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Abstract Knowledge of the three-dimensional structures

of ion channels allows for modeling their conductivity

characteristics using biophysical models and can lead to

discovering their cellular functionality. Recent studies

show that quality of structure predictions can be signifi-

cantly improved using protein contact site information.

Therefore, a number of procedures for protein structure

prediction based on their contact-map have been proposed.

Their comparison is difficult due to different methodolo-

gies used for validation. In this work, a Contact Map-to-

Structure pipeline (C2S_pipeline) for contact-based protein

structure reconstruction is designed and validated. The

C2S_pipeline can be used to reconstruct monomeric and

multimeric proteins. The median RMSD of structures

obtained during validation on a representative set of protein

structures, equaled 5.27 Å, and the best structure was

reconstructed with RMSD of 1.59 Å. The validation is

followed by a detailed case study on the KcsA ion channel.

Models of KcsA are reconstructed based on different por-

tions of contact site information. Structural feature analysis

of acquired KcsA models is supported by a thorough

analysis of electrostatic potential distributions inside the

channels. The study shows that electrostatic parameters are

correlated with structural quality of models. Therefore,

they can be used to discriminate between high and low

quality structures. We show that 30 % of contact infor-

mation is needed to obtain accurate structures of KcsA, if

contacts are selected randomly. This number increases to

70 % in case of erroneous maps in which the remaining

contacts or non-contacts are changed to the opposite.

Furthermore, the study reveals that local reconstruction

accuracy is correlated with the number of contacts in which

amino acid are involved. This results in higher recon-

struction accuracy in the structure core than peripheral

regions.

Keywords Ion channel � Protein structure � Contact-

maps � Protein structure reconstruction � Protein

electrostatics

Introduction

Knowledge of the three-dimensional structure of a protein

is one of the key elements toward understanding the

molecular mechanisms that underlie protein function.

Currently, only 2,061 transmembrane protein structures are

known (PDBTM, as of 31.01.2014, Kozma et al. 2012),

while in the Protein Data Bank (PDB, as of 26.11.2013,

Berman et al. 2000) 88,725 protein structures are depos-

ited. Evaluations of computational methods for protein

structure prediction, carried out during biannual CASP

contests (Critical Assessment of Techniques for Protein

Structure Prediction), show that significant progress has

been made in the field since the contests began (Kryshta-

fovych et al. 2013). Homology modeling methods can

deliver fine structure predictions, if structural templates are

available (Söding et al. 2005; Arnold et al. 2006; Kelley

and Sternberg 2009; Källberg et al. 2012). For instance,

Memoir (Ebejer et al. 2013) a program, which was spe-

cially designed to predict membrane proteins, provides

models with average Root Mean Square Deviation

(RMSD) of 2.57 Å. Prediction of transmembrane
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structures, especially ionic channels, will further allow for

modeling their conductivity characteristics using biophys-

ical models (e.g., Dyrka et al. 2008; Dyrka et al. 2013) and

finally prediction of their cellular functionality (e.g., Jafri

and Kotulska 2006). Currently, the major challenge in this

field is to predict the protein structure, without prior

knowledge of homologous structures. Recent studies show

that using protein contact site information can significantly

improve the quality of de novo structure predictions (Nu-

gent and Jones 2012; Hopf et al. 2012).

A protein contact site, also called a residue–residue

contact, is a pair of amino acid residues located within a

certain distance threshold of one another (Duarte et al.

2010a). A set of contact sites, defined for a protein, con-

stitutes a contact-map. The most recently published report

from the CASP evaluation of residue–residue contact site

predictors concluded that the performance of state-of-the-

art methods was not satisfactory (average contact site

prediction accuracy equaled 16.8 % (Monastyrskyy et al.

2011)). However, the work of Marks et al. (Marks et al.

2011) and Jones et al. (Jones et al. 2012) showed that the

approach using evolutionary sequence variation could yield

very accurate contact site prediction. If we are able to

predict enough amino acid contacts, then it would be

possible to reconstruct the whole protein structure. The

question arises how many protein contacts need to be

predicted and what is the quality of proteins built based on

such residue–residue interactions.

So far a number of studies have been conducted that

proposed and validated procedures for contact-map-based

protein structure prediction. In (Duarte et al. 2010a, b) and

(Marks et al. 2011), a well-established algorithm for NMR

structure determination was used (Havel et al. 1983), fol-

lowed by simulated annealing structure refinement. In

(Vendruscolo et al. 1997) a heuristic method of growing

the amino acid chain of monomers one by one was pro-

posed. The growth process was guided by a contact-based

cost function and followed by a structure adaptation stage,

which accepted changes in the structure using the

Metropolis criterion. Vassura et al. proposed a heuristic

method that perturbs the coordinates of Ca carbons in order

to produce a structure with a contact-map as close as

possible to the input contact map. The studies report

structure accuracies in the range of 1.5–4.5 Å. However,

these values cannot be compared due to different meth-

odologies used for validation. The studies differ in terms of

protein test sets and structure quality measures. For

instance, in (Duarte et al. 2010a; Vassura et al. 2008)

validations were limited to reconstruction of protein Ca
traces. The studies in (Hopf et al. 2012) and (Nugent and

Jones 2012) were limited to prediction of transmembrane

proteins, while those in (Taylor et al. 2012), and (Marks

et al. 2011) were limited to evaluation on a set of several

globular folds. In order to clearly and comprehensively

estimate the potential of predicting protein structures based

on contact maps, a validation on a representative set of

protein structures with several measures of structure qual-

ity should be performed. In this work, an automated Con-

tact Map-to-Structure pipeline (C2S_pipeline) for contact-

based protein structure reconstruction, using available

bioinformatics tools, is presented and validated. The

pipeline can be used to reconstruct proteins consisting of

single amino acid chains, as well as multimeric proteins.

We present a two-step validation of the pipeline. First the

validation is performed on a representative set of protein

structures, and then a detailed case study on the KcsA ion

channel is performed.

Methods

The C2S_pipeline for Single Chain Protein

Reconstruction

The pipeline takes as an input a protein Contact Map

(CMAP). Reconstruction of single chain proteins is per-

formed in a three step protocol (Fig. 1): (1) C-alpha trace

reconstruction with FT-COMAR (Vassura et al. 2008); (2)

backbone reconstruction with SABBAC (Maupetit et al.

2006), (3) side-chain prediction and structure optimization

with SCWRL (Krivov et al. 2009). Each step is described

in greater detail below. The protocol outputs a full-atom

3D structure of a protein.

Reconstruction of the C-alpha Trace (Fig. 1(I))

FT-COMAR is used to determine location of the C-alpha

atoms (Vassura et al. 2008). It is based on spatial restrains

imposed by residue–residue contacts and it treats atoms as

geometrical points in three dimensional space. Importantly,

the information on the amino acid sequence of the protein

is not used in the process. The algorithm can be divided

into two separate phases. In the first phase, a partially

random structure is generated. In the second phase, the

structure is perturbed and refined in order to satisfy the

restraints induced by the input contact matrix. The program

assumes that consecutive amino acids in the input CMAP

are connected with the peptide bond; therefore, they should

be in close proximity to one another in the 3D space. The

algorithm tries to apply this assumption and holds neigh-

boring residues together.

Reconstruction of the Protein Backbone (Fig. 1(II))

Atoms forming the main chain are rebuilt with SABBAC,

an application that allows for a rapid reconstruction of the
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main chain of a protein based on C-alpha coordinates.

SABBAC was designed to reconstruct single polypeptide

chains. The method uses a library of structural fragments

four amino acid long, the so called Structural Alphabet

(SA) (Camproux et al. 2004), which are assembled toge-

ther. The SA was built using Hidden Markov Model

framework (Camproux et al. 2004). A ‘‘greedy algorithm’’

is used to get an optimal combination of fragments

(Tuffery et al. 2005), (Maupetit et al. 2006), which is

compatible with the input C-alpha trace.

Addition of Side-Chains and Structure Optimization

(Fig. 1(III))

The final phase of the structure reconstruction, addition of

amino acid side chains and rotamer optimization, is per-

formed using SCWRL4 (Krivov et al. 2009), which is a

well-established tool for solving the side chain prediction

problem. SCWRL uses a backbone dependent rotamer

library to get a first approximation of the side-chain coor-

dinates. Then it calculates energies and constructs an

interaction graph in which vertices denote amino acid

residues and edges are interactions (Krivov et al. 2009). It

optimizes the arrangement of particular rotamers by a

graph decomposition and energy minimization methods.

SCWRL outputs the coordinates of the final, full-atom

model structures.

Reconstruction of Multimeric Proteins

with C2S_pipeline

FT-COMAR and SABBAC, which are used in the single

chain protein reconstruction pipeline, were not designed to

cope with multi-chain proteins. FT-COMAR assumes that

consecutive residues in the input CMAP are close together

in the three-dimensional space. This assumption is correct

in case of monomeric proteins since all residues belong to

the same amino acid chain. However in case of multimeric

proteins, terminal amino acids of different chains may be

described in consecutive rows of the CMAP despite being

distant from one another in the 3D space.

In order to adapt the monomeric protein reconstruction

pipeline to reconstruction of multimeric proteins, two

additional steps were introduced. The procedure is the

following: (1) Dummy amino acid loops insertion, (2)

C-alpha trace reconstruction with FT-COMAR (Vassura

et al. 2008), (3) backbone reconstruction with SABBAC

separately for each chain (Maupetit et al. 2006), (4) sym-

metry-based assembly of protein subunits, and (5) side-

chain prediction and structure optimization with SCWRL

(Krivov et al. 2009).

Dummy Amino Acid Loops

In a CMAP of a multimeric protein, the sequences of all

chains are concatenated. Therefore, the CMAP holds

information about all contacts sites of the protein (intra and

inter-chain). For example, in a homodimer of two 100–

residue long subunits, the residue indexed as 100 is the

C-terminus of chain A, and residue indexed as 101 is the

N–terminus of chain B. The actual geometrical distance

between the two amino acids can be high despite the fact

that the residues are ‘‘neighbors’’ in the contact matrix. FT-

COMAR keeps the terminal amino acids close in 3D space,

which results in deterioration of reconstruction quality.

In order to improve the reconstruction quality for mul-

timeric proteins, such as ion channels, we insert artificial

loops of dummy amino acids into the CMAP between

chain terminals prior running FT-COMAR. These loops are

trimmed from the structure after reconstruction. The

Fig. 1 The contact map-based

protein reconstruction

procedure is performed in a

sequence of steps: (I) FT-

COMAR is used to acquire the

Ca trace of the structure based

on the contact map, (II)

SABBAC is used to reconstruct

the protein backbone, (III) and

(IV0) SCWRL is used to add

amino acid side chains and

optimize the structure geometry,

(III0) in case of ion channel

structures subunit symmetric

projection is performed. A

contact map (0) is the input

information which is fed into

the pipeline

B. M. Konopka et al.: Automated Procedure for Contact Map 411

123



authors of FT-COMAR showed that introducing of non-

existing contacts into the contact map has a strong negative

effect on the reconstruction quality, thus they proposed to

mark some inter-residue contacts as uncertain by ‘‘-1’’ in

the contact matrix. These contacts are not taken into

account during structure reconstruction. We use this nota-

tion while inserting artificial loops. Each dummy atom that

forms the inserted loop is an additional row and additional

column of -1 in the contact matrix. The loop is neutral to

the reconstruction process while moving the neighboring

terminal residues of different chains away from each other,

which improves the performance of FT-COMAR.

Symmetry-Based Assembly of Protein Subunits

In case of ion channels, the backbone reconstruction step

[‘‘Reconstruction of the Protein Backbone (Fig.1.II)’’ sec-

tion] is carried out separately for each chain of the protein.

Therefore, this step returns four backbones. Each of the

backbones is then used to rebuild a whole ion channel on

the basis of the channel axis symmetry. First, the chains are

reassembled to form an asymmetric channel. The structure

is positioned so that the axis of the pore lies on the z axis.

This is done by i) aligning the channel to a similar-sized

structure from the Orientations of Proteins in Membranes

(OPM) database (Lomize et al. 2006) to get the proper

channel axis direction, and then by ii) moving the protein

to the beginning of the reference by a translation. After that

each of the subunits is projected 4 times using the axis of

symmetry to form a full tetrameric channel. This procedure

produces 4 symmetric ion channels. Additional ion channel

structure is produced by projecting the averaged subunit.

Validation on a Set of SCOP-ASTRAL Domains

The validation set was built following the guidelines pro-

vided by Söding (Söding et al. 2005). 1961 representatives

of SCOP superfamilies, as supplied by SCOP on-line

interface, were downloaded (http://astral.berkeley.edu/

scopseq-1.75.html as of 20.09.2012). Due to time limita-

tions caused by the availability of the SABBAC server, 205

structures were used in the final validation set. In terms of

SCOP-ASTRAL classes (Table 1) most of the structures

belonged to all-alpha, all-beta, and alpha ? beta proteins.

About 10 % of structures of these three classes were used.

It is important to note that the multidomain and membrane

classes had only a few representatives in the validation set,

which covered only 4–6 % of structure of these classes. On

the other hand, the number of domains from the small

protein class was 25 which consisted about 20 % of small

proteins class.

The validation was carried out as follows. First, a con-

tact map (CMAP) was derived from a native structure with

the use of PconPy (Ho et al. 2008). The map was next used

in the C2S_pipeline. The resulting full-atom structure was

compared to the native structure with a full atom RMSD.

For every analyzed protein, 50 model-structures were

generated and their RMSD value averaged. The relation-

ships between RMSD, sequence length, and contact density

(CD, defined as the average number of residue–residue

contacts formed by amino acid) were analyzed. Formally

CD is defined as:

CD ¼ 1

L

XL

i¼1
ci;

where L is protein sequence length, ci is the number of

contacts in which the i-th amino acid participates.

Case Study Validation–KcsA Ion Channel

Based on experimentally solved native structure of the KcsA

channel—3fb8 in the PDB database (Berman et al. 2000), a

CMAP was created. Several testing experiments were con-

ducted. Structural models were reconstructed based on:

(1) complete contact map (complete-CMAP structures);

(2) contact map with information regarding positive

contacts (no information regarding non-contacts,

positive-only-CMAP structures);

Table 1 The validation set comprised structurally diverse proteins from different SCOP-ASTRAL structures

SCOP-ASTRAL class Structure numbers in

SCOP database

Structure numbers

was used in

the validation

Percent of the SCOP

structure was used in

the validation

all-alpha 507 55 10.8 %

all-beta 354 41 11.6 %

alpha/beta 244 24 9.8 %

alpha ? beta 552 50 9.1 %

multidomain 66 3 4.5 %

membrane 109 7 6.4 %

small proteins 129 25 19.4 %
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(3) contact maps with the numbers of contacts and non-

contacts reduced to 90, 70, 50, and 30 %, (reduced-

CMAP structures). The status of remaining contacts

and non-contacts was assumed as unknown (‘‘-1’’);

(4) erroneous contact maps with 90, 70, 50, and 30 % of

correct contacts in which the remaining contacts and

non-contacts were changed to opposite (erroneous-

CMAP structures);

Contact map reduction in point (3) was conducted by

substitution of randomly chosen contacts (‘1’ in the

CMAP) and non-contacts (‘0’ in the CMAP) with ‘-1’. In

point (4) random ‘1’ were selected and changed to ‘0’. In

both cases, the reduction was repeated 10 times, and 50

structural models were generated based on each random-

ized CMAP.

For each model-structure a number of structural param-

eters were calculated:

(1) global full-atom RMSD, full-atom alignment;

(2) selectivity filter full-atom RMSD, selectivity filter

alignment;

(3) RMSD of particular residues at full-atom alignment

(used for Local RMSD calculations);

In addition, in order to investigate to what extent contact

maps of ion channels can be reduced without causing a loss

of functionality, the distributions of the electrostatic

potential inside the channel were calculated. The electro-

static potential was calculated with the Adaptive Poisson-

Bolzmann Slover (APBS) (Baker et al. 2001). The simu-

lation box was a cubic 129 9 129 9 129 with grid space

of 1 Å. The Poisson-Bolzmann equation was solved with

membrane potential equal to 0 V without ions in solution.

The dielectric constant of the protein was e = 4. Else-

where, including the inside of the pore, it was equal to the

dielectric constant of the electrolyte, e = 80. All electro-

static potential profiles were compared to the template

profile (Fig. 2), which was obtained for the native structure

of the KcsA potassium channel. The profiles were param-

eterized with four measures: the maximum value of the

potential profile (Fmax), the minimum value of the

potential profile (Fmin), the position of the minimum

potential (zmin), and the root mean squared error (RMSE)

of the profile compared to the template. Since RMSD

measures the differences between structures, we used rel-

ative differences between Fmax, Fmin and zmin of evalu-

ated models and the template to describe the relationship

between structural and electrostatic quality of the models.

Results

The reconstruction protocol was tested in two assessment

studies. First, a validation on a large set of structurally

diverse structures was carried out. The main objective was

to estimate the potential of the procedure to generate high-

quality structures. This was followed by a case-study of a

single protein structure reconstruction. The purpose of the

second study was to investigate how external factors, such

as contact map completeness or error rate, influence the

prediction accuracy.

Validation on a Set of SCOP-ASTRAL Domains

The average RMSD values (Fig. 3) acquired for majority

of proteins were below 5 Å, with the overall distribution

Fig. 2 The electrostatic

potential profiles along the

channel axis (z) of the KcsA

PDB-structure. The profile

features were shown: the

maximal potential (Fmax), the

minimal potential (Fmin), the

position of the minimal

potential (zmin), and average

potential with standard

deviation (Fmean)

Fig. 3 The distribution of the average RMSD acquired for studied

protein structures
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median of 5.27 Å. The average RMSD distribution was

positively skewed, so the number of structures with low

RMSD was higher than the structures with high RMSD.

The average RMSDs were accumulated around mean value

as confirmed by kurtosis of 2.50. The best RMSD, 1.59 Å,

was acquired for the 82-amino acid long, all-beta protein.

Contact density of the protein equaled 13. The worst case

was the 205 amino acid long protein from the alpha/beta

SCOP-ASTRAL class. The protein density was 10.98, and

the acquired average RMSD was over 15 Å.

The distribution of sequence length is depicted in

Fig. 4a. The average protein length was 148, however the

distribution was positive-skewed (skewness 2.03) and

strongly leptokurtic (kurtosis 7.80) so several much longer

proteins were present in the set. It is not possible to

unambiguously state whether protein length influences

prediction accuracy, neither in the whole set, the s Kendall

correlation was 0.13 (for a-level 0.05), nor for each of the

SCOP-ASTRAL class separately (Fig. 4b). Also, it should

be noted that there were only 18 proteins of a length greater

than 300, and this result may not be representative enough

to draw general conclusions.

Structures were also characterized in terms of structure

contact density (Fig. 4c). The distribution of the contact

density was condensed around the median value 10.18 that

was certified by kurtosis value 3.48. The average value of

contact density 10.15 was similar to the median value and

the skewness equaled -0.08, so the distribution of contact

density was almost symmetric. The contact density of

proteins is related to the quality of models, the s Kendall

correlation was -0.23 (Fig. 4d). The accuracy of a model-

structures acquired for more densely packed structures was

greater. The highest correlation between the average

RMSDs and the contact density was observed in small

Fig. 4 The relation between the

average RMSD values and the

protein. (a) The distribution of

the sequence length for tested

protein structures. (b) The

scatterplot of the average

RMSD values and the protein

sequence lengths. (c) The

distributions of the structure

contact density. (d) The

scatterplot of the average

RMSD values and the protein

contact density. The circles

color depend on the SCOP-

ASTRAL classes: all-alpha

(blue), all-beta (dark green),

alpha/beta (red), alpha ? beta

(cyan), multidomain (magenta),

membrane (bright green), and

small proteins (orange). The set

consisted of 205 protein

domains downloaded from

SCOP-ASTRAL database

(Color figure online)

Fig. 5 Boxplots of the average RMSD values in proteins from

different SCOP-ASTRAL classes. Box borders denote QI and QIII

quintiles, the median is marked with the thick line. Box whiskers

denote maximal and minimal values
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protein class: s Kendall correlation was -0.41. The values

of the contact density in this class were between 8.11 and

11.08, with the median of 9.96. Nevertheless, a significant

decrease of RMSD values was observed for proteins with

more than 10 contacts per amino acid. The hypothesis of

equal medians for proteins: with more than 10 contacts per

amino acid and with less than 10 contacts per amino acid

was rejected using the Wilcoxon rank sum test at 5 %

significance level (Z-value was 4.77 and p-value of

1.85 9 10-6). This could be explained by the fact that the

most important component of the RMSD depends on the

stage of FT-COMAR reconstruction, which is based on

geometrical restraints imposed by the contact map. The

more contacts an amino acid creates the more precisely its

3D localization can be estimated.

Finally, we tested whether any classes of proteins are

reconstructed with better accuracy. The validation shows

that the protocol was the most successful in case of small

and all-beta proteins (Fig. 5). The quality of the structure

models of small and all-beta proteins was statistically

significantly better than all-alpha and membrane proteins,

which was tested with the multicompare Kruskal-Wallis

test at 5 % significance level. Although the performance in

membrane proteins was the worst, it needs to be noted that

this set consisted of only a few proteins and should be

treated with caution.

Case Study Validation: KcsA Ion Channel

The case study of single potassium channel (KcsA) was

conducted. The negative and positive knowledge in contact

maps and an influence of reduced contact maps on the

quality of models were tested.

Negative and Positive Knowledge in Contact Maps

Reconstruction of KcsA structure based on the complete

contact map produces high quality models. Since the use of

FT-COMAR step in the proposed reconstruction pipeline

involves randomization, all produced models differ. Over

400 structures were generated. The average general RMSD

value calculated for all complete-CMAP structures equaled

2.40 Å, which is in the resolution range of X-ray crystal-

lography experimental structures. On the other hand, the

results acquired for model-structures generated with posi-

tive-only-CMAPs were much worse (Table 2).

In Fig. 6, an exemplary alignment of two KcsA struc-

tures is presented. Secondary structures and their arrange-

ment were correctly reconstructed in all structures based on

complete positive and negative contact knowledge, i.e.,

complete-CMAPs (Fig. 6, blue). The lack of non-contacts

in the map during generation of the second ensemble of

models caused the protocol to produce very densely packed

structures. The diameter of positive-only-CMAP structures,

which was measured as the distance between two ALA-50

residues from two opposite chains, was lower than the

diameter of complete-CMAP structures by over 10 Å

(Table 2).

Although the general arrangement of alpha-helices is

correct (Fig. 6, red) the whole geometry of models is

unnatural, and the helices are broken. The only well

reconstructed part of the channel is the selectivity filter,

with average RMSD of 3.95 Å. In both groups of model-

structures, the selectivity filter has a higher quality than the

remaining parts of the structure.

Reduced Contact Maps

In order to find the minimal level of information required

for reasonable reconstruction of models, the complete-

CMAP was reduced to 90, 70, 50, and 30 % of contacts and

non-contacts. Our results showed that at least 30 % of

contacts are needed to obtain a structure of a reasonable

quality. In another study, by Sathyapriya et al. 2009, the

algorithm proposed for effectively reducing contact infor-

mation indicated that only 8 % of contacts are needed for

the structure reconstruction. A similar level was reported as

sufficient by Kim et al. 2014, who used contacts provided

by CASP10 organizers in contact-assisted CASP category

(Taylor et al. 2014). In those studies, however, specially

Fig. 6 a Side view and b extracellular top view of aligned exemplary

structures of KcsA. Models were reconstructed based on complete-

CMAPs (blue) and positive-only-CMAPs (red) (Color figure online)

Table 2 Comparison between quality assessment of structures

recovered from contact maps with complete knowledge and positive-

only knowledge

Complete-

CMAP

Positive-only-

CMAP

General RMSD [Å] 2.40 ± 0.14 6.43 ± 0.53

Filter residues RMSD [Å] 1.84 ± 0.39 3.95 ± 0.63

Structure diameter [Å] 41.92 ± 0.29 28.49 ± 4.57
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selected contacts were used for producing structures of

good quality. In our study a random reduction of the con-

tact map was carried out (see ‘‘Methods’’ section). Such an

approach better mimics experimentally or computationally

acquired contact site data since it does not require any

special investigation of native structures, which are not

available in real life situations.

The quality of produced models in 90 and 70 %-based

model sets did not differ significantly from the ensemble of

models reconstructed based on the complete-CMAP

(Fig. 7a) and equaled approximately 2.5 Å. At the level of

50 % CMAP, the RMSDs became greater, also the spread

of model quality increased. Only a small fraction of

models, which were built based on 30 % of contact infor-

mation could be useful, acquired satisfactory accuracy.

However, if a good model quality assessment procedure

was used, 30 % of knowledge would still be enough to

generate structural models.

The ion channels need to have specific electrostatic

potential distribution inside the pore to keep their func-

tional properties. We decided to investigate if the RMSD

value is a sufficient indicator for the quality assessment of

ionic channel models. Hence we studied the relationship

between RMSD values and similarity of electrostatic

potential profiles along the pore axis.

The RMSD and RMSE values of the models were cor-

related—s Kendall correlation was 0.42, and p-value was

9.86 9 10-145 (Fig. 8a). The RMSE median differences

between analyzed groups of models were statistically sig-

nificant with the exception of the difference between

complete-CMAP and 90 % reduced-CMAP difference

(Fig. 7c). In case of RMSD medians, the differences

between complete-CMAP, 90 and 70 % reduced-CMAP

were not significant (Fig. 7a). The highest dispersion of the

RMSE was observed for 30 % reduced-CMAP models

(Figs. 7c, 8a, blue points), which is consistent with high

spread of RMSD in this group of models (Fig. 7a). Simi-

larly to RMSD, the boxplots of RMSE show the relation

between the level of CMAP reduction and the quality of

models. However, in case of RMSE, the quality differences

are more evident, which suggests that the function depen-

dent parameter—RMSE is more sensitive to quality chan-

ges than RMSD. In the group of 50 % reduced-CMAP

models (Fig. 8a, green points) the dispersion of the RMSE

values is greater than the dispersion of RMSD values. In

groups of models based on more complete-CMAPs

(Fig. 8a, red, cyan and magenta points, respectively, for 70,

Fig. 7 Quality of the reconstructed structures. The boxplots of the

RMSD values in structures reconstructed based on reduced a error-

free and b erroneous CMAPs. c The boxplot of the potential profile

RMSE values in structures reconstructed based on reduced error-free

CMAPs. Box borders denote QI and QIII quintiles, the median is

marked with the thick line. Box whiskers denote 1.5 9 InterQuar-

tileRange. The red line in (a) and (b) marks the median RMSD in the

selectivity filter (Color figure online)

Fig. 8 a The scatterplot of the potential profile RMSE values and the

RMSD values. b The scatterplot of the maximum potential values and

the RMSD values. The circles color depend on CMAPs completeness:

30 % reduced-CMAP (blue), 50 % reduced-CMAP (dark green),

70 % reduced-CMAP (red), 90 % reduced-CMAP (cyan), and

complete-CMAPs (magenta) (Color figure online)
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90 % reduced-CMAP, and complete-CMAP) the differ-

ences between dispersions of the RMSEs and RMSDs are

greater.

The electrostatic parameter, which strongly differenti-

ated models, was the deviation of the maximum potential

(Fig. 8b). The maximum potential value of the native KcsA

structure equaled Fmax = 2.3 mV. The s Kendall corre-

lation between the RMSD and the Fmax deviation was 0.38

and p-value 8.51 9 10-121, but even in the group of

models with high RMSD (between 5 and 15 Å) there were

models with low Fmax deviation and among good struc-

tural models (RMSD lower than 5 Å) we found models

with high Fmax deviation. The relationship between Fmin

deviation and RMSD (figure not shown) was weaker than

in case of RMSE and Fmax—the s Kendall correlation was

0.24 and p-value 2.31 9 10-50. Even so, we observed

differences between 30 % reduced-CMAP, 50 % reduced-

CMAP and the remaining models. The Fmin deviations of

complete-CMAP, 90 % reduced-CMAP and 70 %

reduced-CAMP were very similar and ranged between 0

and 0.7, while for 50 % reduced-CMAP models they were

greater. For instance, there were many models with Fmin

deviation of about 1. In 30 % reduced-CMAP, there were

four models which had the Fmin deviation even greater

than 1. The zmin deviations acquired for the models could

be described similarly to Fmin, i.e., while for complete, 90

and 70 % reduced-CMAP models the deviations were quite

low, for 50 and 30 % reduced-CMAP zmin were much

higher (data not shown).

The studies of RMSD and electrostatic potentials of

KcsA showed that the majority of models reconstructed

from complete, 90 and 70 % reduced-CMAPs were models

of good quality. In those structures, low RMSD and correct

electrostatic potential profiles were acquired. On the other

hand, a number of KcsA models obtained from 50 %

reduced-CMAPs and most models obtained from 30 %

reduced-CMAP differed significantly from the native

structure in terms of structure and electrostatic parameters.

In most cases acquired electrostatic potentials were

deformed with incorrectly located minima.

The conducted experiment was an idealized situation,

since an assumption was made that the contact maps used

were error-free. In real-life situations, this is never the case

since the specificity of top state-of-the-art contact predic-

tors varies around 0.3 (Monastyrskyy et al. 2011). There-

fore, we also performed an experiment that mimics these

conditions better.

Four sets of erroneous-CMAP KcsA structures were

generated, i.e. 90, 70, 50, and 30 %. It was shown that the

quality of models decayed rapidly as the balance between

correct and erroneous contacts lowered (Fig. 7b). In a real-

life situation, one needs to correctly predict at least 70 % of

contacts to produce RMSD \ 5 Å model-structures, which

means that a significant improvement in the reliability of

contact predictors is needed.

Local Quality of Structural Models Varies

In order to get an insight into the local quality of recon-

structed models of KcsA, the full-atom RMSD of each

amino acid residue was calculated. Based on that, local

RMSDs were calculated. In the previous section, it was

shown that in 90 and 70 % reduced-CMAP models the

quality is almost exactly the same as in the complete-

CMAP structures, while in the 50 % CMAP-based in many

cases it is only slightly lower. Therefore, the local structure

quality was investigated only in the complete-CMAP and

30 % reduced-CMAP structures.

The averaged local RMSD values in the complete-

CMAP models are distributed uniformly along the whole

amino acid sequence (Fig. 9a, black), with the exception of

terminal residues. There are only slight fluctuations and the

structures are generally built correctly.

Local quality in 30 % reduced-CMAP models varies

significantly between different regions of the sequence.

There are three clear segments of sequence where the local

RMSDs are relatively low, i.e., between residues 39–47,

67–78, 91–105 (Fig. 9a, red). These segments are also

associated with higher numbers of contacts created by

amino acids (Fig. 9 point sizes). Figure 9b shows that

number of contacts and local RMSDs are correlated. Local

RMSDs were mapped onto 3D structure of the KcsA

(Fig. 10a, b). The regions associated with high local

qualities are located centrally in the protein structure, while

peripheral parts of the structure, such as extra membrane

loops or helix endings are poorly modeled.

RMSD and number of contact mappings onto the KcsA

structure presented in Fig. 10 clearly show that regions of

low RMSD (Fig. 10a, b blue/light green) overlap with

regions occupied by amino acids with a high number of

contacts (Fig. 10c, red).

The correlation observed between the number of con-

tacts and local prediction accuracy is not surprising

because contacts define constraints that need to be satisfied

by the three-dimensional arrangement of amino acids. If an

amino acid is involved in a high number of contacts and

some of them are removed by a CMAP reduction proce-

dure or missed by a contact prediction method, then the

amino acid will be still properly localized in the 3D

structure. This is because the information regarding the 3D

position will be retained in the remaining contacts. Con-

versely, the 3D position of an amino acid that is involved in

just a few contacts may be ambiguous, since many posi-

tions may satisfy constraints that are put on the amino acid.

Therefore any method of protein structure prediction, based

solely on the CMAP information, will be subject to this
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limitation. Furthermore, in order to get good quality of

structures, it is important to secure a certain level of contact

site information in all parts of the structure, which may be

more difficult in protein peripheral parts.

Conclusions

In the study, an automated protocol for protein structure

reconstruction based on protein residue–residue contacts

was proposed. Validation of the pipeline was performed

using a set of randomly selected 205 diverse protein

domain structures, which were downloaded from the

SCOP-ASTRAL database. This was followed by a thor-

ough case study of a single potassium ion channel (KcsA).

In the first step of the validation, the average RMSDs

acquired for many investigated proteins were quite low,

between 3 and 5 Å, however the overall average equaled

6.45 Å, which was higher than the value reported by the

authors of FT-COMAR. The study showed that there was a

relation between the accuracy of produced models and the

contact density of a protein. The protocol was much more

successful in cases where more than 10 residue–residue

contacts per amino acid appeared. In those cases RMSD

values fluctuated around 4 Å. The analysis did not prove

that protein length influences the accuracy of predictions.

The highest prediction accuracy (the lowest RMSD) was

reported for proteins from all-beta, alpha ? beta and small

SCOP-ASTRAL protein classes. We propose that these

involve proteins with the favorable packing characteristics.

In the KcsA channel case study, several procedures were

used to generate CMAP containing different types and

portions of information, i.e., complete and positive-only

contact maps, reduced and erroneous contact maps. It was

shown that for a proper reconstruction of models, both

types of knowledge, positive (regarding contacting resi-

dues) and negative (related to non-contacting amino acids)

are required. If this is satisfied, then even 30 % of contact

information is enough to produce structural models with

RMSD below 5 Å. Although similar studies done by other

authors using different algorithms (Sathyapriya et al. 2009,

Kim et al. 2014) showed that only 8 % of contacts are

needed for the structure reconstruction, this is true only if

the contacts are selected non-randomly and the full

Fig. 9 a The distribution of the local RMSD values along the amino

acid sequence in complete-CMAP (black) and 30 % reduced-CMAP

(red) models of KcsA. b Correlation between local RMSD in 30 %

CMAP-based structures of KcsA and the number of contacts in which

amino acids participate. Point sizes denote number of contacts amino

acids participate in (Color figure online)

Fig. 10 The local RMSD of

a complete-CMAP and b 30 %

CMAP-based structures mapped

onto KcsA structure correlate

well with c the mapping of the

number of each amino acid

contacts
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knowledge of protein structure is applied for this selection.

Our study also proves that introduction of errors in the

contact map significantly lowers the quality of produced

structures and at least 70 % of contact site information is

needed to acquire reasonable models. Therefore, if such a

contact-based approach is to be applicable in real-life sit-

uations, it is of great importance to assure a low level of the

false positive rate of provided contact predictions.

The case study reveals that structure prediction accuracy

(RMSD) and electrostatic properties of models are corre-

lated. RMSE of electrostatic potential profile in the chan-

nels axis and the Fmax of the profile were the most

correlated electrostatic parameters. These parameters could

be used as indicators of the model quality.

Investigation of structures local quality revealed that

some regions of models were predicted with higher accu-

racy. These regions overlapped with regions of high con-

tact density. It was confirmed that the reconstruction

quality is directly related to the number of contacts in

which amino acid is involved. This dependence will affect

all contact-based approaches to protein structure

predictions.
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