelian group of order r , and there is a coloring f : V (Gr ) → � such that the
sums S(v) form a proper coloring of Gr . Notice that in any proper coloring of H with
r colors, the vertices a, b, and c must have the same color. Thus S(a) = S(b) = S(c).
Notice also that, by the definition of additive coloring we have S(b) = S(a) + S(c),
which implies that S(a) = S(b) = S(c) = 0 in every copy of H in Gr . This implies in
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turn that S(v) �= 0 for all other vertices of Gr . In particular, we get a proper coloring
of the clique Kr by non-zero elements of Zr , which is not possible.

For the second assertion we define explicitly an additive coloring function f :
V (Gr ) → Zr+1 as follows. Denote by Hi the i th copy of the graph H in Gr . Let Xi

and Yi denote the two cliques Kr−1 in Hi obtained by blowing up the vertices x and
y , respectively. Also, let ai , bi , and ci be the respective copies of the end vertices and
the middle vertex of the path P in Hi . Finally, let vi denote the unique vertex of Hi

belonging to the clique Kr . We may assume that vi ∈ V (Xi ). We have to distinguish
two cases.

1. (The number r + 1 is odd.) Put f (vi ) = f (bi ) = 0 and f (ai ) = f (ci ) = i for
all i = 1, 2, . . . , r . Then label any vertex of Yi with 0 and extend injectively the
coloring using all labels from the set {1, 2, . . . , r} \ {i,−i} on each of the two
cliques Xi and Yi . So, the total sum of labels in each of the cliques Xi and Yi is
zero. Hence, we get S(vi ) = i and S(ai ) = S(bi ) = S(ci ) = 0. For any other
vertex u we get S(u) �= 0. Also, we cannot have conflicts inside cliques Xi and Yi

by injectivity.
2. (The number r + 1 is even.) Let r + 1 = 2k. First we construct our coloring on

all copies Hi for i �= k. Put f (vi ) = f (bi ) = f (ci ) = 0 and f (ai ) = i . Extend
injectively the coloring on the clique Xi using all labels from the set {1, 2, . . . , r}\
{i,−i}. So, the total sum of labels on Xi is equal to k. Next, extend the coloring
injectively to cliques Yi using all labels from the set {1, 2, . . . , r} \ {k}. Hence, the
total sum of labels over Yi is zero. Thus we get S(vi ) = k + i, S(ai ) = S(bi ) = k,
and S(ci ) = 0 for all i �= k. For u ∈ Xi we have S(u) = k + i − f (u) �= k, since
f (u) �= i . For u ∈ Yi we have S(u) = − f (u) �= 0, k. Also there are no conflicts
inside cliques Xi and Yi by injectivity. It remains to extend the coloring to the
copy Hk . Put f (vk) = 0, f (ak) = 1, f (bk) = k, and f (ck) = k − 1. Next put
injectively all labels from the set {1, 2, . . . , r}\{k, k +1} to the vertices of Xk , and
similarly for Yk using the set {0, 1, . . . , r}\{k, r}. So, the total sum over Xk is k−1
and the total sum over Yk is 1. Hence, we get S(ak) = k−1, S(ck) = 1, S(bk) = k,
and S(vk) = 0. Since each vertex u ∈ Xk ∪ Yk satisfies S(u) = − f (u), no other
conflicts could appear.

The proof is complete. ��
Notice that the graph G4 from the proof above is planar, so the correspondent of

our main conjecture is false even for planar graphs in the finite groups environment.
Notice also, that G2 is a tree, and G3 is an outer planar graph, so the same difficulty
arises for planar graphs with smaller chromatic numbers. Perhaps every r -colorable
graph has an additive coloring modulo r + 1.

We conclude this section with the following simple result.

Theorem 8 Let A be a fixed abelian group. The problem of deciding whether a given
graph G has an additive coloring over A is NP-complete if |A| � 3, and polynomial
for A = Z2.

Proof Let |A| = k � 3. For a given graph G, whose vertex set is V (G) = {v1, . . . , vn},
consider a new graph G ′ obtained by adding n new vertices {v′

1, . . . , v
′
n} and n new
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edges viv
′
i for i = 1, . . . , n. We prove that G is k-colorable (in the usual sense) if

and only if G ′ is additively colorable over A. This will prove the first assertion of the
theorem.

Obviously, if G ′ has an additive coloring over A, then G is k-colorable in the usual
sense. For the other implication, assume that G is k-colorable, and fix a proper coloring
c of G using A as the set of colors. Now fix a nonzero element a ∈ A and define a
new coloring f of G ′ in the following way:

1. If c(vi ) = 0, then f (vi ) = a.
2. If c(vi ) �= 0, then f (vi ) = 0.
3. f (v′

i ) = c(vi ) −
∑

x∈NG (vi )

f (vi ).

We claim that f is a desired additive coloring of G ′ over A. Indeed, the sum of
colors around each vertex vi satisfies

S(vi ) =
∑

x∈NG (vi )

f (vi ) + f (v′
i ) = c(vi ),

so there are no conflicts in G. Also by definition of f we have

S(v′
i ) = f (vi ) �= c(vi ) = S (vi )

for each vertex v′
i . This proves the claim.

For the second assertion just notice that the problem reduces to recognizing if a
given graph G is bipartite, and then checking solvability of a system of linear equations
of the form Mx = y over Z2, where M is the adjacency matrix of G, and y is a binary
vector encoding a proper coloring of G. There are actually two possible such vectors
for a connected bipartite graph G. This completes the proof. ��

6 Open Problems

We conclude the paper with a short list of open questions concerning additive coloring
of graphs.

conjecture 1 Every graph G satisfies η(G) � χ(G).

It is not known whether this is true for bipartite graphs. It is not even known if
η(G) is bounded for bipartite graphs. A heuristic argument is that the statement of
the conjecture holds trivially if we extend the set of labels to real numbers. Indeed,
any proper coloring of a k-colorable graph G with a set of k real numbers which is
independent over rationals, gives an additive coloring of G. Another direction is to
consider additive colorings in finite abelian groups.

conjecture 2 Every graph G has an additive coloring modulo χ(G) + 1.

If true this is best possible, as we proved in section 5.
Our last problem arose as a vertex analog of the famous antimagic labeling con-

jecture of Ringel [6].
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conjecture 3 Let G be a simple graph on n vertices in which no two vertices have the
same neighborhood. Then there is a bijection f : V (G) → {1, 2, . . . , n} such that

∑

x∈N (u)

f (x) �=
∑

x∈N (v)

f (x)

for any two distinct vertices u and v.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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