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Abstract. A large database of ill situ bio-opticalmeasuremellls was collected at 
the Long-term Ecosystem Observatory off the southern coast of New Jersey, 
USA. In part. the research effort focused on reconciling ill .~illl estimates with 
satellite-derived estimates of the inherent optical properties (lOP). At 442nm. 
ill si/ll absorption values ranged from less than 0.2 to over 1.5 inverse metres. 
S<ltc1lite estimates of backscatter ranged from 0.002 to 0.03 inverse metres at 
442nm and showed significant variability in time and space during July 1999. 
reflecting the recurrelll high frequency events that characterize the region-wind
mixing. storms lind coastal upwelling. Despite this variability, there was good 
qualitative agrecment between the satellite derived lOP estimates and ill si/ll lOP 
measurements. Both absorption and backscatter values increased ncar-shore. 
rcfk-..:ting enhanced concentrations of phytoplankton, sediments and dissolved 
organic mancr. 

I. Introduction 
As part of the Hyperspectral Coastal Ocean Dynamics Experiments 

(HYCODE). this study had two main objectives: (I) to compare ill siTll spectral 
backscallcr data with estimated backscatlcr dcrived rrom the Sea viewing Wide 
Field of view Sensor (SeaWiFS); and (2) to comparc ill sillt spectral scattering data 
with that modelled rrom an ill silll absorption/attenuation (Wet Labs AC-9). 

III silll measuremcnts werc collcctcd at the Long-term Ecosystem Observatory 
(LEO-15) ofT thc southern coast of New Jersey, USA using thc I-Iobilabs 
HydroScat-6 spectral backscallercr. Four of the six wavelengths measured by the 
HydroScat-6 are used in this analysis; 442nm. 488nm, 589nm and 620nm, all 
measured at a 140 angle. For proper comparison of derived scatlcring and ill !)'iru 

scallering. a profiling Sat Ian tic spectral radiometer was used to calculate the first 
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optical depth. In addition, a WetLab' ab orption/<lttenuatiol1 meter (AC-9) wa 
u ed to quantify the 'pectral absorption and attenuation through the water column. 

C-9 data were used to initialize the radiative tran ~ r model rTydrolight v5.0 to 
model spectral backscatter. All of the e in trument were on the ame profiling cage 
within 20 cm of each other. Transect line for three da . highlighted in thi tudy 
are gi en in figure 1. 

2. Metbod 
Spectral back catter data from the H -6 was fir t binned to 0.5 m depth 

interval to eliminate bia. due t uneven depth profiling. 'or comparison to 
.atellit -derived back catter, the in silll back catter data were averaged within the 
fir t optical depth. which contribute approximately 90% of the in-water reflectance. 
Depth-d pendent AC-9 data were used for inpl1l in the Hydrolight v5.0 model <Iud 
with back catter as the output for every 0.5 m of the water column. The binned 
HS-6 dat<l were compared to the Hydrolight backscaller at 0.5111 intervals. 

SeaWiF ocean colour imagery was proces ed into optical product of pectral 
absorption and baekscattering at all wavelengths ( mone and Gould 1998) u ing a 
modified version r the SeaWiFS Data Analysi System (SEAD ). eaWiFS 
image processing was optimized for coastal water u ing the near-infrared ( IR) 
atmospheric correction (Arnone el al. 1998). Thi procedure uses an iterative 
procedure for coupled in-water and atmospheric model to determine the water
lea ing radian c in coa tal water. Coa tal waters can have ignificant reflectance in 
the 765nm and 865 om channels of eaWiF . The iterativc procedure account for 
the water portion of the channel, which are used with atmo pheric correction. 

ccurate reflectance mea urements in coastal water arc required for accurate 
derived optical propertie.. 

The e eaWIF reflectance measurement are u ed with two emi-empirical 
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Figure I. Crui e tracks [or three days during July 1999, ofT the coast of ew Jer ey in 
relation to the Rutger niversity M<lrioe Field Station. Black line, 7 July: white 
lines. 16 July; grey line, 30 July. 



in-Willer algorithms 10 uncouple the surface water backscatter and absorption 
properties. These algorithms arc based on il reflectance villue of Cil. 0.33 multiplied 
by the ratio of backscatter to absorption at a specific wavelength. The modified 
algorithm determines backscatter at 670 nm using the reflectance relationship at 
670 nm by assuming a known absorption at 670 nm. Then. using Gould and Arnone 
(1999), the backscatter is estimated at illl wavelengths. 

The Carder el al. (1999a. b) algorithm was also used to estimate spectral 
backscatter. Here the 550 nm channel is used. This algorithm portioned the IOta I 
spectral Hbsorption into the Hbsorption from chlorophyll and absorption from 
dissolved organics and particles. These components were combined with water 
absorption to estimate the tOial absorption at each wavelength (Arnone and Gould 
1998). The reflectance ratio is then used to convert to spectral backscatter. 

SeaWiFS optical properties were compared with ill Silll optical properties 
measured using an ilbsorption scattering instrument. The spectral backscatter 
estimated from SeaWiFS was converted 10 IOtal sCilllering using a Petzold volume 
scattering function (Petzold 1972. Gould ef al. 1999). There are limitations with the 
Petzold conversion, but this study is dilta limited in coastal waters. 

3. Results 
There was generally good agreement between wavelength-specific measured 

in sifJI backscatter and the SeilWiFS derived estimates for both algorithms (table I). 
This relationship was robust across several days and stations (figure 2). The 
SeaWiFS algorithms. however. tended to cluster offshore and inshore waters 
separately (data not shown), suggesting additional complexity across optical fronts, 
which characterize the study region. Modelled ill situ backscallcr derived from the 
AC-9 also correlated well with measured values at depth: however, this coherence 
generally broke down in surface waters. illustrating the importance of collecting 
good surface measurements with the AC-9 in remote sensing applications. 

Table l. Correlation eocflicients (R!) for measured in ~'illl 
from SeaWiFS. 

backscallcr and those derived 

SeaWiFS algorithm 
(Arnone (!I (If. 1998) 

SeaWiFS algorithm 
(Carder el (If. I999a, b) 

(11m) 443 490 555 670 443 490 555 670 

Measured 7 July (n=6) 442 0.63 0.90 
488 0.55 0.85 
589 0.68 0.96 
602 0.70 0.96 

Measured 16 July (11=12) 442 0.57 0.57 
488 0.64 0.63 
589 0.67 0.69 
602 0.69 0.74 

Measured 30 July (11=8) 442 0.65 0.65 
488 0.62 0.72 
589 0.35 0,46 
602 0.69 0.76 
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SeaWiFS Derived Back cat er (m- I ) 

Figur~ 2. mpari 00 r plical h<J kg alter derived l'rorn ',Wi (490 om) with lhal 
mea ured in sillI (44 om). tted line how. tbe 1; I reillti n. hip. quarcs. 7 July: 
Iriangles, 16 J ul ; circles, )0 July. 
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