
Tile Size Selection for Low-Power Tile-Based Architectures

John Oliver Ravishankar Rao Michael Brown
University of California University of California Cal Poly State University

Davis, CA Davis, CA San Luis Obispo, CA

jyoliver@ucdavis.edu ravishankar@ucdavis.edu whiteknite143@aol.com

Jennifer Mankin Diana Franklin Frederic T. Chong
Cal Poly State University Cal Poly State University University of California

San Luis Obispo, CA San Luis Obispo, CA Santa Barbara, CA

jmankin@calpoly.edu franklin@csc.calpoly.edu chong@cs.ucsb.edu

Venkatesh Akella
University of California

Davis, CA

akella@ece.ucdavis.edu

ABSTRACT
In this paper, we investigate the power implications of tile
size selection for tile-based processors. We refer to this inves­
tigation as a tile granularity study. This is accomplished by
distilling the architectural cost of tiles with different compu­
tational widths into a system metric we call the Granularity
Indicator (GI). The GI is then compared against the com­
munications exposed when algorithms are partitioned across
multiple tiles. Through this comparison, the tile granularity
that best fits a given set of algorithms can be determined,
reducing the system power for that set of algorithms. When
the GI analysis is applied to the Synchroscalar tile architec­
ture [1], we find that Synchroscalar’s already low power con­
sumption can be further reduced by 14% when customized
for execution of the 802.11a reciever. In addition, the GI
can also be a used to evaluate tile size when considering
multiple applications simultaneously, providing a convenient
platform for hardware-software co-design.

Keywords
Media Processors, Multi-Core Processors

1. INTRODUCTION
As power and complexity have become increasingly prob­

lematic in modern microprocessors, tile-based architectures
have become increasingly attractive (ie. [2] [3] [4]). In
essence, these systems trade architectural complexity for
communications, spreading work across a number of sparsely-
connected small tiles rather than among richly-connected
functional units of a monolithic, wide core.

However, the choice of tile size for tile-based architectures
has been largely an ad-hoc, qualitative process. While this
may be because of practical reasons (such as availability of
cores), this may not yield an efficient design.

In this paper, we find that in systems where low power
operation is critical, proper tile size selection is important.
How does an architect find the best tile size for low-power
operation? To investigate this we first generate cores with
different amounts of computational power. We note that the
larger, more richly interconnected tiles have higher average
switching capacitance per operation, but also have a larger
locality of data available to them. Then, we tile these cores
until a fixed amount of total computational parallelism is
reached, providing us with a set of tile architectures with dif­
ferent computational granularity but with the same amount
of total computational power. By mapping the power ef­
ficiency per operation, we then generate a power efficiency
curve that we call the Granularity Indicator (GI).

Once we find the GI for a tile architecture with different
granularities, we then partition and map different algorithms
to the different granularities of the tile architecture and ex­
ecute them. This process yields the computation cost and
the communications cost required for the algorithms to ex­
ecute across multiple tiles for a tile architecture of differing
granularities.

Finally, we can then compare the cost of partitioning an
algorithm against the energy efficiency of the tile architec­
ture which is embodied within the GI. If large amounts
communications are exposed by partitioning the algorithm,
larger tiles that invest more heavily in connectivity are fa­
vored, as they are more apt to hide communications. This

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19137522?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is despite the fact that the extra connectivity within larger
tiles contribute to higher average switching capacitance. On
the otherhand, if little communications is exposed when par­
titioning an algorithmn, then smaller, more power efficient
tiles are favorable. The result of this comparison is to find
the the granularity of tile that has the best power consump­
tion for a given algorithm.

To drive this exploration, we use Synchroscalar [1] archi­
tecture as a basis, but other tile-based architectures could
be used with a similar methodology. We use the GI frame­
work on the Synchroscalar architecture to investigate how
the computation power of the Synchroscalar tiles can be tai­
lored to execute a the 802.11a PHY layer application at low
power. We then weigh the cost of this customization against
other applications that Synchroscalar may execute. We find
that by tailoring the tile granularity to a given application
may signifcantly negatively impact the power consumption
of other algorithms, making tile granularity an important
decision for low-power tile architectures.

The rest of this paper is structured as follows. First, we
develop a set of cores with different amounts of computa­
tional parallelism. With these cores, we populate a tile
architecture similar to Synchroscalar and generate multi­
ple variants of Synchroscalar with different tile granulari­
ties. Using these Synchroscalar-like processor-variants, we
can find the GI.

Next, we describe the methodology used to partition, map
and execute different algorithms on our tile architectures
with differing tile granularities. This process yields the com­
putation time required to execute and algorithm and the
number of cycles required for inter-tile communication that
are required to maintain data coherency across multiple tiles.

These cycle results then allows us to compare the commu­
nications requirements against the GI. This, we will demon­
strate, can tell us which granularity of tile executes a given
algorithm at the lowest power.

Finally, we use the GI as a guide and we re-design the Syn­
chroscalar architecture for low power 802.11a PHY layer exe­
cution. We will show how much power can be saved through
the choice of proper tile granularity and also investigate the
implications of this optimization on other applications exe­
cuted on Synchroscalar.

We finish this paper with related works and then conclude.

2. TILE SCALING MODELS
In this section, we develop tiles with different amounts

of computational parallelism with which to create a tile-
based architecture. While the models presented here could
be developed in a number of different ways, it is important
to remember that the central message of the GI arises from
non-linear scaling as issue-width grows wider. We argue that
this is a valid assumption for any set of tile sizes, since linear
scaling would, in essence, reduce a large tile to a collection
of small tiles.

To connect the tiles of our tile architecture, we develop
models for a bus, statically scheduled mesh, and dynamically
scheduled mesh interconnects. These interconnect topolo­
gies are intended to be general and cover a wide range of
interconnect topologies. Other interconnect networks, such
as Raw’s Scalar Operand Network [5], could be employed in
a similar study.

The rest of this section describes the details of how the
models in this study were created. We first begin describing

how the tile area and power models were created. Then, we
look at how we derived the interconnection models used in
this study.

2.1 Tile Area
The goal of our tile model is to capture the first-order scal­

ing effects of computational width on area and power. We
define the computational width of a tile as the maximum
number of arithmetic operations that can be completed per
clock cycle, where the operands are in the local register file.
The smallest tile we consider in this study can compute a
single operation in every cycle, while the largest tile we con­
sider can compute 32 operations in parallel every cycle. We
assume a VLIW-based architecture, which can be efficiently
scheduled for data-parallel applications like media applica­
tions. The register file of our model is assumed to provide
one write and two read ports for each operation.

We first developed a tile based on the Blackfin Digital
Signal Processor (DSP) [6], which can be viewed as hav­
ing a computational width of two. In order to get a power
and area estimate for this processor, we modeled the con­
trol logic of this processor in VHDL and synthesized it us­
ing the Synopsys Design compiler. The data-path units, i.e.
multipliers, register file and memory, were estimated using
published numbers [7, 8, 9].

Using the width-2 Blackfin DSP as a basis, we extrapolate
the tile area for tiles with a computational width of one, four,
eight, sixteen and thirty-two. We assume that the area of
control logic scales linearly with computational width as well
as the area contributions of the ALU, shifter, accumulator
and multiplier. Memory capacity is assumed to grow linearly
with computational width at 32 KB of instruction and 32
KB of data memory per computational width.

For the register file, we assume that the number of ports
in the register file, as well as the capacity, grows linearly
with the computational width. This produces a quadratic
increase in both power and area in the register file. Finally,
the on-chip wiring/data-forwarding paths are also assumed
to grow quadratically, in a similar manner as the register
file.

Figure 1 shows the area results of our tile model. We hold
the total computation width constant at 32 computational
widths, so when we halve the computational width of a tile,
we double the number of tiles we are using. The left most
bar in Figure 1 shows the area breakdown for a single tile
with a computational width of 32. The next bar to the
right shows a tile model with two tiles with width 16. The
column furthest on the right shows the area of 32 tile each
with a single computational width. The single large tile
with a width of 32 has a 93% area growth over the array
of 32 tiles with computational widths of one. Note that if
processor area is a design constraint, this will need to be
weighed in conjunction with any power saving we present in
this paper. However, for this study, we concentrate only on
saving power.

Figure 1: Tile Area scaling for 1 32-wide tile (1:32)
to 32 1-wide tiles (32:1).

2.2 Tile Power
The tile power of our tile model is composed of two por­

tions, the active power and the leakage power. To find the
active power, we use power numbers based upon synthesis
of the Blackfin core, as described in the previous section.
This yielded a power estimate of 0.1 mA/MHz at 1 V, on
average.

For the other granularity of tiles the average current for
each of tiles is assumed to be proportional to the area rel­
ative to our Blackfin core. This is a decent approximation
if two conditions are met. First, the activity factor of the
tiles must be constant. Since the partitioning of data par­
allel multimedia applications used in this study are done
in a load-balanced manner, this should hold approximately
true. Second, for those micro-architectural structures that
have non-linear area growth, their power consumptions must
track the growth in area. This is true for the register file to
a first approximation, as register files have been shown to
have active power consumption that is linearly proportional
to area [9].

For our leakage model, we assume that leakage power is
proportional to the number of transistors. Using an average
of 830 pA of leakage per transistor [10], we approximate that
the Blackfin DSP leaks 1.5mA. This provides a range where
the smallest, single-width tile leaks 0.74 mA of current, and
the largest, width-32 tile leaks 23.68 mA of current.

Having established the assumptions for our tile power scal­
ing, we find that this provides a range of currents consumed
for different sized tiles. A single computational width tile
uses 0.05 mA/MHz on average, while the largest 32-width
tile consumes 4.87 mA/MHz on average. For a total of 32
computation ways, this yields a tile architecture that has
current requirements as shown in Figure 2.

2.2.1 Tile Power Model Correlation
Although the GI metric and analysis methodology can be

applied to a wide array of tile power scalings, in order to
demonstrate the usefulness of the GI, our tile model needs
to reflect the scaling trends that real processors will observe.
In order to see if our tile power model scales as industrial
processors do, we have plotted published power results from
similar processors from industry. We expect our power mod-

Figure 2: Current required for our tile architec­
ture model with 32 computational widths of differ­
ing granularities.

els to lie below the curve of the realistic processors for two
reasons. First, we model only the core components, not the
I/O devices and special purpose circuits. In addition, of­
ten commercial projects scale not only the width, but also
the functionality, adding specialized units and other func­
tions while we are only looking at computational cores. Fig­
ure 2.2.1 shows commercial processors, normalized for pro­
cess technology. Next to Figure 2.2.1, we show Table 2.2.1
which contains the references for the processors used in Fig­
ure 2.2.1. We can see that, as expected, our scaling model
shows a similar trend but has lower absolute power than the
published results.

2.3 Inter-Tile Interconnect
To properly account for the power due to inter-tile com­

munication, we need two values - the delay caused by the
interconnect (and thus the idle cycles of the tiles) and the
power required by the interconnect to perform communica­
tion. In this study, we evaluate both a single bus and a
generalized mesh interconnect topologies. We also assume
that data is communicated between tiles using explicit mes­
sage passing. A similar study could be done with a shared
memory system with a hardware-enforced coherence proto­
col.

2.3.1 Interconnect Delay
In order to calculate communications delay, we must know

how much communication occurs and how long each trans­
mission takes. Details on how we find the amount of com­
munication required by an algorithm are described later in
Section 4.

For a shared bus, the delay for each communication is a
single cycle, regardless of the source and destination. Since
the distance of the bus is small and operational frequencies
are limited in the Synchroscalar architecture, single cycle
communications is possible using a bus.

The delay of a mesh is a function of the contention on

C
u

rr
en

t/
F

re
q

. (
m

A
/M

H
z)

5

4

3

2

1

0

Figure 3: Our power model correlated
cessors. The numbers in the chart on
right.

Published
Numbers

Our Model

[1]

[2]

[3] [7]

[4]

[5]
[6]

[8]

[9]
[10]

[11]

1 2 4 8 16 32

Computational Width

Plot
Processor Citation

1 Analog Devices ADSP-2191 [11]
2 TI TMS320C2810 [12]
3 NEC SPXK5 [13]
4 Hitachi SH-Mobile3 [14]
5 Infineon Tricore 2 [15]
6 Analog Devices TS-101 [16]
7 Transmeta Crusoe TM5700 [17]
8 Transmeta Efficeon TM8820 [18]
9 TI TMS320C62x [19]
10 TI TMS320C64x [20]
11 TI TMS320DM643 [21]

to published power consumptions numbers for similar VLIW pro-
the left correspond to the plot numbers listed on the table to the

the mesh. This requires a traffic simulator to accurately
find contention on the mesh. Mesh simulations were com­
pleted using the FlexSim mesh simulator from USC [22].
FlexSim was configured in a 2-D space for up to 32 switches,
where each switch is attached to an end-node with one in­
jection channel to the switch. FlexSim was modified in two
ways. First, the default latencies were reduced to allow low-
overhead flit-level routing as expected for an on-chip net­
work. Also, an optional mode was introduced in which only
the link overhead was counted, and the routing overhead was
discounted, in order to simulate the delay for a statically-
scheduled mesh. This allows us to more closely emulate the
statically scheduled nature of the Synchroscalar inter-tile in­
terconnect.

2.3.2 Interconnect Power
For our inter-tile interconnect power model, we employ

power costs as abstracted from the Orion interconnect power
model [23] from Princeton University. We find that our wires
are using in the neighborhood or 10 pJ/bit for a 10mm trace,
similar to Stanford’s Smart Memories [24].

As observed in previous studies by the RAW project [25]
and the Synchroscalar project [1], interconnect switching
power can be a small portion of the overall power consump­
tion. The reason for this is two-fold. First, the number and
size of tiles used in this study are relatively small, thus not
requiring an abundance of interconnect resources. Second,
the frequencies of operation of the tiles in this study is rel­
atively low compared to high-speed processors, resulting is
low frequency communications as well.

3. THE GRANULARITY INDICATOR (GI)
Now that the tile area and power model used in this study

has been introduced, we will encapsulate the power of differ­
ent granularities of tiles into a metric we call the Granularity
Indicator (GI).

The GI expresses the architectural power characteristics
of a tile architecture that is comprised of tiles with differ­
ent computational granularities. At it’s simplest form, the
GI is a measure of the relative energy efficiency per opera­
tion of different granularities of tile architectures, similar to
Figure 2 except with a simple added transformation. The

Figure 4: The GI for tile model. A single 32-width
tile is shown on the left and thirty-two 1-width tiles
is shown on the right. Smaller tiles have less average
switching capacitance, which can be re-invested into
communications.

additional energy saved on every operation by a finer gran­
ularity tile architecture is reinvested into a communications
budget. So, for every pJ of energy a smaller tile saves in en­
ergy consumption versus a larger tile, it can re-invest that
energy into communications. This has the effect of chang­
ing the vertical axis of Figure 2 from power consumption to
allowable communications overhead while maintaining iso­
power consumption.

For our tile model, with an power consumption curve as
shown in Figure 2, this transformation creates the GI which
is shown in Figure 4. On the left of Figure 4, we see a single
large tile with 32 computational widths. As we move to the
right on Figure 4, we double the number of tiles but halve
the widths. By moving to finer-grain tiles, we know that
the average energy consumption per operation is reduced,
as shown in Figure 2. However, this is shown as allowable
communications given iso-power consumption in Figure 4.

This change in axis is convenient for comparing the en­
ergy efficiency of a tile architecture with a given granularity
for a given communications requirements for a given algo­
rithm because the communications overhead allowed can be
easily matched against the communications requirements of
a partitioned algorithm.

Alternatively, to find the system power of an architecture
executing a given algorithm, extensive simulation is typically
involved. This transformation to the GI allows us to decou­
ple the architectural contributions to power consumption
from the algorithm’s demands for computation and com­
munications cycles. This decoupling allows an architect to
make architectural-based decisions to minimize power while
quickly evaluating the effectiveness of those architectural de­
cisions for a given set of algorithms. In section 3.1 we look
at the impact of voltage scaling on the GI. In section 3.2
we describe how a mode that puts tiles into a low-power
mode when completing inter-tile communications can affect
the GI. In section 5, it will be clear how these shifts can lead
to understanding of the effectiveness of certain architectural
features for a given algorithm or application.

3.1	 Tile Voltage-Frequency Scaling
As we can see from the GI in Figure 4, a tile architecture

comprised of smaller tiles has a higher allowable commu­
nications overhead than a tile architecture made of larger
tiles and still have the same power consumption. However,
to support this communications overhead, additional cycles
are required which will result in a higher operational fre­
quency for a given throughput. Additionally, this higher
frequency requires a higher operational voltage, which also
will increase the power consumption of a tile architecture
comprised of smaller tiles. Therefore, in the presence of
voltage scaling, a tile architecture with many small, higher
frequency tiles will consume relatively more power than a
tile architecture with fewer, lower frequency tiles.

Figure 5 shows four GI curves, corresponding to four dif­
ferent base frequencies. The base frequency is defined as the
frequency of operation of a single tile with a computational
width of 32. We see that the GI is shifted down-wards at
higher frequencies. So the impact of voltage scaling is to
reduce the amounts of allowable communications for a finer
grain tile architecture for the same amount of power con­
sumption as a coarser grain tile architecture.

Figure 5: Finer grain tiles require more cycles to ex­
ecute a given algorithm, because of added commu­
nications costs. These added cycles require higher
frequency of operation, thus higher supply voltages
as well. As a result, due to voltage scaling, finer
grain tiles have the amount of allowable communi­
cations for iso-power consumption reduced.

3.2	 Low Power Idle Tiles for Low Power
Communication

The GI can also show how using an idle communication
mode in the tiles impacts the power consumption. The
Blackfin DSP requires a total of two cycles to enter two cy­
cles to exit from idle mode. While in idle mode, the core con­
sumes approximately a fifth of the active power consump­
tion. For communications that cannot be overlapped with
computation, this mode can be used to reduce the overall
system power.

Figure 6 shows the impact on the GI when using tiles with
this idle mode for non-overlappable communications. Intu­
itively, communication with the addition of this mode now
costs relatively less. The result is that fine-grain tiles should
become more attractive since fine-grain tiles require more
communication than coarse grain tiles for a fixed amount of
aggregate parallelism. Likewise, we would expect the power
consumption of an application mapped onto fine grain tiles
to decrease. This effect is shown on the GI in Figure 6. We
see that this can make a dramatic difference in the com­
munication supported by smaller tiles. Not surprisingly, as
more tiles (requiring more communication) are used, more
power is saved by the implementation of the idle mode.

Now that we have introduced the GI and presented a pair
of features that may impact the GI, we will now talk about
how we find the communications overhead required by par­
titioned algorithms.

4.	 ALGORITHM AND APPLICATIONS
PARTITIONING METHODOLOGY

The goal of our algorithm partitioning and mapping anal­
ysis is to find out, for each granularity of tile architecture,
the amount of communication and computation that needs

Figure 6: A low-power idle mode used to limit the
current consumption of tiles when idle reduces the
cost of communications. Since finer grain tiles ex­
pose more communications, features that reduce the
power cost of communications favor finer grain tiles.
The result is that the GI shifts upwards.

to occur for completion of that algorithm. Calculating this
was a multi-step process.

The algorithms we chose to evaluate are those that can
be executed on the Synchroscalar tile architecture, namely
static media-based applications. Due to the static nature
of these algorithms, we adopted a graph-oriented approach
using the best-known graph partitioning algorithms to ob­
tain the best parallelization possible for each granularity.
For dynamic workloads, other partitioning methods may be
used in conjunction with the GI to find the optimal power
consumption of those workloads and architectures.

The first step is to express the algorithms as data flow
graphs (DFGs). Next, an algorithm is then partitioned
onto multiple tiles. To partition and map the DFGs, we
iteratively employ Chaco [26], which is a graph partition­
ing tool that is used in the scientific computing commu­
nity for high-performance multiprocessors. In particular,
Chaco uses recursive spectral bisection (which performs min­
imum cuts through eigenvalues of an adjacency matrix) with
a Kernighan-Lin heuristic to improve the partition resolu­
tion. The result is load balanced partitions with minimal
N-section bandwidth.

To find the execution time of the algorithms, we can first
use the Blackfin simulator to find the execution time of the
computational nodes in the graph. Then we use the FlexSim
cycle accurate network simulator [22] to simulate the com­
munications cycles required. This process is repeated for
each tile granularity and each algorithm, yielding the num­
ber of computational and communications cycles required
for each algorithm on each granularity of tile architecture.

Now that the algorithms partitioning methodology has
been detailed, we can proceed to compare the efficiency of
different tile granularities against the communications re­
quirements of the partitioned algorithms.

5.	 PARTITIONING RESULTS AND
GRANULARITY ANALYSIS

We now show the partitioning results of several algorithms
and compare these results against the GI. This will allow us

to see which algorithms execute most efficiently on a given
granularity of tile architecture.

Figure 7 shows the amount of inter-tile communication
overhead of the different algorithms on three different in­
terconnects - bus, statically routed mesh, and dynamically
routed mesh. We assume that the interconnect wire-widths
is 32b for each of the topologies.

We can see in Figure 7 that LDPC requires the most com­
munication, and both trellis-based algorithms, the FFT and
Viterbi ACS, have high degrees of communication. For an
FIR block filter, our partitioning was able to hide most of
the required communications. Likewise, MPEG4 encoding
and Software Radio do not expose large amounts of commu­
nications when partitions cross multiple tiles.

Now, lets compare the communications requirements of
these algorithms against the GI. The dotted line in Figure 7
is the GI for our tile scaling model for the Synchroscalar
architecture. Remember, the GI curve shows the maximum
amount communications while maintaining iso-power con­
sumption for tile architectures with different tile granular­
ities. Therefore, algorithms that have inter-tile communi­
cations requirements above the GI for a given tile granu­
larity will execute more efficiently a coarser-grain tile archi­
tecture. If the exposed communications curve is above the
GI at all granularities, then a single large tile the most ef­
ficient choice. Conversely, algorithms with communications
requirement below the GI will execute most efficiently at
the granularity that has the largest distance between the GI
curve and the exposed communications curve. It is in this
way that the GI exposes relative power consumptions for
different granularities of tiles for a given algorithm.

For instance, in Figure 7, we can see that on a static mesh
interconnect, the 64 point FFT (as marked by white trian­
gles) is above the dotted GI line at all tile granularities ex­
cept for a single large tile. This indicates that the amount of
communication exposed by partitioning the FFT is greater
than what is allowed by the GI to maintain iso-power ex­
ecution. Therefore, a single large tile is the most efficient
granularity for a 64 point FFT that requires 32 widths of to­
tal performance. Likewise, we can see that the Viterbi ACS
trellis (as marked by black squares), dips below the GI when
executed on a static mesh for two tiles with a computational
width of 16. Since the Viterbi ACS exposed communications
curve is above the GI at all other granularities, the Viterbi
ACS trellis will execute at lowest power on two tiles with a
computational width of 16.

To show that the relative location of the communications
curve compared with the GI is a good indicator of minimal
power consumption, we also show in Figure 8 the power
consumption of these algorithms on Synchroscalar-based tile
architecture. In Figure 8, for a static mesh, we can see that
FFT (again marked by white triangles) has a higher power
consumption for all partitionings, so a single large tile is
best. For Viterbi ACS, the power consumption is lowest
for the 2:16 case for the statically scheduled mesh, just as
indicated by the GI analysis.

5.1 Using the GI
Thus far, we have developed the GI to describe the best-

fit granularity of tiles for a given application. However, the
GI can also be used to direct architectural design.

Suppose an architect is interested in building a media pro­
cessor to run FFTs. Furthermore, the architect has flexibil­

Figure 7: The communication overheads of our algorithms on three interconnection networks. The left
chart shows results for a bus interconnect, the middle for a statically scheduled mesh, and the right for a
dynamically scheduled mesh.

Figure 8: The relative power consumptions of our algorithms on three interconnection networks. Note that
these are relative to the difference between the communications requirements of an algorithm and the GI.

ity to choose what size of tile to use as well as the width of granularity and inter-tile interconnect. These trade-offs are
the mesh-based interconnect, but is constrained to a total shown in Figure ??. For instance, we can see that 32 width-
of 32 computational widths. The GI can be used to guide 1 tiles using a 128b mesh has a lower GI number than eight
the architect to these decisions. width-4 tiles using a 64b mesh. The GI Number gives the

architect the ability to weigh the added (predominantly)
area cost of the larger interconnect with the power saved by

%
C

o
m

m
u

n
ic

at
io

n
s

O
ve

rh
ea

d

0.8

0.4

GI[1] - Mesh (Static)

Buswidth = 64b

Buswidth = 128b

Buswidth = 256b

using a larger mesh.
Now that we have seen how the GI, in conjunction with

algorithm communications overheads, can be used to find
the granularity of tile with the lowest power consumption,
we will show how the GI can be used to to improve the
Synchroscalar architecture.

6. APPLICATION OF THE GI TO IMPROVE
SYNCHROSCALAR

0
1:32	 2:16 4:8 8:4 16:2 32:1

TILES:WIDTH

Figure 9: The GI and the communication require­
ments for a 64 point FFT for different mesh band­
widths.

8

7
FFT64 - 64b Mesh

FFT64 - 128b Mesh

FFT64 - 256b Mesh

R
el

at
iv

e
P

o
w

er
 C

o
n

su
m

p
ti

o
n

6

Using the GI, we can revisit the design of the Synchroscalar
architecture. Synchroscalar was designed as a system based
on 2-wide Blackfin tiles. We will attempt to use the GI
and customize the tile granularity for efficient execution of
802.11a PHY layer baseband processing.

We will assume the same tile scaling model as presented
in Section 2. First we need to compute the GI for our
tile model. We will also assume that this version of Syn­
chroscalar uses a generalized, statically scheduled mesh as
an inter-tile interconnect. The GI for this model is shown
in Figure 11 as a dotted line.

Next, we need to find the communications overhead of
802.11a when it is partitioned across 2, 4, 8, 16 and 32 tiles.
This is shown in Figure 11 as a solid black line. 5

4

3

2

1

0
1:32 2:16 4:8 8:4 16:2 32:1

Tiles:Widths

Figure 10: Relative power for FFT plotted for dif-

Now, to find the most efficient granularity, all we need to
do is find the place where the communications exposed by
partitioning 802.11a is lowest relative to the GI. From Fig­
ure 11, we can clearly see that this occurs with two tiles with
a computation width of 16. Again, for validation, the power
consumption of 802.11a on differing granularities of Syn­
chroscalar has also been plotted in Figure 11, as marked by
triangles. Indeed, we can see that two 16-width tiles is the
lowest power consuming granularity, saving Synchroscalar
14% power over Synchroscalar’s already very low power con­
sumption.

Before moving on, in sections 3.1 and 3.2 we discussed
how architectural features can shift the GI up or down. We
can now see how this is useful information. A downward
shift in the GI would likely mean that for the Viterbi decoder
on a static mesh, two 16-width tiles would no longer be
the most efficient operating point. This is because if the
GI shifted down-wards (perhaps by implementing dynamic
voltage-frequency scaling on the tiles), the Viterbi decoder’s
communications requirements would likely be above the GI
curve. So, if the GI shifted down-wards, this indicates that a
single large tile would be the most efficient for executing the
Viterbi decoder. A similar result can be seen here in the case
of 802.11a. Conversely, if tile idle modes were implemented,
the GI would shift up-wards. This would perhaps allow some
more algorithms to execute more power efficiently on finer
grain tiles.

Now that we have found the tile granularity that most ef­
ficiently executes for 802.11a, lets investigate the impact of
this on the other applications that Synchroscalar supports.
In Figure 12, the power consumptions of four different ap­
plications are shown, both for the original width-2 tile Syn­
chroscalar array and the width-16 tile Synchroscalar array.

ferent mesh bandwidths. We can see that the band­
width of the inter-tile interconnect impacts the best
granularity of tile for low-power execution. For a
256b Mesh two 16-width tiles is most efficient, while
for a 64b mesh, a single 32-width tile is most effi­
cient.

Figure 9 shows the communication overheads for a 64
point FFT, mapped with the base-line GI(1). From this
figure, we can see that the FFT requires more communica­
tion than a 64b mesh can support at any granularity, except
for a single large tile. Therefore, for a tile architecture with
a 64b mesh, running on a single tile is the best option. How­
ever, as we increase the bandwidth of the mesh, the inter-tile
communication overhead is reduced. This has the effect of
making large tiles that have high amounts of local on-tile
interconnect relatively less powerful than smaller tiles. In­
deed, for a 256b mesh, we see that the FFTs communication
overhead curve has dipped below the GI for 2:16 and 4:8
points. This indicates the large 32-wide tile is no long the
most power efficient.

Furthermore, by utilizing the GI Numbers for the FFT
with our tile model, we can make trade-offs between tile

Figure 11: The dotted Line is the GI and the solid
Line is the communications overhead exposed when
partitioning the 802.11a signal chain on up to 32
tiles. The Power Consumption of 802.11a tracks the
relative distance between the GI and communica­
tions overhead.

The changes in power consumption are shown numerically
on top of each pair of bars. We see that 802.11a saves about
14% power over the orginal Synchroscalar array, but this
comes at a cost of a 65% increase in power consumption
for MPEG4. The architect can then easily find the best
trade-off of tile granularity and power consumption for all
the applications of interest by using the GI as a guide. This
makes the GI a useful hardware/software co-design tool.

Figure 12: Four different applications are plotted
for the original width-2 Synchroscalar array and the
width-16 Synchroscalar array. Added power con­
sumption percentages are shown above each set of
bars.

7. RELATED WORK
Our work attempts to build intuitive understanding of

a design space occupied many diverse projects. The MIT
SCALE project [27] is developing a tile-based power effi­
cient architecture based on their Vector-Thread paradigm.
In their prototype SCALE processor, they are able to de­
velop a simple micro-architecture that attains high perfor­
mance and low power execution by avoiding complex con­
trol structures and utilizing spatial locality. The EnyAC
group at Carnegie Mellon [28] is investigating globally asyn­
chronous, locally synchronous designs to allow for dynamic
voltage and frequency scaling for low power consumption.

On the processor-power efficiency front, Zyuban [29] has
developed an architectural based power-performance effi­
ciency metric for a single microprocessor which allows ef­
ficiency to be evaluated during the development of the ISA.
In a complementary study, Hartstein and Puzak [30] de­
velop an power efficiency metric and investigate the power
efficiency of deep pipelines on a processor. While these stud­
ies are concerned with the power efficiency of a single tile,
our study extends the study of power efficient processors to
multiple-processors on a single chip. In the paper, Custom
Fit Processor [31], a VLIW tile model is developed and
performance is weighed against area cost, but not against
power. A study similar to ours for energy efficient intercon­
nects [32] has been published by Heo and Asanovic.

Finally, it is because of the many different tile based ar­
chitectures that are being researched that this study was de­
veloped. The RAW project [2] [33] uses MIPS-based cores
as tiles and shows performance scalability through their ro­
bust, three-level inter tile communication structure. Also,
in a similar effort is the Smart Memories project citesmart­
memories. Smart Memories uses finer-grain tiles than the
RAW processor. The TRIPS architecture [3] also attacks
wire-scalability by utilizing multiple cores. Additionally,
TRIPS is a malleable architecture that can adapt to dif­
ferent types of workloads to gain performance, yet maintain
performance for general purpose workloads. One study that
looks at a heterogeneous tile structure was done at Tech­
nion [34] and allows the core with the best power efficiency
to execute.

7.1 Future Work
In this work, we assume a flat topology, where the inter-

tile interconnect bandwidth is evenly distributed across mul­
tiple ALUs. One interesting addition would be to incorpo­
rate hierarchical interconnect topologies. Additionally, ex­
tending the GI framework to include shared memory multi­
processors with hardware enforced coherence protocols would
be a valuable extension.

8. CONCLUSIONS
The Granularity Indicator (GI) provides a novel way to

encapsulate power scaling factors when trying to meet per­
formance targets with parallelism. The GI can be used to
discover which algorithms can be executed in a power effi­
cient manner on small or large tiles. Additionally, through
the use of the GI and knowledge of communication over­
heads from algorithms, tile architectures can be optimized
for granularity of targeted application mixes.

We have presented the GI and used it to show many dif­
ferent forms of analysis. We have explored how base fre­
quency and idle-modes affect the power-performance scal­

ing and how applications behave with different tile widths.
Finally, we used the GI to revisit tile granularity in Syn­
chroscalar. We found that the use of the Blackfin DSP as
our tile, was non-optimal in terms of power for our center­
piece application, the 802.11a receiver.

9. ACKNOWLEDGMENTS
We would like to thank the SMART Interconnects group

at USC for support with the FlexSim interconnect simula­
tor, the Orion group at Princeton University for support
with the Orion power-performance interconnect simulator
and the MIT Raw group for the software radio benchmark.

This work is supported by NSF ITR grants 0312837 and
0113418, and NSF CAREER and UC Davis Chancellor’s
fellowship awards to Fred Chong.

Diana Franklin’s faculty position is funded by a Forbes
Endowment.

10. REFERENCES
[1] J. Oliver, R. Rao, P. Sultatna, J. Crandall,

E. Czernikowski, L. W. Jones, D. Franklin, V. Akella,
and F. T. Chong, “Synchroscalar: A multiple clock
domain, power-aware, tile-based embedded processor,”
in 31th Annual International Symposium on Computer
Architecture (31th ISCA-2004) Computer Architecture
News, ACM SIGARCH / IEEE, June 2004.

[2] M. B. Taylor et al., “The Raw microprocessor: A

computational fabric for software circuits and

general-purpose programs,” IEEE Micro, vol. 22,

pp. 25–35, Mar./Apr. 2002.

[3] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim,
J. Huh, N. Ranganathan, D. Burger, S. W. Keckler,
R. G. McDonald, and C. R. Moore, “Trips: A
polymorphous architecture for exploiting ilp, tlp, and
dlp,” ACM Trans. Archit. Code Optim., vol. 1, no. 1,
pp. 62–93, 2004.

[4] K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally,
and M. Horowitz, “Smart memories: A modular
reconfigurable architecture,” in 27th Annual
International Symposium on Computer Architecture
(27th ISCA-2000) Computer Architecture News,
(Vancouver, British Columbia, Canada), ACM
SIGARCH / IEEE, June 2000. Published as 27th
Annual International Symposium on Computer
Architecture (27th ISCA-2000) Computer
Architecture News, volume 28.

[5] M. B. Taylor, W. Lee, J. Miller, D. Wentzlaff, I. Bratt,
B. Greenwald, H. Hoffmann, P. Johnson, J. Kim,
J. Psota, A. Saraf, N. Shnidman, V. Strumpen,
M. Frank, S. P. Amarasinghe, and A. Agarwal,
“Evaluation of the raw microprocessor: An
exposed-wire-delay architecture for ilp and streams.,”
in ISCA, pp. 2–13, 2004.

[6] R. Kolagotla, J. Fridman, B. Aldrich, M. Hoffman,
W. Anderson, M. Allen, D. Witt, R. Dunton, and
L. Booth, “High Performance Dual-MAC DSP
Architecture,” IEEE Signal Processing Magazine, July
2002.

[7] S. Gupta, S. Keckler, and D. Burger, “Technology
independent area and delay estimates for
microprocessor building blocks,” in Technical Report

TR2000-05, Department of Computer Science,
University of Texas, 2000.

[8] A. Wolfe, J. Fritts, S. Dutta, and E. S. T. Fernandes,
“Datapath design for a vliw video signal processor.,”
in HPCA, pp. 24–, 1997.

[9] S. Rixner, W. Dally, B. Khailany, P. Mattson,
U. Kapasi, and J. Owens, “Register Organization for
Media Processing,” in International Symposium on
High Performance Computer Architecture (HPCA),
(Toulouse, France), January 2000.

[10] S. Thompson, M. Alavi, M. Hussein, P. Jacob,
C. Kenyon, P. Moon, M. Prince, S. Sivakumar,
S. Tyagi, and M. Bohr, “130nm logic technology
featuring 60nm transistors, low-k dielectrics, and cu
interconnects,” Intel Technology Journal, vol. 6,
pp. 5–13, May 2002.

[11] “ADSP-2191 Processor Data Sheet.” 2002.
[12] “TMS320C28x Processor Manual.” July 2001.
[13] M. Y. T. Kumura, M. Ikekawa and I. Kuroda, “VLIW

DSP for Mobile Applications,” IEEE Signal
Processing Magazine, July 2002.

[14] H. Mizuno, N. Irie, K. Uchiyama, Y. Yanagisawa,
S. Yoshioka, I. Kawasaki, and T. Hattori,
“SH-Mobile3: Application Processor for 3G Cellular
Phones on a Low-Power SoC Design Platform,” Hot
Chips 16, August 2004.

[15] E. Norden, P. Leteinturier, J. Barrenscheen,
K. Scheibert, and F. Hellwig, “A Fast Powertrain
Microcontroller,” August 2004.

[16] “TS-101 Data Sheet.” August 2002.
[17] “Transmeta Crusoe TM5700/5900 Processors.” 2003.
[18] “Transmeta Crusoe TM8300/8600 Processors.” 2004.
[19] “TMS320C62x Processor Manual.” July 2001.
[20] S. A. et. al., “A 600MHz VLIW DSP,” February 2002.
[21] “TMS320DM642 Data Sheet.” 2005.
[22] U. SMART Interconnect Group, “Flexsim 1.2 flit level

simulator.” http://ceng.usc.edu/smart/tools.html.
[23] X. Chen and L.-S. Peh, “Leakage power modeling and

optimization in interconnection networks,” in ISLPED
’03: Proceedings of the 2003 international symposium
on Low power electronics and design, pp. 90–95, ACM
Press, 2003.

[24] R. Ho, K. Mai, and M. Horowitz, “Efficient on-chip
global interconnects,” in IEEE Symposium on VLSI
Circuits, June 2003. Stanford Univeristy.

[25] J. S. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff,
“Energy characterization of a tiled architecture
processor with on-chip networks,” in ISLPED ’03:
Proceedings of the 2003 international symposium on
Low power electronics and design, pp. 424–427, ACM
Press, 2003.

[26] B. Hendrickson and R. Leland, “The chaco user’s
guide, version 2.0, technical report sand94-2692,”
1994. http://www.ti.com/
corp/docs/press/backgrounder/omap.shtml.

[27] R. Krashinsky, C. Batten, M. Hampton, S. Gerding,
B. Pharris, J. Casper, and K. Asanovic, “The
vector-thread architecture,” SIGARCH Comput.
Archit. News, vol. 32, no. 2, p. 52, 2004.

[28] D. Marculescu, “Application adaptive energy efficient
clustered architectures,” in ISLPED ’04: Proceedings

of the 2004 international symposium on Low power
electronics and design, pp. 344–349, ACM Press, 2004.

[29] V. Zyuban, “Unified architecture level
energy-efficiency metric,” in GLSVLSI ’02:
Proceedings of the 12th ACM Great Lakes symposium
on VLSI, pp. 24–29, ACM Press, 2002.

[30] A. Hartstein and T. R. Puzak, “The optimum pipeline
depth considering both power and performance,”
ACM Trans. Archit. Code Optim., vol. 1, no. 4,
pp. 369–388, 2004.

[31] J. A. Fisher, P. Faraboschi, and G. Desoli,
“Custom-fit processors: letting applications define
architectures,” in MICRO 29: Proceedings of the 29th
annual ACM/IEEE international symposium on
Microarchitecture, pp. 324–335, IEEE Computer
Society, 1996.

[32] S. Heo and K. Asanovic;, “Replacing global wires with
an on-chip network: a power analysis,” in ISLPED
’05: Proceedings of the 2005 international symposium
on Low power electronics and design, (New York, NY,
USA), pp. 369–374, ACM Press, 2005.

[33] M. Taylor, J. Kim, J. Miller, D. Wentzlaff,
F. Ghodrat, B. Greenwald, H. Ho, m Lee, P. Johnson,
W. Lee, A. Ma, A. Saraf, M. Seneski, N. Shnidman,
V. Frank, S. Amarasinghe, and A. Agarwal, “The raw
microprocessor: A computational fabric for software
circuits and general purpose programs,” 2002.

[34] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero,
and E. Ayguade, “Performance, power efficiency and
scalability fo asymmetric cluster chip
multiprocessors,” in CCIT Technical Report 514,
Technion, 2005.

