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Abstract 
Validation of Linearized Flight Models using 

Automated System-Identification 

Keith Eric Rothman 

Optimization based flight control design tools depend on automatic linearization tools, 
such as Simulink®’s LINMOD, to extract linear models.  In order to ensure the 
usefulness and correctness of the generated linear model, this linearization must be 
accurate.  So a method of independently verifying the linearized model is needed.  This 
thesis covers the automation of a system identification tool, CIFER®, for use as a 
verification tool integrated with CONDUIT®, an optimization based design tool.  Several 
test cases are built up to demonstrate the accuracy of the verification tool with respect to 
analytical results and matches with LINMOD.  Several common nonlinearities are tested, 
comparing the results from CIFER and LINMOD, as well as analytical results where 
possible.  The CIFER results show excellent agreement with analytical results. LINMOD 
treated most nonlinearity as a unit gain, but some nonlinearities linearized to a zero, 
causing the linearized model to omit that path.  Although these effects are documented 
within Simulink, their presence may be missed by a user.  The verification tool is 
successful in identifying these problems when present.  A section is dedicated to the 
diagnosis of linearization errors, suggesting solutions where possible. 
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I. Introduction 
Modern flight control simulation diagrams are complicated to the point where 

automated linearization tools are important for efficient analysis.  These tools are being 

integrated into smarter analysis tools and optimizers.  However, the validation of such 

linearization tools is lacking. 

This thesis utilizes a frequency domain system identification method, CIFER® 

(Ref 2.), to provide a truth model for the validation of linearization tools.  The need and 

development of a more robust and flexible command line interface to CIFER for 

automated system identification is discussed.  One integration method with Simulink® 

block diagrams is explained and implemented in a validation tool. 

The validation tool is for an integrated control design suite called CONDUIT® 

(Ref 11.).  CONDUIT uses the linearization method LINMOD, a linearization method for 

Simulink diagrams.  In this thesis several validations are performed against examples of 

increasing complexity to demonstrate the validation tool’s ability to provide a truth model 

and some potential problems with the LINMOD linearization. 
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II. Background Information 

A. Optimization based Flight Control Design 
With the increased power of flight computer systems, some modern flight control 

systems can now be complicated enough that manual gain selection is impractical.  

Optimization based control design is a method that uses computers to choose gain sets 

given a set of objectives and constraints.  This thesis specifically focuses on CONDUIT, 

a program that uses this approach to control design (Ref 11.). 

CONDUIT is a control design program that uses Simulink diagrams to express the 

system plant and control system.  CONDUIT drives the optimization using results from 

the Simulink diagram. 

CONDUIT utilizes time-domain and frequency-domain metrics to drive the 

optimization.  For time-domain metrics, CONDUIT uses Simulink to perform a 

simulation given input time signals and it returns the output time responses.  Simulink’s 

simulation accurately accounts for all blocks present in the diagram, such as hysteresis or 

S-Functions.  This can be used for time domain metrics based on step responses and 

impulses or looking for time-domain performance specifications, such as rise time. 

For frequency-domain metrics, CONDUIT uses the functionality provided by the 

MATLAB® Control System Toolbox™ to extract a linearized state-space model from a 

Simulink diagram.  In the linearization, some blocks have exact analytical forms, such as 

transfer functions or gains.  However some blocks will not have exact analytical forms, 

so the linearization process will either perturb the block or it will use a representation 

chosen by the user.  Given this state-space system, frequency responses based on 
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particular input-output pairs can be generated.  CONDUIT then calculates frequency 

domain performance metrics such as gain and phase margin, crossover or bandwidth. 

For piloted aircraft, CONDUIT uses handling quality specifications based on the 

appropriate literature (ADS 33 (Ref 13.), 9490 (Ref 12.), etc.) as constraints and 

objectives.  For each of these specifications, a numerical score is assigned based on its 

ability to meet the specification.  The optimizer uses a gradient-based algorithm to search 

for a new set of gains that satisfies the constraints and improves the worst score.  

CONDUIT repeats the process until it satisfies all constraints and has reached an 

optimized solution.  The gains that CONDUIT generates are then based entirely on the 

quality of the time responses and linear models generated from the Simulink diagram.  If 

the time responses or linear models from the diagram do not adequately match the aircraft 

response as measured in flight, then the gains will not generate the expected performance, 

requiring further refinement, or worse CONDUIT is not optimizing on a representative 

model of the aircraft. 

B. Validation 
In order to prevent mismatch between the aircraft and the model as represented in 

the Simulink diagram, the diagram must be validated.  There are two types of validation 

that need to be performed.  The first is validation between the aircraft and the Simulink 

diagram.  The second is a validation between the Simulink diagram and the linearized 

state-space model extracted from the diagram. 

The validation between the aircraft and the diagram requires flight testing to 

gather the data for analysis.  For this thesis, a frequency domain-based validation 

procedure will be discussed that compares the frequency response attained from flight 
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test data with those attained from the simulation.  The process of generating frequency 

responses from the time history data will be discussed later.  This validation ensures the 

simulation is representative of the aircraft.  Errors shown in this validation would indicate 

a modeling deficiency. 

The second class of validation is between the Simulink simulation of the diagram 

and the generated linearized state-space model extracted from the diagram.  This ensures 

that the dynamic response of the linearized model is an accurate characterization of the 

complete block diagram.  This validation is between frequency responses data from the 

simulation and the linearized state-space model.  Any differences between the frequency 

responses from the time history data and the linearized model are discrepancies in the 

linearization processes.  The validation between the Simulink diagram and the linearized 

model of the simulation will be the focus of this thesis. 

In both classes of validation there are three different frequency response pairs that 

should be checked.  Each response will check characteristics of the model, so all three 

need to be done.  The frequency response only needs to match in the frequency range of 

interest, which is near crossover.  The rule of thumb for frequency range of interest is one 

third to three times the crossover frequency (Ref 10.). 

 
Figure 1: Example system 

The first set of response pairs to check is the bare airframe responses.  This is 

from either before or after the actuators to sensor output.  In the example system shown 

ŷcomδ δ
pilotδ
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above, the bare airframe is either 
δ
ŷ

 or 
com

ŷ

δ
 depending on where the actuator sensing is 

located.  These responses characterize the core behaviors of the aircraft in the absence of 

augmentation.  The accuracy of these responses will determine the accuracy of the 

modeling of the bare airframe.  If improvements in agreement between the aircraft and 

the Simulink diagram are needed, system identification techniques can be used to directly 

generate a model to match flight test data.  When performing system identification to 

obtain a model, the match quality between the simulation and the aircraft is only a 

function of the identification method and flight data quality.  When using physics-based 

modeling to generate the simulation plant, errors that show up in the validation will need 

to be tracked down in the physics-based modeling code. 

The second set of frequency responses to check is the closed loop response pairs.  

This is from pilot stick to sensor output.  In the system shown in the figure above, the 

closed loop pair is
pilot

ŷ

δ
.  These pairs will be used to determine bandwidth, and will be 

ultimately what the pilot experiences.  Bandwidth is typically defined as the frequency 

where the magnitude drops 3 dB below the steady state value.  The figure below shows a 

second order system and its bandwidth.  Bandwidth represents the maximum frequency 

that the system can pass through and can be considered the speed of response of the 

system.  However, just matching the closed loop response pairs is insufficient to validate 

the simulation because the loop closures will wash out the key features of the feedback 

system.  For that reason, bare airframe and broken loop responses must also be checked. 
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Figure 2: Bandwidth example 

 

 
Figure 3: Broken loop setup 

The last set of response pairs to check is the broken loop responses.  This is from 

error to feedback 








e

f
.  This will capture all the important characteristics that determine 

closed loop behavior.  It will include the characteristics of the bare airframe as well as 

time-delay or dynamics in the feedback system, such as computational delays.  Errors in 

the broken loop responses can be from a large number of sources, including the bare 

airframe response.   For this reason, conduct bare airframe validation before the broken 

loop will help eliminate math modeling errors.  Ensuring the broken loop responses 
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match will provide good confidence that the CONDUIT analysis results are good 

representations of the aircraft. 

The broken loop is used to generate gain margin, phase margin, and crossover 

frequency.  Crossover frequency is the point where the system crosses 0 dB.  Phase 

margin is the phase above -180 degrees at the crossover frequency.  Gain margin is the 

magnitude in dB below 0 at the -180 degree phase crossing.  These points are illustrated 

below.  Crossover frequency is used as a prediction of closed loop bandwidth, and 

therefore system speed.  Gain and phase margins are measures of stability and robustness 

against unknown plant changes.  Have too little margin means unknown variation may 

cause the closed loop system to go unstable.  Phase margin is also a measure of closed 

loop damping ratio.  Having too little phase margin will cause many overshoots.  Having 

too much phase margin may cause a first order response, which is slower than a well 

damped second order response.  Pilots tend to expect second order responses in systems. 
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Figure 4: Broken loop metrics 
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C. System Identification 

1. CIFER 

The generation of frequency responses for validation from time history data can 

be achieved using a frequency domain system identification method.  This thesis uses 

CIFER (Ref 2.) to perform frequency domain system identification.   CIFER provides a 

set of tools that will filter time history data, perform a discrete Fourier transform on the 

time history data, and generate a frequency response.  CIFER utilizes a multi-window 

averaging technique to get good resolution over the frequency range of interest and 

minimize noise. It has been used on many flight programs with success, proving it to be a 

reliable system identification tool (e.g. UH-60M (Ref 8.), XV-15 (Ref 9.), RMAX UAV 

(Ref 2.)).  It also provides the ability for both parametric SISO and MIMO modeling, 

depending on the desired goal.  

2. Describing functions and CIFER 

Describing functions (DF) are methods for linearizing nonlinearities.  The most 

common describing function class and the one that is going to be used through-out this 

thesis is one that assumes a sinusoidal input.  The output is not necessarily a sinusoid; 

however we can approximate the output utilizing a Fourier series (Ref 3.): 
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This form can be amplitude and frequency dependent.  There are methods utilizing the 

describing functions for nonlinearities that can predict limit cycles that could arise due to 

the presence of nonlinear elements in feedback system. 

CIFER utilizes a particular Fast Fourier transforms (FFT) to generate frequency 

responses.  Effectively CIFER is computing a numerical describing function of the input 

to output response.  This means CIFER can generate a frequency response from records 

with the presence of nonlinear elements, such as hysteresis.  Active nonlinearities will be 

shown during validations and their effect on the system. 

3. CIFER Process 

Generation of frequency responses based on time history data is performed in 

three programs within CIFER.  The three programs are FRESPID, MISOSA and 

COMPOSITE.  FRESPID takes the time history data and generates frequency responses 

for each input-output pair utilizing a specialized DFT.  MISOSA performs multi-input 

conditioning, and COMPOSITE performs multi-window averaging.  Each of these 
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programs has a batch program that performs the actual calculations after the input data 

has been provided a case. 

FRESPID is the most input intensive of these three programs.  FRESPID takes a 

time history file and associates each channel of data to an input or output.  The data in the 

channels can be filtered and decimated or interpolated.  FRESPID also must remove bias 

and slope from the time history channels to meet the mathematical requirements of the 

transform used.  FRESPID utilizes a specialized fast Fourier transform (FFT) called the 

chirp-Z transform (CZT) or zoom transform.  The CZT has more flexibility than the FFT 

and this flexibility is controlled through window settings.  The window settings are the 

number of input points, the number of output points, minimum and maximum frequency, 

and decimation ratio.  Control over the minimum and maximum frequency allows a user 

to generate points only in the frequency range of interest and thereby increase frequency 

resolution in that range.  FRESPID supports generation of up to five windows.  This 

means that for each input-output pair, up to five frequency responses can be generated. 

The meaning and selection of the windows will be covered in detail later. 

The responses generated from the CZT are not immediately frequency responses; 

the CZT generates are the Fourier coefficients of the input ( )( )fX  and the output ( )( )fY .  

These are complex valued arrays for each frequency point the CZT generated.  To get to 

a frequency response, first three spectral functions must be generating from the Fourier 

coefficients, rough input autospectrum, the rough output autospectrum and the rough 

cross spectrum (Ref 2.). 
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These spectral functions will have errors, some of a deterministic nature and some of a 

non-deterministic (random) nature.  If the number of input time history points to the CZT 

is less than the size of the time history record, multiple transforms can be taken into the 

data.  Each CZT can then be averaged together.  The random errors ideally average to 

zero, resulting in smooth estimates of the spectral functions (Ref 2.). 
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From the smooth estimates, two frequency response estimates can be made, 1Ĥ  

and 2Ĥ .  The equations for these estimates are shown below (Ref 2.).  These two 

estimates will only be equal in the absence of noise processes and nonlinear elements. 
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From the two frequencies response estimates the coherence function can be 

defined.  The equation is shown below.  The coherence is a representation of the linearity 

of the response.  When the coherence is one the output is a linear function of the input.  
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The coherence function is essential in the CIFER system identification process because of 

its ability to indicate the quality of the response.  In COMPOSITE and parametric 

analyses, coherence is used to weight responses. 

 ( )
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When examining a MIMO system, the resulting frequency responses generated 

from FRESPID will detect output response due to inputs in all channels, not just due to 

the primary input.  MISOSA utilizes the cross-correlation transfer functions between 

inputs to remove output frequency content due to off-axis inputs.  The result is ideally a 

transfer function that corresponds to the SISO input-output relationship, in the absence of 

other inputs (Ref 2.). 

COMPOSITE takes up to five windowed frequency responses and generates a 

single response by doing a weighted average of the frequency response points based on 

the random error and coherence function (Ref 2.).  This new response has the best 

characteristics of each of the windows.  The resulting response is now ready for further 

analysis. 

At this point in the process, the user is free to conduct several analyses in CIFER.  

There are several non-parametric analyses available, such as computing stability margins, 

crossover frequency, or bandwidth.  The user can plot or export the frequency responses 

as well.  If the user wants a parametric model, two options are available.  If only a SISO 

transfer function is required, NAVFIT can be used to fit a transfer function to the 

frequency response.  If working with a MIMO system, DERIVID and VERIFY provide 

the ability to construct and validate a state-space representation. 
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III. CIFER command line interface 

A. Legacy command line interface 
Before the work of this thesis, sweeps of simulation diagrams were done 

manually within AFDD.  The user would add a sweep block in Simulink to generate the 

sweep, add data recorders, etc.  The user would then need to manually enter data into the 

CIFER program.  The primary goal of this thesis is to streamline and automate this 

process, and demonstrate results based on several case studies.  In order to automate this 

process, the CIFER system identification process must be scriptable.  However, the 

CIFER program was originally developed with only an interactive mode of operation. 

The nature of processing flight test data is slow and requires user knowledge 

about the parameters that drive the identification.  This means ease of use was of primary 

importance when CIFER was originally designed.  For this reason, CIFER utilizes a GUI 

to input data for processing.  Automation was not done through the GUI, since it tends to 

be fragile, requiring updates every time the GUI changes. 

Work to script the CIFER tools was started in an earlier Cal Poly San Luis Obispo 

Master Thesis (Ref 6.) wherein the author proposed and demonstrated porting CIFER 

from a text-based environment into a MATLAB based GUI environment with options for 

scripting provided by command line functions (Ref 6.).  Rupnik developed MATLAB 

interfaces to the underlying CIFER methods, providing the first command line interface.  

This command line interface provided access to some of the functionality in CIFER 

through functions called with name-value pairs.  In particular he provided interfaces into 

FRESPID, MISOSA and COMPOSITE, the three main utilities used in transforming time 

history data into frequency responses. 
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However, to automate the system identification process, the command line 

interface used needed to be robust, easy to use, internally consistent, well encapsulated, 

and extensible.  The command line interface created by Rupnik does not meet these 

requirements.  As a result a new command line interface was developed based on 

MATLAB classes. 

B. Object-based command line interface 

1. Goals 

The primary goal of the new command line interface is consistency.  At no point 

should the user be utilizing a data structure that is not internally consistent.  This means 

at all times users are able to save the case and open it in the GUI and make changes. 

This goal also means consistency with MATLAB error handling and calling 

conventions.  The use of the exception handling allows stack traces and “stop on error” 

features to be used.  The calling convention is now more like other toolboxes such as the 

Control System Toolbox.  This allows better interfaces to loading, saving, batch and 

plotting.  The functionality is exposed through the data structure fields similar to handle 

graphics.  Lastly the new command line interface has more descriptive names for fields to 

reduce the need for excessive lookup from the documentation. 

The new command line interface consists of 17 classes, each with member 

functions providing addition features as needed.  The total source lines of code are 12415, 

across 422 files.  The following sections will document some of the features and changes 

that went into the new command line interface. 
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2. FRESPID Classes 

The legacy command line interface contained all the FRESPID case information 

in one structure, resulting in 44 fields at the top level, covering control, output and time 

history definitions, and windowing parameters, as well as other assorted options.  Under 

the new object-based design, FRESPID now consists of three classes: frespid_obj, thfile 

and windows.  The frespid_obj class contains thfile and windows objects.  The 

frespid_obj deals with loading and saving to the database, assigning control and output 

channels, and executing FRESPID jobs.  Time history and windowing parameters 

became their own individual classes, and the control and output definitions were folded 

into a structure.  The end result was only 22 fields at the top level. Below are printouts 

from MATLAB of the old and new FRESPID structures.  Notice that the new interface is 

much more concise. 
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fre = frespid('XVLATSWP',1) 
 
fre =  
 
        casename: 'XVLATSWP' 
        comments: 'LATERAL FR SWP FOR XV15 HOVER' 
        controls: {10x1 cell} 
         outputs: {20x1 cell} 
         caseout: 'XVLATSWP' 
        crosscor: 'Y' 
         savfile: 'N' 
        froutdir: 'C:\CIFER_Pro\jobs\tfdata' 
           savdb: 'Y' 
            plot: 'N' 
         evntnum: [883 884 0 0 0 0 0 0 0 0] 
        flghtnum: [150 150 0 0 0 0 0 0 0 0] 
         strttim: [0 0 0 0 0 0 0 0 0 0] 
         stoptim: [0 0 0 0 0 0 0 0 0 0] 
          source: 5 
            thdt: 0.0040 
        biasflag: 'Y' 
          thfile: {10x1 cell} 
         conchnl: {10x5 cell} 
         conunit: {10x1 cell} 
        conscfac: [10x5 double] 
         outchnl: {20x5 cell} 
         outunit: {20x1 cell} 
        outscfac: [20x5 double] 
           frall: 'N' 
          frcalc: {20x10 cell} 
         freqcut: 5.0266 
         dtfinal: 0.0400 
    conditioning: [2x10 double] 
        condunit: {'Hz'  ''  ''  ''  ''  ''  ''  ''  ''  ''} 
        savconth: 'N' 
           winon: {'*'  '*'  '*'  '*'  '*'} 
           winid: {'45 sec'  '35 sec'  '30 sec'  '20 sec'  '15 sec'} 
          winlen: [45 35 30 20 15] 
         wininpt: [1125 875 750 500 375] 
        winoutpt: [923 149 274 524 137] 
          windec: [1 1 1 1 1] 
          minfft: [0.1396 0.1795 0.2094 0.3142 0.4189] 
          maxfft: [12 12 12 12 12] 
         plotopt: [12x1 double] 
         plotdev: 'P' 
            grid: 'Y' 
         lrgplot: 'Y' 
         plotdec: 'Y' 
              ec: [1x1 struct] 
 

Figure 5: Old FRESPID CLI 
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>> fre = frespid_obj('XVLATSWP') 
  
fre = 
 
                       name: 'XVLATSWP' 
                   comments: 'LATERAL FR SWP FOR XV15 HOVER' 
                    caseout: 'XVLATSWP' 
                     db_out: 1 
                   crosscor: 1 
                fr_file_out: 0 
             fr_file_format: 'CIFER' 
                fr_file_dir: 'C:\CIFER_Pro\jobs\tfdata' 
    th_file_out_unformatted: 0 
          th_file_out_ascii: 0 
                   controls: {'AIL'  'RUD'} 
                    outputs: {'P'  'R'  'AY'  'VDOT'  'PHI'} 
                    windows: [1x5 windows] 
                    thfiles: [1x2 thfile] 
                     frcalc: [5x2 logical] 
                  gen_plots: 0 
                      plots: [0 0 1 0 0 0 0 0 0 0 0 0] 
                 heavy_grid: 1 
                 large_plot: 1 
              decimate_data: 1 
                plot_format: 'PostScript' 
                    frnames: {5x2x5 cell} 
 

Figure 6: New FRESPID CLI 

By breaking the time history file into its own class, all time history error checking 

was removed from frespid_obj.  The result is that thfile as a stand-alone class can be used 

to read, write, and plot time history files in a simple manner.  This also means by the time 

the user is done setting up the thfile object, it has already checked the existence of the 

time history file before it is assigned within the frespid_obj. 

In the example below, a CIFER Text time history file has been loaded using the 

thfile class.  The time history step size (“thdt”) and “channels” fields are dynamic 

fields generated by examining the time history file.  These fields are internally fairly 

cumbersome function calls, but with the new class system they are just another field in 

the structure. 
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>> thfil = thfile; 
>> thfil.source = 5; 
>> thfil.filename = 'Flt150_Event883.dat'; 
>> thfil.event = 883; 
>> thfil.flight = 150; 
>> thfil 
 
thfil = 
  
           source: 5 
            event: 883 
           flight: 150 
       start_time: 0 
        stop_time: 0 
         filename: 'Flt150_Event883.dat' 
             thdt: 0.0040 
         channels: {'A300'  'D009'  'D022'  'D024'  'D284'  'D645'  
'V012'  'V014'  'VDOT'} 
     desired_rate: 0 
    filter_cutoff: 0 
          finaldt: 0.0040 
 

FRESPID supports concatenating multiple time history files together, so the thfile 

object uses standard MATLAB concatenation syntax to represent this behavior.  

However, all the records must come from the same source and must undergo the same 

conditioning.  For this reason, the thfile object enforces these restrictions when users 

create an array of thfile objects.  If the user plots the concatenated object, the plot is of 

the concatenated record. 
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plot(thfil,'A300'); 
 

  Chirp FFT analysis: DUMMY      ID:

  INPUT : A300=A300
  EVENTS/FLIGHTS:    883/   150    884/   150

  DT =   0.004000
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Figure 7: Time history plotting 

Choosing windowing parameters has several constraints based on the time history 

step size.  Because of the complicated nature of this process, windowing parameters were 

split into their own class that deals solely with window configuration.  Depending on 

which field the user changes, the class behavior will also change dynamically.  For 

example, changing the “length” or “input_points” fields will result in a 

recomputation of the window parameters.  If the user changes the other fields it will only 

check that the new value is valid. 

The code below shows how the legacy and new command line interfaces would 

change the window length and submit a batch job.  Notice how the new command line 

interface splits the tasks into several smaller lines.  Each of these lines has its own error 

checking.  In the legacy command line interface, the second argument being a “3” 

indicates the batch job will be submitted after modifying the data structure.  Notice the 

separate batch job call in the new command line interface, clarifying and separating the 

different actions.  The legacy command line interface would also not return user control 

until the batch job was done.  The new command line interface does not require waiting 



 20

for batch job completion.  The “wait” call replicates the waiting that happens in the 

legacy command line interface, but it is not required. 

 
 
frespid(fre,3,... 
    'winlen',[25,20,15,10,5],... 
    'maxfft',[30,30,30,30,30],... 
    'wininpt',[0,0,0,0,0],... 
    'winoutpt',[0,0,0,0,0],... 
    'windec',[0,0,0,0,0],... 
    'minfft',[0,0,0,0,0]); 
 

 
 
win = fre.windows; 
[win.length] = ... 
     deal(25,20,15,10,5); 
[win.max_freq] = deal(30); 
fre.windows = win; 
job = batch(fre); 
wait(job); 
 

 
Because FRESPID, MISOSA, and COMPOSITE cases are executed in a batch 

manner, the batch_job class was created to handle monitoring submitted jobs.  It provides 

a way for the user to check if a job is done, wait until a job is done, and get locations of 

log files and plots. 

With these components all combined, frespid_obj provides a complete interface 

into FRESPID, with better error handling, syntax, and consistency.  Below is an example 

showing how a FRESPID case is defined and run between the legacy and the new 

command line interfaces.  The new command line interface does take more lines than the 

old interface; however the additional lines add clarity to the actions taken.  They will be 

explained in more detail later. 

% Assign a blank frespid structure 
f_in = frespid; 
thename = 'XVLATSWP'; 
  
% Fill in all the necessary 
information to make the case 
f_in.casename = thename; 
f_in.caseout  = thename; 
f_in.crosscor = 'Y'; 
f_in.plot     = 'N'; 
 
% Time history selection 
parameters: 
f_in.source         = 5; 
f_in.evntnum(1:2)  = [883,884]; 
f_in.flghtnum(1:2) = [150,150]; 

% Assign a blank frespid structure 
fre = frespid_obj; 
 
 
 
 
fre.name = 'XVLATSWP'; 
% In the new command line interface, 
the caseout field is automatically 
% set to the case name, as it is in 
% the gui 
 
% Set which time history file to use 
fre.thfiles.source = 5; 
fre.thfiles(1).filename = ...  
   'Flt150_Event883.dat'; 
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f_in.thfile(1:2) =  
  {'Flt150_Event883.dat', ... 
   'Flt150_Event884.dat'} 
 
 
 
 
 
% channel definition parameters: 
f_in.controls(1:2) = {'AIL','RUD'}; 
f_in.outputs(1:4)  = ... 
    {'P','R','AY','VDOT' 'PHI'}; 
 
f_in.conunit(1:2)  = {'deg','deg'}; 
f_in.conchnl(1:2,1) = ... 
    {'D645','D284'}; 
f_in.outunit(1:4)  =   
    {'rad/s', 'rad/s', ... 
     'ft/sec2', 'ft/sec2'}; 
f_in.outchnl(1:4,1) = ... 
    {'V012','V014','A300', ... 
     'VDOT', 'D009'}; 
f_in.outscfac(1:4,1) = ...  
    [0.0175,0.0175,32.174, ... 
     0.0175,0.0175]; 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
% Frequency response selection 
parameters 
f_in.frcalc(1:4,1:2) = {'*'}; 
 
% Conditioning parameters 
f_in.conditioning(1,1:2) = [3,2]; 
f_in.conditioning(2,1:2) = [4,25]; 
 
% Window Parameters 
f_in.winid                    = { 
    '45 sec' 

fre.thfiles(1).event = 883; 
fre.thfiles(1).flight = 150; 
  
fre.thfiles(2).filename = ... 
   'Flt150_Event884.dat'; 
fre.thfiles(2).event = 884; 
fre.thfiles(2).flight = 150; 
 
% Set the control and output names 
fre.controls = {'AIL' 'RUD'}; 
fre.outputs = {'P' 'R' 'AY' ... 
    'VDOT' 'PHI'}; 
  
% Associate control names with time 
history channels 
fre.controls('AIL').units = 'deg'; 
fre.controls('AIL').channel = ... 
    'D645'; 
  
fre.controls('RUD').units = 'deg'; 
fre.controls('RUD').channel = ... 
    'D284'; 
  
fre.outputs('P').units = 'rad/s'; 
fre.outputs('P').channel = 'V012'; 
fre.outputs('P').scale = 0.0175; 
  
  
fre.outputs('R').units = 'rad/s'; 
fre.outputs('R').channel = 'V014'; 
fre.outputs('R').scale = 0.0175; 
  
fre.outputs('AY').units = 'ft/sec2'; 
fre.outputs('AY').channel = 'A300'; 
fre.outputs('AY').scale = 32.174; 
  
% The channel defaults to the input 
name if 
% it exists in the time history 
fre.outputs('VDOT').units = ... 
    'ft/sec2'; 
  
fre.outputs('PHI').units = 'RAD/S'; 
fre.outputs('PHI').channel = 'D009'; 
fre.outputs('PHI').scale = 0.0175; 
 
% Logicals are used instead of cell 
% array of strings for flags  
fre.frcalc(:) = true; 
 
 
fre.thfiles.filter_cutoff = 4; 
fre.thfiles.desired_rate = 25; 
  
 
fre.windows(1).comments = '45 sec'; 
fre.windows(1).length = 45; 
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    '35 sec' 
    '30 sec' 
    '20 sec' 
    '15 sec'}; 
f_in.winlen = [45,35,30,20,15]; 
 
 
 
 
f_in.winon(1:5) = {'*'}; 
f_in.maxfft(:) = 12; 
 
 
% Save the structure into the 
database 
frespid(f_in,2); 

fre.windows(2).comments = '35 sec'; 
fre.windows(2).length = 35; 
fre.windows(3).comments = '30 sec'; 
fre.windows(3).length = 30; 
fre.windows(4).comments = '20 sec'; 
fre.windows(4).length = 20; 
fre.windows(5).comments = '15 sec'; 
fre.windows(5).length = 15; 
 
for i = 1:5 
    fre.windows(i).on = true; 
    fre.windows(i).max_freq = 12; 
end 
 
  
save(fre); 

 
The channels assignment is one of the major changes between the two command 

line interfaces.  Below is a line taken from the example above.  In the legacy command 

line interface “conchnl” is the association between control names and channels.  The 

row “1:2” is indicates “select the first and second channel”, and the column “1” indicates 

the first of five channels for each control.  In the new command line interface the 

particular channel is identified by name 'AIL', and the first channel is just the 

“channel” field.  The association between the control and the channel is much clearer 

in the new command line interface. 

f_in.conchnl(1:2,1) = ... 
    {'D645','D284'}; 

fre.controls('AIL').channel = 'D645'; 
fre.controls('RUD').channel = 'D284'; 
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In the legacy command line interface, the time history conditioning was specified 

with the array “conditioning”, that has two rows.  The first row is the action to 

take: 1 is interpolation, 2 is decimation, and 3 is filtering.  The second row was the 

parameter, i.e. the filtering frequency or the new rate.  The old-style conditioning allowed 

up to 10 different conditioning actions to be taken on the time history file.  This was 

found to be completely unnecessary and unused, so it was simplified.  The new command 

line interface takes advantage of this, by completely removing the “conditioning” array 

and replacing it with two parameters, the “filter_cutoff” frequency and the time 

history “desired_rate”.  Below is taken from the above example showing the same 

action in each command line interface.  Notice how much clearer the intended action is.  

In this case, the new field name is much more specific to the action. 

f_in.conditioning(1,1:2) = [3,2]; 
f_in.conditioning(2,1:2) = [4,25]; 

fre.thfiles.filter_cutoff = 4; 
fre.thfiles.desired_rate = 25; 

3. MISOSA and COMPOSITE Classes 

Both MISOSA and COMPOSITE only require a subset of information required 

for FRESPID.  For this reason MISOSA and COMPOSITE cases can be inferred from 

the FRESPID case.  The new command line interface provides a way to generate 

template MISOSA objects (misosa_obj) or COMPOSITE objects (composite_obj) from 

existing frespid_obj objects.  Most users will only need the batchall command built into 

frespid_obj which generates the MISOSA and COMPOSITE cases from a frespid_obj 

case, and runs all the batch jobs. The only reason to directly use misosa_obj or 

composite_obj is to adjust plotting options or to gain finer control over the batch job 

processing.  If the user needs to change plotting options, he is able to generate template 

MISOSA or COMPOSITE cases from the FRESPID case by calling the misosa_obj or 
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composite_obj constructor, respectively on a frespid_obj object.  Below is an example 

showing how the old command line interface created MISOSA and COMPOSITE cases, 

and how simple it is to create them with the new command line interface. 

% Set up blank misosa case 
m_in = misosa; 
  
% Fill in appropriate values 
m_in.casename        = thename; 
m_in.casein          = thename; 
m_in.caseout         = thename; 
m_in.controls(1:2) = {'AIL','RUD'}; 
m_in.outputs(1:4)    = 
{'P','R','AY','VDOT','PHI'}; 
m_in.winon(1:5)      = {'*'}; 
m_in.frcalc(1:5)     = {'*'}; 
  
% save case to database 
misosa(m_in,2); 
  
% Set up blank composite case 
c_in = composite; 
  
% Fill in appropriate values 
c_in.casename        = thename; 
c_in.casein          = thename; 
c_in.caseout         = thename; 
c_in.inpgm           = 'MIS'; 
c_in.controls(1)     = {'AIL'}; 
c_in.outputs(1:4)    = 
{'P','R','AY','VDOT','PHI'}; 
c_in.winon(1:5)      = {'*'}; 
c_in.frcalc(1,1)     = {'*'}; 
  
% Save case into database 
composite(c_in,2); 
  
% Run the cases 
frespid(thename,3); 
misosa(thename,3); 
composite(thename,3); 

% Create a misosa case from  
% the frespid_obj 
mis = misosa_obj(fre); 
 
save(mis); 
 
% Create a composite case from 
% the misosa_obj 
com = composite_obj(mis); 
 
save(com); 
  
wait(batch(fre)); 
wait(batch(mis)); 
wait(batch(com)); 
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4. CIFER Frequency Response Class 

The non-parametric analyses for CIFER are all available through the ciffrq object.  

Primarily it provides access to the frequency response database, giving the ability to load 

a frequency response from the database and access the data in the MATLAB workspace.  

The code below shows how easy it is to load a frequency response from the database.  

The freq, mag, phase and coh fields are the underlying frequency data as expected. 

 
>> fr = ciffrq('XVLATSWP_FRE_A0000_AIL_P') 
  
fr = 
  
        name: 'XVLATSWP_FRE_A0000_AIL_P' 
    comments: 'LATERAL FR SWP FOR XV15 HOVER' 
        freq: [1x399 double] 
         mag: [1x399 double] 
       phase: [1x399 double] 
         coh: [1x399 double] 
        info: [1x1 struct] 
 

The plot command is overridden for the ciffrq object, internally calling the 

underlying QPlot functionality available in the GUI.  The other non-parametric analysis 

tools: RMS, bandwidth, crossover, and arithmetic are similarly available as functions. 
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Additional plotting methods are provided.  The MATLAB Control System 

Toolbox Bode plot-style is available via the bode function.  An interactive Bode plot with 

gain and phase margins is created via plot_perf. 

fr = ciffrq('CLROLL_COM_AB000_LAT_P'); 
plot_perf(fr,'correct', ... 
   corrset('spower', -1),'construct',false,'markers',true) 

 

 
Figure 8: Crossover plot 

For comparison of two frequency responses the command line interface provides 

a function to display the error between two responses.  In this case the error function used 

is shown in the first equation below.  The resulting magnitude and phase curves are the 

difference in magnitude (in dB) and difference in phase. 

 
ectedexp

actual
error =  (12) 
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 ectedexpactualerr magmagmag −=  (13) 

 ectedexpactualerr phasephasephase −=  (14) 

An example error plot is shown below.  The actual response was the expected 

response multiplied by a gain and a phase delay.  The positive magnitude curve indicates 

that the actual response has a higher magnitude curve than the expected response.  The 

negative phase curve indicates that the actual response has a lower phase curve than the 

expect response.  There are also two addition curves on each plot.  These are the 

Maximum Unnoticeable Added Dynamics (MUAD) bounds developed based on handling 

qualities research.  The bounds were created during a fixed-wing handling qualities 

survey.  The bounds were developed by overlaying the variations in closed loop 

responses that did not result in a change in the Chopper-Harper pilot rating for that study 

(Ref 1.).  The bounds are intended to represent the maximum amount of change an 

aircraft could undergo without the pilot changing the rating of the aircraft.   The bounds 

are narrowest near crossover indicates that pilots are more sensitive to changes in that 

range.  This agrees and explains why validation near the crossover region is important for 

model validation.  For that reason, MUAD bounds will be used in this thesis to evaluate 

the quality of match between frequency responses (Ref 9.).  The command line interface 

provides these plots via the plot_error function. 

 



 28

fr1 = ciffrq(1, logspace(-1,1.5,1000)); 
fr2 = correct(fr1,corrset('time_delay',.05))*1.2; 
plot_error(fr2,fr1) 

 

−20

−10

0

10

20
Error Bounds

D
el

ta
 M

ag
ni

tu
de

10
−1

10
0

10
1

−180

−90

0

90

180

D
el

ta
 P

ha
se

Frequency (Rad/sec)

 

 
Error
MUAD bounds

 
Figure 9: Error plot example 

In addition to providing the functional call for arithmetic, the ciffrq class supports 

arithmetic operators such as + and -.  The new response can then be named and saved 

back to the database.  Below is an example showing multiplication of the frequency 

response by a scale factor. 

 
>> fr2 = 5*fr 
  
fr2 = 
  
        name: '' 
    comments: '' 
        freq: [1x1000 double] 
         mag: [1x1000 double] 
       phase: [1x1000 double] 
         coh: [1x1000 double] 
        info: [1x1 struct] 
 

The example below shows how to multiply by a power of s using the “correct” command. 
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>> fr3 = correct(fr,corrset('spower',-1)) 
  
fr3 = 
  
        name: 'XVLATSWP_COM_ABCDE_AIL_P' 
    comments: '' 
        freq: [1x987 double] 
         mag: [1x987 double] 
       phase: [1x987 double] 
         coh: [1x987 double] 
        info: [1x1 struct] 
 

Two frequency responses can be multiplied as shown below. 
 
>> fr6 = fr*fr2 
  
fr6 = 
  
        name: '' 
    comments: '' 
        freq: [1x1000 double] 
         mag: [1x1000 double] 
       phase: [1x1000 double] 
         coh: [1x1000 double] 
        info: [1x1 struct] 
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The last major feature is compatibility with the built-in MATLAB Control System 

Toolbox LTI objects.  The ciffrq class supports conversion to and from the frd object, the 

frequency response LTI object.  frd objects are compatible with many of the LTI tools 

available in the MATLAB Control System Toolbox, so users can easily use these tools 

with frequency responses generated from CIFER.  Any LTI object that can be converted 

to an frd object can also be converted to the ciffrq class.  This feature allows users to 

multiply a frequency response by a transfer function object (tf class) or state-space object 

(ss class).  This is shown below. 

 
>> s = tf('s') 
  
Transfer function: 
s 
  
>> fr5 = fr*(s+1)/(s-1) 
  
fr5 = 
  
        name: '' 
    comments: '' 
        freq: [1x1000 double] 
         mag: [1x1000 double] 
       phase: [1x1000 double] 
         coh: [1x1000 double] 
        info: [1x1 struct] 
 

These classes provide a robust and user-friendly interface to the CIFER frequency 

domain system identification process.  They provide the base to develop automated tools 

involving CIFER. 
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IV. Analyzing simulation using system identification 
Now that a more robust and user-friendly command line interface was developed, 

an integrated simulation and system identification tool could be developed.  

Traditionally, generating frequency responses from a block diagram involves the user 

moving data from Simulink to CIFER and back again.  The basic flow of the process 

follows: 

1. Obtain time histories from the Simulink diagram 

2. Package data into CIFER compatible format 

3. Create a FRESPID case 

4. Run FRESPID batch 

5. Create a MISOSA case if needed 

6. Run MISOSA batch if needed 

7. Create a COMPOSITE case 

8. Run COMPOSITE batch 

9. Check frequency response and look for low coherence or abnormalities 

10. Go back to step 1 if frequency response is not good enough 

The new command line interface consolidates steps 4-8 into one command, 

“batchall”.  In the following sections, the details of the work flow will be explained 

within the context of an automated validation tool designed to sweep a block diagram. 

A. Automating the process 

1. Obtain time histories from the Simulink diagram 

There are several steps involved in sweeping the block diagram.  First, a data 

gathering mechanism needs to be added to the Simulink diagram.  Root level output ports 
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are a good option because the SIM command returns the time histories from these ports.  

However, the “To Workspace” and “To File” blocks work as well.  The sweep signal 

needs to be defined within the diagram, or computed before running the simulation and 

passed in via a root level input port or “From Workspace” block. 

The simulation time step and duration need to be compatible with the frequency 

range of interest.  The high frequency limit determines the maximum time step size, and 

the low frequency determines the minimum record size.  The details of these parameters 

can vary. However the rules are thumb are what were used (Ref 2.).  These are shown 

below.  The filter frequency ( )filterf  is set such that frequency content before the 

maximum frequency of interest is not attenuated.  The sample frequency ( )samplef  is set 

such that the filter can operate with sufficient data and not encounter effects of being near 

the Nyqist limit ( )sampleNyq ff 2= .  Step size ( )dt  is defined as the inverse sample 

frequency. 

 π
ω
2

5 max
filterf =  (15) 

 filtersample ff 5=  (16) 

 
samplef

dt
1=

 (17) 

The time history record size is the summation of several components.  Because of 

the requirement from CIFER that the time record must begin and end in trim the sweep 

needs to have region of zero input at the beginning and the end for zerot  seconds, as 

illustrated in Figure 11. 
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In order to capture the low frequency data, the sine function is held for a full 

period parkt  seconds at the low frequency.  Following the full period, an exponential ramp 

up of frequency from the lower frequency limit to the upper frequency limit will excite 

the system across the entire frequency range.  The length of the exponential ramp is five 

times the largest window size to be used, which is twice the parkt  time.  The sweep 

frequency with the park and exponential ramp are shown in Figure 10 below. 
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Figure 10: Sweep frequency 

At the beginning of the sweep there is a ramp up for fadeint seconds to full 

amplitude. Similarly, at the end of the sweep, there is a ramp down for fadeoutt  seconds.  

This is shown in Figure 11. 
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Figure 11: Sweep amplitude 
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  The total length of the record then becomes the summation of each of these.  It is 

defined below, along with its components.  The maximum window size ( )maxT  is typically 

defined by the maximum period of interest, which is parkt  in this case.  The total record 

length ( )recT  should be five times the maximum window size to allow adequate data for 

identification.  The zero time and fade in and fade out are added to that because they 

provide no content, and do not really count towards the five times maximum window size 

rule. 

 fadeoutfadeinzerorec tttTT +++= 25 max , where 

 
min

2
ω

π=parkt   

 parktT 2max =  (18) 

 2== fadeoutfadein tt   

 2+= trimzero tt   

The last component of a computed sweep is noise.  Injecting low amplitude white 

noise into the sweep aids the identification process by increasing high frequency input. 

In Appendix C, the equations of the sweep are listed, in both integral form and 

analytic form.  Below is an example sweep from 1 rad/sec to 10 rad/sec. 
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Figure 12: Completed sweep without noise (1-10 rad/sec) 
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With the input sweep defined, the simulation with the input sweep needs to be 

performed.  MATLAB provides the SIM command to inject the sweep into a designated 

root level input port, and return the time histories at the designated root level output port. 

2. Packaging the data 

The time histories generated from the SIM command are going to be passed to the 

FRESPID program in CIFER as a MATLAB MAT-file.  For SISO identifications, 

generic channel names such as ‘IN’ and ‘OUT’ can be used because there are only two 

channels.  In the more general MIMO case, user name bindings will be required in order 

to construct the time history file. 

3. Creating a FRESPID case 

A FRESPID case requires four sets of information: 1) time history specification 

and conditioning, 2) control name and channels, 3) output name and channels, and 4) 

windowing parameters. 

In the automated sweeping process, the program just wrote the time history file, 

so it knows all the specifications of the time history (format, filename, sample rate, and 

filtering).  For SISO cases it will also have the generic control and output names, which 

can also be the channel names.  For MIMO cases the user specified control and output 

names are also present, so the first three sets of information are known simply because of 

the integrated process.  The only missing set of information for generating the FRESPID 

case from the sweeping process is the windowing parameters. 

The windowing parameters have the most flexibility of the other FRESPID case 

parameters.  The majority of the other parameters only have one correct input (the 

filename of the time history file, for example).  However, the windowing parameters have 
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to be adjusted to suit the individual identification.  There are six windowing parameters 

as shown in the table below. 

Table 1: Windowing parameters 

Parameter Units 
Window length Seconds 
Number of input points Positive Integer 
Number of output points Positive Integer 
Decimation Ratio Positive Integer 
Minimum Frequency Radians per second 
Maximum Frequency Radians per second 

 
The first three windowing parameters are coupled by algorithm requirements.  

The window length and the number of input points are related by the time history step 

size.  For example, a window length of 10 seconds with a step size of .01 will have 1001 

points in the window.  The CZT used within CIFER requires the number of input points 

plus the number of output points to be a power of two. 

The frequency response output points are the output of FRESPID, so there needs 

to be an adequate number of points over the frequency range.  The frequency range for a 

given window is determined by the minimum frequency and maximum frequency 

parameters, as provided by the user.  These are subject to limits provided by the window 

size and step size.  The spacing of the output points in the frequency domain is always 

constant, so the points have even coverage on a linear frequency plot.  However, on a 

logarithmic plot the number of points at low frequency is much fewer than that at high 

frequency as shown in Figure 13.  So in order to increase the resolution in the low 

frequency, the user may need to decrease the upper frequency limit, which decreases the 

frequency increment.  If too few points are located in the low frequency, the frequency 

limits may need to be adjusted to increase the frequency resolution at low frequencies. 



 37

10
0

10
1

0

50

100

150

200

250
Distrubution of linear frequency points on a log scale (1000 points evenly spaced between 1 and 10)

Frequency

N
um

be
r 

of
 p

oi
nt

s

 
Figure 13: Frequency point distribution 

Choosing the window lengths is primarily a trade between two objectives.  The 

first is to capture low frequency data points.  The second is minimizing random noise in 

the responses.  In order to capture low frequency data points, long windows must be used.  

However, long windows means fewer transforms can be performed on the data.  If the 

window length is equal to the record length, then only one transform can be performed on 

that data.  Any random noise present in the frequency response is impossible to remove.  

However, if the window length is half that of the record length, then in the absence of 

overlap two transforms can be performed on the data, one on the first half and one on the 

second half.  Now there are two sets of frequency responses, which should be identical 

assuming the plant remains constant in the frequency domain over time.  If the set of 

points are averaged then the random variations will tend to zero.  If more overlap is 

allowed, more transforms can be performed on the data, each time averaging the 

frequency points.  The random errors cancel out and result in a smooth response with 
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fewer variations due to noise.  Smaller windows allow for more overlapping transforms 

to be performed, small windows are less affected by random noise.  

Given the trade between small and large windows, how should windows be 

picked?  FRESPID allows for up to five windows, allowing the user to fill the trade 

space.  The integrated tool uses five windows to span the trade space.  When system 

identification is performed on simulation data, the windowing trade is less important 

because the data is collected in a perfectly controlled environment without external 

influences as opposed to collecting flight test data.  In simulation, the only noise present 

is the noise added by the user, which is small compared with the sweep amplitude.  The 

simulation will probably have fewer nonlinearities than an actual aircraft, which further 

simplifies the problem.  In the end, only reasonable windows need to be chosen in order 

to get acceptable results. 

Given a frequency range of interest (the target minimum and maximum 

frequencies), target minimum ( )minT  and maximum windows ( )maxT  can be created.  

There are bounds for the window sizes that cannot be violated in either direction.  For a 

hard limit on the minimum window size, there must be at least 5 points of data in each 

window ( )
limitmaxω .  However, this is an impractical window size, because there would be 

no frequency range, as the minimum frequency point is the maximum frequency point for 

that window.  For this reason the smallest window size is set to have a window minimum 

frequency one decade before the target maximum frequency.  This ensures one decade of 

data is available in that window (Ref 2.).  Anything smaller than that will provide 

insufficient frequency content for subsequent CIFER programs.  This window size should 

always be larger than the hard lower limit because the tool should have chosen a step size 
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25 times the maximum frequency of interest.  In the case where the target minimum and 

maximum frequencies are less than a decade apart, the integrated tool sets the target 

maximum frequency to be one decade above the target minimum frequency. 

 
dt5

2
limitmax

πω =  (19) 

 

( )
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=

min
minmax

max
minmax

min 2
12

220
12

ω
πωω

ω
πωω

T
 (20) 

(Ref 2.) 

For the target maximum window, the upper limit is the length of the time history 

records ( )
it

T
limmax .  This is impractical as a limit because there will be no repeated 

transforms, so the random error will be high.  For this reason, the maximum window size 

is half the record length, which determines the minimum frequency allowed ( )
itlimminω .  

The target maximum window size is twice the period of the target minimum frequency 

(Ref 2.).  This allows the CZT to capture lower than the target minimum frequency. 

 ( )recTT
it

min
limmax =  (21) 

 
( )

it

it T
lim

lim

max
min

22 πω =  (22) 

 

( )
min

max

22

ω
π=T

 (23) 

(Ref 2.) 

The remaining three windows are distributed evenly between the minimum and 

maximum windows sizes.  This automated window selection functionality is available in 



 40

the command line interface through the auto_window function provided for the 

frespid_obj class. 

The code below demonstrates the auto_window function.  Internally it checks for 

the input minimum and maximum frequencies based on step size and record length.  It 

also adjusts the decimation and filtering based on equation 15 and 16.  The output is a 

new frespid_obj with the modified windows and thfile objects.  The user can then 

perform additional adjustments as needed or proceed to generate the frequency responses. 

 
>> fre = auto_window(fre, .1, 30) 
??? Error using ==> frespid_obj.auto_window at 60 
Requested minimum frequency exceed minimum frequency possible with 
given thfiles (0.133 rad/sec) 
 
>> fre = auto_window(fre, .133, 30) 
  
fre = 
  
                       name: 'XVLATSWP' 
                   comments: 'LATERAL FR SWP FOR XV15 HOVER' 
                    caseout: 'XVLATSWP' 
                     db_out: 1 
                   crosscor: 1 
                fr_file_out: 0 
             fr_file_format: 'CIFER' 
                fr_file_dir: 'C:\CIFER_Pro\jobs\tfdata' 
    th_file_out_unformatted: 0 
          th_file_out_ascii: 0 
                   controls: {'AIL'  'RUD'} 
                    outputs: {'P'  'R'  'AY'  'VDOT'  'PHI'} 
                    windows: [1x5 windows] 
                    thfiles: [1x2 thfile] 
                     frcalc: [5x2 logical] 
                  gen_plots: 0 
                      plots: [0 0 1 0 0 0 0 0 0 0 0 0] 
                 heavy_grid: 1 
                 large_plot: 1 
              decimate_data: 1 
                plot_format: 'PostScript' 
                    frnames: {5x2x5 cell} 
 

4. Generating the frequency responses 

Once the FRESPID case is generated, the tool can proceed to generating the 

frequency responses with the “batchall” command.  For SISO analysis, there is no need to 
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run MISOSA, so only a COMPOSITE case needs to be generated.  At this point, the 

initial automation is done, and the frequency responses are returned to the user.  The user 

is free to examine the generated frequency responses and go back and refine the 

FRESPID case if needed. 

The command line interface now provides steps 2-4 in one function, cifer_siso, 

which conducts the SISO analysis as explained above.  It requires a case name, control 

and output names, time, control and output time histories, and minimum and maximum 

target frequencies as inputs.  It then packages the data, sets up the FRESPID case, and 

invokes the FRESPID and COMPOSITE batch jobs, and returns the final frequency 

response.  A MIMO process was prototyped, but never fully developed, and was set aside 

for future work. 

B. Integration with CONDUIT 
With the command line interface providing a function that can perform SISO 

analysis with given data, the last step is to integrate the data gathering process with 

CONDUIT in order to perform model validations. 

The CONDUIT problem format requires all input/output pairs to be connected to 

root level input and output ports.  This provides access to all the time histories the 

validation tool needs.  CONDUIT also utilizes the names of input and output ports when 

binding with specifications for the problem.  This approach will be used as well in the 

validation tool. 

There are three sets of validation: bare airframe, closed loop and broken loop.  

Each set of validations requires different input and output ports for the analysis.  The 

closed loop is the simplest, and only requires the piloted input port and its corresponding 
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output port.  The bare airframe has special requirements because it is a MIMO analysis, 

so for the scope of this thesis it will be ignored.  The broken loop response validation 

requires additional considerations. 

When performing broken loop response validation using CIFER, the loop must be 

closed in the case of unstable open loops.  This is due to the fact that CIFER requires 

bounded time history records, as well as the fact that linear simulations are only valid 

near their trim point.  For this reason, special input/output ports are required to capture 

this data, while maintaining the loop closure. 

CONDUIT also requires special input/output ports for broken loop analysis. For 

LINMOD to return the broken loop response, the loop must be broken.  CONDUIT 

provides a special Simulink switch block, called a “CONDUIT Gain/Phase Margin 

Switch” for use where a broken loop analysis is required.  It has 2 inputs and 2 outputs.  

The first input and output connects to the control loop; the second input and output are 

the special input/output ports for broken loop analysis.  Figure 14 shows an example 

wiring that uses the block. 

 
Figure 14: CONDUIT Broken Loop Switch 

In the figure above is an example system with the CONDUIT Broken Loop 

Switch.  The broken loop is from e�f.  When the switch is off, it acts like the system 

below.  If bl_in and bl_out are unused, it is as if the switch were not even there.  When 
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sweeping the diagram using CIFER, the sweep is injected in bl_in.  CIFER gathers the 

data on bl_out. 

 
Figure 15: CONDUIT Broken Loop Switch Off 

The data that needs to be passed to CIFER is e and f, not bl_in and bl_out.  The 

math is rather simple to create e and f from bl_in and bl_out.  These equations are shown 

below: 

 
outblinble

outblf

__

_

−=
=

 (24) 

When performing linearization, the loop closure needs to be opened.  The 

CONDUIT Broken Loop Switch is like the figure below.  In this case bl_out is f and 

bl_in is e, so no changes are needed to get the broken loop response. 

  
Figure 16: CONDUIT Broken Loop Switch On (Ref 7.) 

When validating a broken loop response of a given axis with CIFER, the 

corresponding CONDUIT Broken Loop Switch must be activated during the LINMOD 

analysis, but deactivated during the CIFER analysis.  This is different from most of the 

other CONDUIT tools, where the switches remain constant throughout an analysis. 
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With the details of the CONDUIT integration worked out, a GUI was developed 

to provide an interactive interface for a user to define the required inputs for validation as 

well as an interface to the results.  The Linearization Validation Tool GUI is shown 

below.  The top two-thirds is the results section, with plots display.  The bottom third is 

the input section. 

 
Figure 17: Linearization Validation Tool 

The results section can have two different plots.  On the left hand side is the 

overlay plot between the linearized model as extracted using LINMOD and the CIFER 

frequency responses as extracted for the simulation time history data.  On the right hand 
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side are error plots that show the linearized model response divided by the CIFER 

response.  The MUAD bounds are also present. 

The seven inputs in the input section above the options pane define the validation 

to be performed.  The “Sweep/Input channel” and “Output channel” fields select the input 

and output ports used for CIFER and LINMOD.  The “Switches and Scenarios” field is a 

standard CONDUIT feature that allows for different configurations to be tested.  The 

“Broken loop switch” drop down allows the user to specify the corresponding broken 

loop switch.  The user selects either “Closed loop”, which means during both analyses the 

switches and scenarios configuration are the same, or a particular switch number to 

facilitate a broken loop response, which means during LINMOD analysis the switch is 

“on” and during CIFER analysis the switch is “off”.  “Min Freq” and “Max Freq” control 

the automatic windowing scheme, the minimum step size, and the sweep that is 

generated.  The “Sweep amplitude” field controls the sweep amplitude. 
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Most of the other optional features in the GUI are output or plot adjustments.  The 

“Estimate correction” button utilizes the transfer function fitting program within CIFER 

called NAVFIT.  It fits a gain and time delay to the error response. 

In the figure below is an example system.  In the titles of the error plots the gain 

and delay estimations, as well as the “cost”, are shown.  The cost is the measure of how 

good the transfer function fit is. A cost of less than 50 is considered an excellent model.  

In this case the cost is .1, which implies the fit is basically perfect.  The gain is very close 

to 1, but the time delay is -.0144 seconds.  This is about 1.5 time steps in this 100 Hz 

simulation. 

 
Figure 18: Estimate correction example 
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C. Limitations 
It is known that this automation process has some drawbacks.  The primary 

drawback is the lack of sanity checking by a human.  The time history data is passed 

directly into CIFER and the CIFER output is checked against LINMOD.  Broken loop 

responses are particularly sensitive to well-behaved simulations.  As will be seen later, 

one case has been encountered with rate-limiter saturation where the feedback loop 

response dominated the sweep and CIFER identifies a -1 instead of the broken loop 

which will be discussed later.  Since then a check has been added and warnings that help 

identify problems such as unstable loops, but it is still important to examine the time 

history data. 

Besides the time history problems, choosing small windows could create 

difficulties in capturing lightly damped roots.  The general rule of thumb is that the user 

needs a target minimum frequency of one tenth the frequency of the lightly damped root 

(Ref 2.).  In the case of the validation tool, the tool can use the LINMOD results to warn 

about lightly damped roots and suggest a new minimum frequency.  The problem with 

lowering minimum frequency is that it requires long time histories.  So besides taking 

longer to run the simulation, this leads into another problem with windowing. 

The auto-windowing mechanism works best when the frequency range is around 

two decades.  At less than a decade separation, the small window criterion is violated, 

and the maximum frequency is automatically increased to one decade separation.  At very 

large decade separations the time history records become very long and time steps 

become very small.  The result is the small windows have plenty of points, but the large 

windows have too many.  When decimating, the lower frequency points get removed 

much faster than the high frequency points.  This means the large windows have poor 
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resolution in the low frequency, the region where they are supposed to have good 

resolution.  Tangentially, the combination of long records with small time steps means 

that the number of points in the records can exceed the internal CIFER limits. 

In general, the automation attempts to remove the requirement for the user to 

understand the underlying principles behind CIFER before he can perform model 

validation.  This means the user will be getting results from a very streamlined process.  

The entire point of utilizing CIFER as the truth model was that it is transparent and very 

robust.  The automation removes some of that transparency and if the automation proves 

to be flawed, validations that expose a flaw will return spurious results.  However, the 

next three examples should demonstrate the ability of the validation tool to perform its 

intended task, and ability to identify when it is not working. 
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V. Comparison of system identification results with 
theoretical predictions and LINMOD for a simple open 
loop elements 

The first example case is a simple first over second analytic transfer function, 

with an actuator in the open loop.  Different nonlinearities are placed after the actuator 

model.  Both LINMOD and CIFER will be used to identify the transfer function for the 

system.  In the open loop, the magnitude of the input to the nonlinearities is going to be 

fairly constant, so describing function analysis will be available to compare against the 

two numerical results.  The following nonlinearities were evaluated: 

1. Hysteresis  

2. Saturation 

3. Dead zone 

4. Lookup Table 

5. Memory block 

6. Time delay 

7. Rate limiter 

 
Figure 19: Simple 2nd order setup 

The sweep amplitudes and nonlinearity parameters were intentionally chosen to 

demonstrate when CIFER and LINMOD will diverge, and to confirm that CIFER is 

correctly capturing the describing function of the system and can be serve as the truth 

model for the validation process. 
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A. Validations 

1. Baseline 

Before adding any nonlinearities, the frequency response of the actuator and plant 

were generated to serve as the baseline of this validation exercise.  Because there are no 

nonlinearities, it is expected that the validation will show an exact match between CIFER 

and LINMOD.  As can be seen below, the first column shows the two frequency 

responses overlaid.  The CIFER curve in the magnitude and phase plots cannot be seen 

because the LINMOD curve is directly on top of it.  Third row is the coherence plot 

which is an indication of the quality of the CIFER response.  In this case it is always at 1, 

indicating a very good response over this frequency range.  In the right column are error 

plots.  The error plots are the LINMOD response divided by the CIFER response.  The 

red lines in the error plots are MUAD bounds.  Errors within these bounds will not be 

noticed by pilots in flight.  As expected, it can be seen that the CIFER and LINMOD 

curves agree exactly and the error curves are constant at 0 dB and 0 deg. 
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Figure 20: Baseline validation 
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2. Hysteresis 

A hysteresis or backlash is a nonlinear behavior due to directional “stickness”.  It 

could represent loose linkages connecting an actuator to a swash plate.  For the validation 

it was modeled in between the actuator and the plant, as shown below. 

 
Figure 21: Hysteresis placement 

 
Figure 22: Hysteresis 

In describing function analysis, the hysteresis effect is only a function of the 

width of the dead band (b shown above) and the input amplitude ( )A .  The describing 

function is (Ref 5.): 
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For open loop cases, the input amplitude is constant, so the effect on the baseline 

case is a scalar multiplication.  In this case, because there is an imaginary term as well as 

a real component, there is an effect a drop in magnitude and an increased phase loss. 

Width of dead band - b 
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Figure 23: Open loop Hysteresis validation 

In the figure above is the validation of the open loop response.  There are four 

curves, CIFER results, LINMOD results, the baseline results, and the baseline results 

with the theoretical hysteresis describing function multiplied.  In this case, LINMOD 

linearizes the system with hysteresis to zero, resulting in the LINMOD magnitude curve 

being at –Inf, so there is no LINMOD curve shown in the above figure.  The magnitude 

error plot is also at –Inf, so it is not visible.  On the other hand, the CIFER and theoretical 

hysteresis describing function curves are exactly overlaid.  This confirms CIFER’s ability 

to capture describing functions of systems with hysteresis.  The CIFER and DF curves 

show a constant magnitude shift down and phase loss, which agrees with the form of the 

equation.  Comparing against the baseline, CIFER shows a gain margin drop of ~6.5 db 

and a phase margin drop of ~10 degrees.  The crossover frequency dropped by .3 rad/sec. 
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The reason LINMOD linearizes hysteresis blocks as a zero is because of the 

method LINMOD uses to linearize blocks.  Some blocks, like state-space or transfer 

function, have closed form linearization.  All other blocks are linearized utilizing a 

perturbation method.  Apply a perturbation to a hysteresis block by any amount smaller 

than the dead band width, the output is not affected and the linearized gain is zero.  

For linearization hysteresis blocks should either be removed, or bypassed 

specially when using LINMOD for linearization.  For this example, the amplitude was 

chosen that would demonstrate the nonlinearity.  For larger inputs, the effect of 

nonlinearity is minimized. 

If a control system is operating in the amplitude where the hysteresis has a large 

effect, the effect of hysteresis will need to be accounted for in some other way. 

3. Saturation 

Saturation is an element that exists in all flight systems due to the nature of 

control surfaces.  There are limits to the amount of deflection a control surface can move, 

and saturation provides a way to express the limitation in a model. 

 
Figure 24: Saturation 

The saturation describing function is a function of the saturation limit ( )S  and the 

input amplitude ( )A .  Saturation is active only if the input amplitude is greater than 

saturation limit.  For the validation shown, the sweep amplitude was internationally 

chosen to be slightly larger than the saturation limit.  The describing function for 

saturation is (Ref 3.): 

Saturation limit - S 
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The saturation describing function has no imaginary part, so it will only affect magnitude 

in the open loop response. 
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Figure 25: Open loop Saturation validation 

Like the hysteresis validation plots there are four curves in the figure above.  

Again the CIFER and the describing function curves are overlaid, confirming CIFER’s 

validity.  The effect of the saturation is seen as a constant magnitude drop with no phase 

loss as expected by the form of the equation.   Compared against LINMOD, CIFER 
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shows a 1 dB increase in gain margin, a 2.5 degrees increase in phase margin, and a .25 

rad/sec decrease in crossover frequency. 

This time the LINMOD result is non-zero.  However, it can be seen that the 

LINMOD and the baseline curves are directly on top of each other.  This means that 

LINMOD is treating the saturation as a unit gain.  Examine the Simulink Saturation block 

parameters shown in the figure below, it can be seen that there is an option “Treat as gain 

when linearizing” which controls the behavior.  This option is turned on by default.  If 

this option is unchecked, LINMOD will perform a perturbation analysis.  When 

linearizing about trim the saturation will not be active, so the effect of the saturation will 

linearize as a one.  However, when linearizing near saturation limit, the perturbation 

analysis may result in a zero, hence the option to treat it as a unit gain. 

 
Figure 26: Saturation parameters 

From a linearization perspective, saturation should not be an issue because the 

“Treat as gain when linearizing” option is on by default, and even if it is unchecked most 

linearization’s are not done near a saturation point.  
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4. Dead zone 

Dead zone is a zeroing of the output near the origin of a signal.  It can be used to 

minimize sign changes or reduce noise at the center of a pilot control.  Physically, 

joysticks have dead zones when the spring tension switches near the center. 

 
Figure 27: Dead zone 

The dead zone describing function is only a function of dead zone width ( )D  and 

input amplitude ( )A .  The dead zone describing function can be expressed using the 

saturation describing function as (Ref 3.): 

 ( ) ( )ADNADN saturationdeadzone ,1, −=  (27) 

Again, dead zone only affects the magnitude of the response in the open loop.  Unlike 

saturation, dead zone is always an active element.  If the input amplitude is smaller than 

the dead zone width, the output is always zero.  If the input amplitude is greater than the 

dead zone width, the describing function of the dead zone asymptotically approaches 1. 

Dead zone width - D 
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Figure 28: Open loop dead zone validation 

Figure 28 shows the results of the validation.  As in the other cases, there are four 

curves again.  CIFER and the theoretical describing function theory agree very well.  

Like saturation, the effect is a constant magnitude drop with no phase loss.  This agrees 

with the fact that the dead zone expression is very similar to the saturation expression.  

Compared against LINMOD, CIFER shows a 2.6 dB increase in gain margin, a 7 degree 

increase in phase margin, and a .6 rad/sec decrease in crossover frequency. As expected 

the direction of change of the frequency domain metrics due to the dead zone is the same 

as saturation. 

  The LINMOD curve is overlaying the baseline curve, meaning it is treating the 

dead zone as a unit gain.  Like saturation, the Simulink dead zone blocks have the “Treat 

as unit gain” option that is checked by default.  Unlike saturation, a linearization about 
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the trim point for a dead zone results in a zero response.  If a user unchecks the “Treat as 

unit gain” option, LINMOD results of a response with a dead zone will probably be a 

zero. 

The effect of the dead zone all depends on its amplitude.  Even if a system is not 

operating within the dead zone, its affect will still be seen. 

5. Lookup Table 

A lookup table is a very flexible element, but in this case the focus is on a 

sensitivity change near the origin.  This element is similar to a dead zone, because a dead 

zone can be interpreted as a lookup table with an inner slope ( )1k  of zero.   

 
Figure 29: Lookup table 

 The inner slope ( )1k  does not have to be less than the outer slope ( )2k .   This 

describing function is only a function of the lookup table parameters ( )Skk ,, 21  and 

amplitude ( )A .  The describing function for this setup is (Ref 3.): 
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This nonlinearity only affects magnitude in the open loop. 

Inner slope – k1 

Outer slope – k2 
Inner slope width - S 
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Figure 30: Open loop lookup table validation 

For this case both CIFER and LINMOD register a change.  CIFER and the 

theoretical describing function curves match very well.  The magnitude drop from the 

baseline is very small because the effective gain is some weighted average of the two 

slopes. Compared with LINMOD, CIFER shows a 5 dB decrease in gain margin, a 16 

degrees decrease in phase margin, and a 1.2 rad/sec increase in crossover frequency. 

LINMOD however shows a greater decrease in magnitude because the gain it uses 

is only the k1 slope.  This is due to the perturbation analysis.  A larger perturbation would 

raise the LINMOD magnitude curve up closer to the CIFER and baseline curves.  The 
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key to note here is the perturbation analysis by default will only capture the slope near the 

linearization point.  If it is expected that the linearized model to represent the simulation 

over larger amplitudes than the default LINMOD perturbation size, then the effect needs 

to be accounted for separately during linearization. 

6. Time delay 

Equivalent time delays can be included to model high frequency dynamics and 

computational delays that are not explicitly simulated.  Time delay is a critical element to 

be modeled correctly because phase errors due to time delay grow with frequency.  For 

flight control, time delays must be accurate because the phase loss due to time delay has 

large effect on phase and gain margins. 

 There is a linear relationship between the frequency and the phase drop.    The 

complex value for time delay is defined as: 

 ( ) ωτωτ i
timedelay eN ⋅−=,  (29) 

In Simulink, time delay blocks have the option to approximate it with a Pade 

approximation when performing linearization.  The Pade approximation is a re-ordering 

of a Taylor series into a rational expression.  The Taylor series is of timedelayN .  For the 

purpose of this validation, a second order Pade approximation was used.  Higher order 

approximations are valid over a longer frequency range, and second order is enough in 

this case. 
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Figure 31: Open loop time delay validation with non-zero Pade order 

In the figure above it can be seen that the magnitude curves for all cases agree 

very well.  The phase curves from CIFER, LINMOD and the analytical equation given 

above all show the growing phase loss with no magnitude drop.  Looking over at the 

error plots, there is no phase error between the CIFER and LINMOD responses.  Because 

of the good agreement between the curves, the gain margin, phase margin, and crossover 

frequency agree very well between the CIFER and LINMOD responses. 

This agreement indicates that time delay elements are safe for linearization if and 

only if the Pade order is greater than zero.  However in Simulink, the default Pade order 
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is zero.  Below is a validation result when the Pade order is set to zero.  This removes the 

time delay from the linearization. 
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Figure 32: Open loop time delay validation with Pade order zero 

The figure above shows phase error between LINMOD and CIFER due to the 

missing delay.  The baseline and LINMOD curves are directly overlaid, indicating that 

LINMOD is treating the time delay as a unit gain. Around 6 rad/sec the phase error is 

great enough to exceed the MUAD bounds.  Therefore, it is very important for the user to 

ensure that the Pade order is not set to zero in order to have agreement between the time-
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domain simulation and the linearized model.  Future work might include making a 

diagram scanner to check that the Pade order is non-zero. 

7. Memory block and unit delay 

The memory block and unit delay are elements that can be used in the simulation 

model to represent computation delays or to solve algebraic loop errors.  They delay the 

output one integration step from the input, so they function like time delays.  The 

difference between a time delay and a memory block or a unit delay is that the amount of 

delay is a function of the sample time.  The difference between memory blocks and unit 

delays are how Simulink treats their sample time.  Memory blocks also have the option 

“Treated as unit delays” during linearization. 

Because memory block and unit delays are like time delays their effect on the 

open loop frequency response is only a function of the time step and frequency.  The 

function for these elements is based on the time delay equation: 

 ( ) ωω idt
memory e,dtN ⋅−=  (30) 

Below is the validation result with a memory block modeled after the actuator.  

The CIFER curve shows a phase delay behind the LINMOD and baseline responses. 

Because the “Treat as unit delay” option is unchecked in the memory block, LINMOD is 

treating it as a unit gain.  The delay difference between CIFER and LINMOD using the 

estimate correction feature in the validation tool shows a delay of .015 seconds, around 

1.5 dt. 
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Figure 33: Open loop memory validation 

Comparing against LINMOD, CIFER shows 3.5 dB decrease in gain margin, and 

a 4 degree decrease in phase margin.  Because there was no change in the magnitude 

curve, there was no change in the crossover frequency. 

This particular discrepancy in linearization can be resolved, because memory 

blocks behave similarly to time delays, but the latter have the Pade approximation option 

for linearization. Time delays of 1 dt can replace memory blocks to make the two 

responses agree.  If the memory block was being used to prevent an algebraic loop error, 

time delays can fulfill that function as well. 
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8. Rate limiting 

Another nonlinearity that is intrinsic to real systems is rate limiting.  No actuator 

can slew infinitely fast, so rate limiters are used to account for this.  The describing 

function of a rate limiter is a function of the rate limit, frequency and input amplitude. 

Before a certain frequency, called the onset frequency, the rate limiter has no 

effect.  Beyond the onset frequency there is a transition region where the phase will roll 

off faster until the limit frequency is reached.  Beyond the limit frequency the phase loss 

asymptotically approaches 90 degrees.  Below are an example effect of rate limiting and 

the describing function for rate limiting (Ref 4.): 
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Figure 34: Rate limiting effects 
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Beyond the limit frequency, the phase will have rolled off by about 90 degrees, a 

fairly significant amount.  Most systems do not carry more than 40-50 degrees of phase 

margin, so a loss of ~90 degrees of phase at the crossover frequency is unacceptable. 

Below is the validation result with the rate limiter.  The LINMOD curve is 

directly over the baseline curve, implying that LINMOD is treating the rate limiter as a 

unit gain.  The CIFER and rate limit theoretical describing function curves are directly 

overlaid, so CIFER is correctly capturing the describing function of the system.  For the 

chosen amplitude of the sweep, the onset frequency is ~5.5 rad/sec.  In the error plots 

both the magnitude and phase exceed the MUAD bounds by ~6 rad/sec. 
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Figure 35: Open loop rate limit validation 

Compared against LINMOD, the CIFER response shows a 5.5 dB decrease in 

gain margin, and a 3 degree decrease in phase margin.  The crossover frequency did not 

change much because the onset frequency was just after crossover. 
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Below is the time history record before and after the rate limiter from the CIFER 

sweep used to generate the frequency responses above.  At around 50 seconds the rate 

limiting effect becomes active. 
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Figure 36: Time domain effect of rate limiting case 

LINMOD is not able to handle rate limiting correctly.  The validation tool can 

indicate that rate limiting is happening, but the effect of this nonlinearity needs to be 

analyzed in some other way. 

The reason it is so important to capture the effects of rate limiting is it has been 

observed in almost all PIO cases (Ref 14.).  To capture this within CONDUIT, the Open 

Loop Operating Point (OLOP) specification is used, which is a predication of pilot 
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induced oscillations due to rate limiting, allowing the user to capture the rate limiting 

effect (Ref 4.).  It utilizes the onset frequency given maximum stick deflection to 

determine if pilot induced oscillation (PIO) is likely. 

B. Table of results 
Table 2: Percent change between CIFER and LINMOD in open loop 

(+%: LINMOD>CIFER) 

Case 
Gain 
Margin 

Phase 
Margin 

Crossover 
frequency 

Baseline 0.19% 0.36% -0.08% 
Hysteresis N/A N/A N/A 
Dead zone -21.57% -28.44% 16.16% 
Saturation -8.92% -12.85% 5.42% 
Lookup table 47.21% 77.79% -27.40% 
Memory block 58.17% 29.84% -0.05% 
Time delay -2.03% 2.20% -0.03% 
Rate limiting 140.28% 22.45% 0.62% 

For the open loop elements, CIFER captured every describing function almost 

identically, showing that it is a good truth model for the validation.  LINMOD was only 

able to match CIFER for the case with nonlinearities and time delay.  Most of the 

nonlinearities were ignored (treated as a unit gain). Hysteresis was linearized as a zero 

gain, making it an element that must be bypassed before linearization.  Memory blocks 

were the only nonlinearity that could be replaced to allow LINMOD to match the CIFER 

responses.  The lookup table element was linearized about the trim flight condition, 

which may or may not be the correct effect, depending on the need. 
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VI. Analysis of simple feedback flight control systems 
The previous section dealt solely with open loop systems.  In this section, two 

closed loop examples will be examined using the validation tool.  The first example is a 

follow on to previous section, where the loop is closed around the simple 2nd order 

transfer function with two different compensators.  The same nonlinearities as in the 

previous section will be tested and examined using the validation tool.  Because of the 

loop closure there will be no theoretical describing function analysis to accompany the 

CIFER and LINMOD results.  The second example is based on a simplified XV-15 

control system.  Closed and broken loop validations will be performed for the on-axis 

channels. 

A. Closed loop validation for simple 2nd order system 
To demonstrate and gather some more baseline results for comparison, closed and 

broken loop results were generated for the nonlinearities used in the previous section.  In 

order to show the effect of different feedbacks, two loop closures were designed, a “Good 

design” with ~44 degrees of phase margin and a “Bad design” with ~18 degrees of phase 

margin.  Below is a summary of the gain and phase margins for the two feedbacks. 

Table 3: Simple 1/2 closed loop summary 

 Good Bad 
Gain Margin (dB) 17.35 9.57 

Phase Margin (deg) 44.17 17.89 
Crossover freq (rad/sec) 2.6 4.7 

By looking at the step responses shown below, the good design has a better 

behaved response. 
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Figure 37: Step response of the good design 
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Figure 38: Step response of the bad design 

  
The majority of the validation results are similar to the open loop results.   All 

validation results with no nonlinearities show excellent agreement between CIFER and 

LINMOD.  The closed loop response for the good design is shown below.  The complete 

set of plots of the validation results are in appendix A. 
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Figure 39: Closed loop (good design) 
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Shown below are the closed and broken loop responses with hysteresis.  Like the 

open loop case, LINMOD linearizes the hysteresis as a zero and so that response is not 

visible in the figures below.  The baseline response is the response in the absence of 

nonlinearities.  In this case based on the CIFER analysis, the good design shows the 

effect of the hysteresis more than the bad design because the amplitude of the feedback is 

smaller. 
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Figure 40: Hysteresis closed loop (good design) 
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Figure 41: Hysteresis closed loop (bad design) 
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Figure 42: Hysteresis broken loop (good design) 
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Figure 43: Hysteresis broken loop (bad design) 
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The dead zone results are shown below.  Like in the open loop results, dead zone 

is treated as a unit gain by LINMOD, so the results overlap directly with the baseline 

results.  LINMOD treats saturation, rate limiters, and memory blocks in the same way, so 

these plots are not shown here.  See appendix A for the remainder of the plots. 
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Figure 44: Dead zone closed loop (good design) 
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Figure 45: Dead zone closed loop (bad design) 
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Figure 46: Dead zone broken loop (good design) 
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Figure 47: Dead zone broken loop (bad design) 

 
Shown below are the results with lookup tables.  Unlike the other nonlinearities 

besides time delay, the LINMOD response changes from the baseline.  Here CIFER is 

closer to the baseline response because the effective gain of the lookup table is close to 

one.  LINMOD on the other hand only sees the smaller gain near the origin, hence the 

shift in magnitude seen in the broken loop response and the large change in the closed 

loop response.  This is an example where validation tool would generate valuable data 
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because some lookup tables will not need special treatment, and the validation tool will 

quickly show if the lookup table needs to be replaced by a gain for analysis.  In cases 

where the lookup has a dramatic effect, the system might need to be optimized at both 

gain levels (either simultaneously or sequentially), depending on the setup (i.e. gain 

scheduling, in-detent/out-detent mode specs, etc). 
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Figure 48: Lookup table closed loop (good design) 
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Figure 49: Lookup table closed loop (bad design) 
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Figure 50: Lookup table broken loop (good design) 
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Figure 51: Lookup table broken loop (bad design) 

 
Below are the results for the good design system with a time delay in closed loop.  

As seen, CIFER and LINMOD agree very well in the frequency range of interest.  Like 
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the results with no nonlinearity, only the good design closed loop result is shown because 

the other plots all show similar good agreement. 
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Figure 52: Delay closed loop (good design) 
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Below is a table summarizing the percent differences between frequency domain 

metrics as computed from the CIFER frequency responses and the LINMOD frequency 

responses.  The complete table with original values can be found in appendix D.  Note 

that a positive percentage means LINMOD has a higher value than CIFER, or is more 

liberal.  A negative percentage means LINMOD has a lower value than CIFER, or is 

more conservative. 

The baseline errors are all within 1.5%, so consider less than 5% change a match.  

The hysteresis rows are all N/A because the LINMOD responses were all zeros, so no 

metrics were found. 

Table 4: Summary of Percent metric changes between CIFER and LINMOD 

(+%: LINMOD>CIFER) 

Case 
Gain 
Margin  

Phase 
Margin  

Crossover 
frequency  Bandwidth  

Baseline (good design) -1.32% -0.27% 0.91% -0.01% 
Baseline (bad design) 0.29% -0.25% 0.41% -0.19% 
Hysteresis (good design) N/A N/A N/A N/A 
Hysteresis (bad design) N/A N/A N/A N/A 
Dead zone (good design) -33.06% N/A N/A 18.72% 
Dead zone (bad design) -16.24% -10.68% 5.71% 4.81% 
Saturation (good design) 2.21% 1.01% 4.17% 14.64% 
Saturation (bad design) -20.85% -48.17% 28.64% 31.01% 
Lookup table (good design) 14.21% 9.69% -23.41% -30.42% 
Lookup table (bad design) 53.83% 101.65% -30.33% -27.62% 
Memory block (good design) 22.37% 4.38% 0.88% -0.78% 
Memory block (bad design) 56.22% 29.13% 0.55% -0.23% 
Time delay (good design) -0.74% -0.44% 1.07% -0.13% 
Time delay (bad design) -1.04% -1.42% 1.47% -0.72% 
Rate limit (good design) 34.55% -1.59% 1.48% 4.00% 
Rate limit (bad design) 3.61% 18.61% 0.33% -0.37% 

For both of the dead zone cases the magnitude loss causes the gain margin in the 

CIFER responses to increase.  The good design’s magnitude dropped completely below 0 

dB, so the phase margin and crossover frequency metrics were not found. 
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For saturation, the good design did not saturate as much as the bad design, so the 

margins did not change much between CIFER and LINMOD.  The bad design saturated a 

lot, causing a large magnitude drop, resulting in LINMOD showing lower gain and phase 

margins, but higher crossover frequency and bandwidth. 

The lookup table cases showed dramatic variations, especially in the bad design.  

The LINMOD responses showed higher gain and phase margins, but lower crossover 

frequency and bandwidth than the CIFER responses. 

The memory block cases shows little change in crossover frequency, which is 

expected given that it should only have a phase effect in the broken loop.  However effect 

on gain and phase margin is pretty significant for the bad design.  The effect on 

bandwidth is minimal in this case because the magnitude changes were small. 

The time delay cases show very little metric changes, which is to be expected 

because the Pade approximation used by LINMOD for time delays was seen to accurately 

capture the effect on phase. 

The rate limiting cases show changes in gain and phase margins, but little change 

in crossover frequency and bandwidth.  Most the margins are larger in LINMOD, except 

for phase margin in the good design. 

Ultimately in this exercise, only two cases were correctly captured by LINMOD, 

the case without nonlinearities and the case with time delay.  Hysteresis resulted in a zero 

in the linearized model, so these elements must be removed or by-passed.  Lookup tables 

are accounted for, but LINMOD may exaggerate the effect due to the perturbation 

analysis, so care must be taken.  The lookup table may need to be removed and different 

scenarios may be needed to capture the different gains provided by the lookup table.  
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Saturation, dead zone, memory blocks and rate limiters are completely ignored, so any 

effect they have on the system will be neglected.  As mentioned earlier, memory blocks 

can be replaced with time delays, so the delay effect can be captured in the linearized 

model.  Rate limiters will be examined in more details in the next example. 

B. XV-15 
The XV-15 is a tilt-rotor aircraft with which AFDD has many research 

experiences.  The block diagram used is of the XV-15 in hover with a stability 

augmentation system (SAS) for lateral and directional axes only.  The bare airframe 

model is a plant identified from flight test data processed using CIFER (Ref 2.).  The 

actuator models are 2nd order transfer functions with rate limiting and saturation block 

elements.  The two input axes in the model, lateral cyclic and directional cyclic, each 

have a PID SAS.  The lateral stick is limited to 4.8 stick inches of throw, and the pedals 

are limited to 2.4 stick inches of throw.  A representation of the block diagram is shown 

below. 

 
Figure 53:  XV-15 Block diagram 
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The two modeled nonlinearities, saturation and rate limiting, are more active with 

large amplitudes, so small inputs should minimize any differences between CIFER and 

LINMOD.  Saturations have no effect unless the input amplitude is greater than the 

saturation limit.  Rate limiting is both amplitude and frequency dependent.  The onset 

frequency of the rate limiter is inversely proportional to the input amplitude.  Because the 

validation tool only looks at a specific frequency range, a small sweep size should 

eliminate any differences between CIFER and LINMOD responses. 

Below are the broken loop frequency responses in lateral and directional axes.  

The amplitudes are specified in percentage of full throw.  For the smallest amplitude 

(0.2%), the CIFER frequency response does not show the effect of the rate limiter and 

agrees with LINMOD.  However, the second (15%) and third (50%) amplitude show the 

characteristic magnitude and phase loss beyond the onset frequency of the rate limiter.   

As the amplitude of the input increases, the onset frequency continues to decrease, as 

expected. 
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Figure 54: Lateral broken loop 
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Figure 55: Direction broken loop 
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In the closed loop responses shown below, the onset frequency of the rate limiting 

is basically the same because the relative amplitude sweep sizes are the same.  However, 

in the closed loop response the phase loss is more pronounced than in the broken loop. 
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Figure 56: Lateral closed loop 
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Figure 57: Directional closed loop 

In both the broken and closed loop responses, the effect of the rate limiter on the 

frequency response is dramatic.  In the broken loop there is ~70 degrees phase loss after 

onset, and in the closed loop ~90 degrees phase loss after onset.  As seen in the simple 2nd 

order case, LINMOD treats the rate limiter as a unit gain in the buildup of the linear 

model.  However, due to the large effect on phase, the rate limiter is an effect that must 

be accounted for in the analysis. 

  

Figure 58: Broken loop setup 

In a pathological case, the sweep amplitude was intentionally increased to 200% 

maximum deflection to demonstrate a weakness in the validation tool.  When performing 

broken loop identification, the response to identify is feedback over error,
e

f
.  When 
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using CIFER, this is done by feeding an input sweep into u and measuring e and f.  

Ideally the result is GH
e

f = , which is the broken loop.  However 
e

f
 is really: 

 1
1 −=

u

ee

f
 (32) 

For GH
e

f =  to be true, 

u

e
1

 must not be zero.  When the actuator encounters rate limiting 

the system self excites in a limit cycle. 

u

e
1

is effectively zero because there is no 

relationship between the external input and actual response.  The result is CIFER 

identifies 1−=
e

f
, with a coherence of 1.  The math explains why this answer is correct, 

but this is not the broken loop frequency response. Because this result is clearly not the 

correct response, when using the validation tool it should be noticeable when this error 

occurs.  The validation tool also has a check for trim at the beginning and end of the time 

history record that could catch a problem like this. 
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Figure 59: Unstable broken loop 

This error is made possible because of the simplified validation process that is 

utilized by the validation tool.  In the normal interactive operation, the time history files 

are checked for strange behavior before the identification process begins and therefore 

this issue would have been caught early in the validation process. 

The results from these two closed loop example validations have confirmed what 

was seen in the open loop example.  First, the CIFER and LINMOD agree very well in 

the absence of nonlinearities or a time delay.  Second, CIFER is capable of capturing the 

describing functions of systems with nonlinearities.  And third, it can be seen that 

LINMOD either ignores or miscomputes the majority of the nonlinearities tested. 
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VII. Simplification and verification of a comprehensive 
flight control system 

In the previous examples, the systems were intentionally chosen to demonstrate 

the validation tool in environments where the results were known to ensure that the tool 

was functioning properly.  The next example is based on the highly complex RASCAL 

fly-by-wire flight control system (Ref 8.).  The RASCAL helicopter is a UH60 used for 

experimental fly-by-wire control systems and in-flight simulation at AFDD. 

The RASCAL block diagram ultimately is converted to flight code to go on the 

aircraft, so it represents a level of complexity found in real-world systems.  However, the 

diagram’s complexity made it prohibitive to work with.  This section will mainly deal 

with the simplified version of the diagram and its verification.  In the end, both block 

diagrams were used in this example, the original more complicated diagram is denoted as 

the “full-up” diagram, and the simplified diagram is denoted as the “simplified” diagram. 

A. Block diagram simplification 
The full-up RASCAL block diagram has 33627 blocks, with multiple modes and 

complex switch networks to account for different flight conditions.  The bare airframe 

model in the analysis is either an identified model from flight test data using CIFER or a 

physics based model.  The physics based airframe model is a 25 state state-space 

respresntation.  Of the 33000, 21937 of the blocks are just organizational element, 

SubSystems, Inports, and Outports. 

The reason for all this complexity is that the block diagram is design to be auto-

coded using The MathWorks Real-Time Workshop®.  The flight ready code from Real-

Time Workshop has been installed on the aircraft and flight tested.  The block diagram 
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has been validated by the RASCAL team to behave exactly as the final flight control 

system will, so ideally it provides accurate results during analysis. 

The drawback to all this complexity is added cost of computational speed.  The 

block diagram takes almost a minute to load, several seconds to start a time domain 

simulation, and over 11 minutes on a high-end machine for a single performance 

evaluation in CONDUIT.  There are Stateflow® logics to handle gain scheduling and 

mode transition, which requires special handling in the CONDUIT case to get the 

diagram into different modes for analysis.  The linear analysis requires the use of a more 

advanced linearization algorithm in MATLAB called LINEARIZE, that allows the model 

to “fly” to the trim point before performing the linearization. 

The idea behind the simplified diagram is ultimately to reduce the high block 

count due to both organization and control logic that are unnecessary from a control 

design perspective.  If the broken loop responses of both models are close in the 

frequency range of interest, then from an analysis stand-point the diagrams can be used 

interchangeably for control design purposes.  The full-up diagram can still be auto-coded, 

but the optimized set of gains is obtained from the CONDUIT analysis based on the 

simplified diagram. 

The simplified block diagram was provided by AFDD for the study.  This thesis 

will present the simplified model’s improvements and the verification of the simplified 

diagram against both the full-up model and flight test data.  The core of the validation 

tool was used to generate broken loop frequency responses for the full-up and simplified 

diagrams, and the new CIFER command line interface was used to process the flight test 

data.   The scripts for these analyses are in Appendix B. 
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The simplified diagram managed to capture the key dynamics present in the full-

up model with a total of 1886 blocks, more than an order of magnitude of reduction.  The 

amount of organizational overhead dropped as well, with only 706 SubSystem, Inports 

and Outports, less than half of the total count.  Below is a table comparing block counts 

between the full-up and simplified diagram. 

Table 5: Block Summary 

  Full-up (%) Simplified (%) 
Total 33627 100.00% 1886 100.00% 
Abs 38 0.11% - 0.00% 

BusCreator 41 0.12% - 0.00% 
BusSelector 100 0.30% - 0.00% 
Concatenate 3 0.01% - 0.00% 

Constant 1679 4.99% 188 9.97% 
DataTypeConversion 484 1.44% - 0.00% 

Demux 52 0.15% 12 0.64% 
Display 67 0.20% 4 0.21% 

EnablePort 77 0.23% - 0.00% 
From 1491 4.43% 179 9.49% 
Gain 487 1.45% 103 5.46% 
Goto 1008 3.00% 96 5.09% 

Ground 346 1.03% 26 1.38% 
Inport 9330 27.75% 310 16.44% 

Integrator 20 0.06% 40 2.12% 
Logic 521 1.55% 10 0.53% 

Lookup 40 0.12% - 0.00% 
Lookup2D 10 0.03% - 0.00% 

Math 21 0.06% 8 0.42% 
Memory 5 0.01% 1 0.05% 
MinMax 82 0.24% - 0.00% 

Mux 39 0.12% 8 0.42% 
Outport 5108 15.19% 297 15.75% 
Product 833 2.48% 136 7.21% 

RelationalOperator 427 1.27% - 0.00% 
Rounding 9 0.03% - 0.00% 

Scope 16 0.05% 2 0.11% 
Selector 2 0.01% 2 0.11% 

SignalConversion 5 0.01% - 0.00% 
SignalSpecification 400 1.19% - 0.00% 

Signum 2 0.01% - 0.00% 
Stateflow 12 0.04% - 0.00% 

Step 103 0.31% 25 1.33% 
SubSystem 7499 22.30% 99 5.25% 

Sum 876 2.61% 119 6.31% 
Switch 1567 4.66% 98 5.20% 
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  Full-up (%) Simplified (%) 
Terminator 394 1.17% 37 1.96% 

TransferFcn 2 0.01% 36 1.91% 
TransportDelay 4 0.01% 25 1.33% 

Trigonometry 12 0.04% 25 1.33% 
TruthTable 3 0.01% - 0.00% 
UnitDelay 412 1.23% - 0.00% 

 

The simplified diagram is smaller and has a significant speed improvement over the full-

up diagram.  The Stateflow logic was removed, so the system was loaded at trim and 

there was no longer a need to “fly” to a trim point while the Stateflow logic initialized.  

For this reason, LINMOD can now be used instead of LINEARIZE. 
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Figure 60: Full-up vs. Simplified Broken Loop 
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Figure 60 above shows the broken loop frequency responses generated from 

sweeping both the full-up and simplified block diagrams.  Both systems are in good 

agreement from .5 to 16 rad/sec.  At high frequency, the simplified diagram has a higher 

phase roll-off.  There is a small phase delay difference of ½ time step present due to the 

fact that the simplified diagram is continuous, and the full-up diagram is hybrid.  The 

phase delay makes the simplified diagram more conservative in most axes.  The small 

difference in crossover frequency in the roll axis is due to the flatness near crossover, 

allowing very small changes in magnitude to have an effect on crossover frequency.  The 

changes in stability margins are summarized in the table below. 

Table 6: Stability margin changes between diagrams 

Axis Diagram Crossover  
Frequency 
(rad/sec) 

Phase 
Margin 
(deg) 

Gain Margin 
(dB) 

180 Crossing 
(rad/sec) 

Pitch Full-up 3.5 50.29 -9.86, 10.03 0.9, 9.8 
Simplified 3.5 48.00 -9.05, 9.97 0.9, 9.3 

Roll Full-up 3.8 53.83 -11.51, 7.80 1.2, 8.7 
Simplified 3.6 55.06 -10.25, 6.68 1.2, 8.0 

Yaw Full-up 5.7 26.96 -23.89, 7.89 0.7, 13.2 
Simplified 5.7 25.54 -26.15, 7.54 0.6, 12.4 

 

To compare both systems in time domain, step inputs were injected into the three 

attitude axes.  In the figures below, the rate responses to the corresponding step inputs are 

shown.  In the title of each plot, the RMS cost, as well as Theil inequality coefficient 

(TIC) for the error between the two diagrams are displayed.  A cost less than 1 and a TIC 

less than .25 are considered excellent for model matching (Ref 2.). 
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Figure 61: Step response in Pitch 
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Figure 62: Step response in Roll 
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Figure 63: Step response in Yaw 

Given the good agreement from the frequency responses, stability margins, and 

step responses, the simplified diagram can be considered as a valid simplification of the 

full-up diagram.  With the reduced computation cost the new CONDUIT case is easier to 

work with and was optimized in a reasonable amount of time. 
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B. Comparisons between the simplified block diagram and 
flight test data 

Another check that needs to be done is the validation between the simplified 

diagram and the aircraft based on flight test data.  These results are based on a new set of 

gains, so the stability margins have changed.  Below are the Bode plots of the pitch axis 

broken loop response, overlaying the two cases on the left and error plot on the right.  It 

can be seen that the simplified diagram is representative of the aircraft from about 2 

rad/sec to 14 rad/sec in the pitch axis.  The crossover frequency is near 3 rad/sec, so the 

low frequency magnitude needs improvement.  The phase curves are in good agreement 

across the frequency range. 
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Figure 64: Pitch broken loop 
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F1 : Flight test (8025, 0G12, DRB)

 
Figure 65: Pitch broken loop error 
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Below are the roll broken loop responses.  Similar to the pitch axis, the high 

frequency region has a better match, with magnitude errors at low frequency.  The good 

fit range is from 3 rad/sec to 15 rad/sec.  The fact that the errors near crossover frequency 

are exceeding the MUAD bounds is problematic, so the low frequency magnitude needs 

improvement. 

−40

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Roll broken loop

 

 

−360

−270

−180

−90

P
ha

se
 (

de
g)

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)

Flight test (8025, 0G12, DRB)
CONDUIT (TOS_V13_BOTH, 14CPR)

Figure 66: Roll broken loop 
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F1 : Flight test (8025, 0G12, DRB)

Figure 67: Roll broken loop error 
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Below is the yaw broken loop results.  Unlike pitch and roll, the yaw low 

frequency matchs up to 1.6 rad/sec, but the phase and magnitude errors at high frequency 

are much more dramatic than the pitch and roll results.  The crossover frequency of the 

yaw channel is also at a higher frequency, 4.39 rad/sec, so the high frequency errors are 

going to affect the accuracy of the analysis of the yaw axis more. 
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Figure 68: Yaw broken loop 
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F1 : Flight test (8025, 0G12, DRB)

 
Figure 69: Yaw broken loop error 
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Below is a table comparing the stability margins obtained from CIFER against 

that from the flight test data.  The stability margin differences are significant in all of the 

axes.  This indicates that the current model is insufficient in some way. Because of the 

close agreement between the full-up and simplified diagrams, the control system portion 

of the block diagram is probably not the problem.  Both the full-up and the simplified 

diagrams rely on the same math models, so the simplification would not have affected 

that portion of the diagram.  That indicates that the problem is a math model issue. 

Table 7: Flight test margin summary 

Axis Diagram Crossover 
(rad/sec) 

Phase 
Margin 
(deg) 

Gain Margin 
(dB) 

180 Crossing 
(rad/sec) 

Pitch Flight 2.5 51.77 -7.07, 11.67 0.9, 10.5 
Simplified 2.9 38.94 -13.12, 10.35 0.9, 9.1 

Roll Flight 3.3 55.19 -7.71, 8.55 1.1, 8.9 
Simplified 4.1 46.65 -17.94, 6.22 0.9, 8.3 

Yaw Flight 4.2 56.05 -11.04, 3.5 0.8, 22.1 
Simplified 4.4 35.17 N/A, 5.6 N/A, 7.7 
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The discrepancies seen here were documented and provided to the principle 

investigator, who confirmed that the math modeling inaccuracies accounted for the 

discrepancies.  These errors were corrected by adding a gain and time delay to the block 

diagram.  Below are some of the new broken loop response overlays based on the 

updated block diagram.  Further flight test data from the recently published AHS paper 

shows a much better match between the aircraft with two flight test records (9009 and 

8025) and the updated CONDUIT block diagram (Ref 8.). 
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Figure 70: Corrected pitch broken loop 
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Figure 71: Corrected roll broken loop 
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Figure 72: Corrected yaw broken loop 
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VIII. Validation of linearized model of a simplified flight 
control system model 

The previous section was completely focused on frequency responses generated 

from CIFER based on frequency sweeps.  After correcting the problems found between 

the simplified model and the aircraft, it is necessary to check that the linearization of the 

new diagram is correct.  Like the previous sections, the comparisons are between 

frequency responses generated from LINMOD to those generated from CIFER, to ensure 

the integrity of the linear model obtained with LINMOD. 

Broken loop responses in the three attitude channels were checked.  Below is the 

pitch broken loop.  Agreement is excellent across the entire frequency range, but there is 

a small phase error between the two responses, which will be discussed later. 
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Figure 73: Pitch broken loop 
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Figure 74: Pitch broken loop error 
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Figure 75 and Figure 76 show the roll broken loop comparisons between CIFER 

and LINMOD.  Unlike pitch, there appears to be some errors at ~.5 rad/sec.  This is the 

location of a lightly damped mode.  Lightly damped modes typically require much long 

window sizes to capture, which is impractical.  The location of the root is very close in 

both CIFER and LINMOD, so there is no reason to expect linearization errors there.  At 

frequencies below the lightly damped mode the magnitude curve matches again.  

However, the phase appears to have a large error.  This is just due to phase wrapping, 

which is confirmed on the error plot that there is no real problem.  At high frequency 

there is a similar phase roll off as found in pitch. 
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Figure 75: Roll broken loop 
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Figure 76: Roll broken loop error 
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In the yaw axis, the same small high frequency phase roll-off is present as in pitch 

and roll.  Additionally, in these figures at the low frequency errors there are some 

problems with the CIFER frequency responses as indicated by the drop in coherence.  

This is limitation of the validation tool due to drift in the system.  However, the range of 

good identification is from .4 to 20 rad/sec, which is more than enough to compare 

validation results against CONDUIT. 
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Figure 77: Yaw broken loop 
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Figure 78: Yaw broken loop error 

Since each of the axes has a additive phase delay, there must be some elements in 

the block diagram that is causing the discrepancy.  Below is a table summarizing the 

estimated time delay errors in each channel.  The fact that the delays are close to 1-2 time 

step is the first hint to the problem.  Looking back to the validation work for the open 

loop simple 2nd order system, this error looks very much like an error due to a memory 

block.  

Table 8: Summary of found time delays 

Axes Time delay (msec) N*dt 
Pitch 20.8 2.56 
Roll 10.0 1.28 
Yaw 11.2 1.4 
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Looking through the simplified block diagram, memory blocks were indeed found 

in front of the system plant, as show in the figure below.  As discussed earlier, if the 

memory block is replaced with a time delay of 1 time step, the time domain simulation 

will be unaffected and the linearized model will capture the delay correctly. 

 

Figure 79: Memory blocks in path 

After replacing the memory blocks with time delays, the estimated delay error 

decreased by ~10 ms, although each channel still had phase errors at high frequency.  

After examining the diagram further it was found that several time delays in the feedback 

path had their Pade approximation order set to zero.  This means that LINMOD was 

completely ignoring the effect of the time delay, and hence the error showed up during 

the validation. 
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Figure 80: Pade order zero 

It was not clear why the Pade order was left at the default value of zero.  Perhaps 

the engineer that developed the Simulink block diagram forgot to set the order to two, or 

there may have been some other engineering reason for leaving the order at zero.  

Regardless, the setting caused LINMOD to ignore the time delay.  This error introduces a 

small, but present difference between the linearized model and the full simulation model. 

By replacing the memory blocks with time delays and setting the Pade order to non-zero 

in the existing time delays, the CIFER and LINMOD results agree perfectly in the 

frequency range of interest, as seen in the figures below.  
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Figure 81: Corrected pitch broken loop 
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Figure 82: Corrected pitch broken loop error 
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The amount of phase margin lost due to the discrepancies was around 4 degrees. 

Differences in gain margins were also seen because the 180 degree point was reached 

sooner.  The biggest problem with these discrepancies would show up when tuning 

correction factors.  If tuned to the LINMOD frequency responses, the corrected model 

will be more liberal in margins than indicated by CIFER frequency response or the model 

in the time domain.  Now that the LINMOD and CIFER frequency responses match, 

tuning done to the model will achieve the correct effect in both time and frequency 

domains. 
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IX. Conclusion 
The new CIFER command line interface has provided a reliable and stable 

platform to create the validation tool.  The MATLAB class structure allows for reduced 

complexity of the out-lying code by encapsulating and streamlining the CIFER system 

identification process.  The new frequency response class also allows the retrieval 

frequency responses from the CIFER database and frequency response plots to be 

generated with little work. 

The process for sweeping block diagrams is now easy enough to be performed on 

any CONDUIT block diagram with little to no setup.  The validation tool GUI provides a 

simple push-button functionality to perform validation work.  The ease of the validation 

tool should benefit users by reducing the time it takes to validate the linearization 

process. 

The simple 2nd order and XV-15 examples give confidence that CIFER is 

providing an accurate truth model from the time domain simulation.  CIFER matches the 

analytic describing function for all of the tested nonlinearities.  In the few cases where the 

validation process broke down, the coherence provided enough information to determine 

the valid range of the validation.  In the observed case where CIFER did not correctly 

identify the broken loop response due to rate limiting and the missing indication from the 

coherence data, the CIFER results were obviously not the broken loop response and a 

warning was added to notify the user of the potential problem. 

The RASCAL example showed how a complex block diagrams can be validated 

using the CIFER command line interface for more than the linearization process.  The 

RASCAL simplified diagram was validated utilizing the CIFER command line interface 
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against both the full-up diagram and flight test data.  Additionally the linearization 

validation showed some small linearization problems, and they were fixed.  These 

validations proved that the automated sweeping process can handle complex diagrams. 

The validation of linearization method against system identification has proven to 

be effective.  Some mistakes were found and fixed, and the validation tool allows for re-

validation to be performed very quickly. 

Thanks to this work, system identification of Simulink simulations can now be 

done quickly and effectively when associated with a CONDUIT case.  Part of the future 

work will be to generalize the Simulink integration to allow system identification of any 

Simulink diagram in an automated fashion. 
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X. Appendix A: 1st over 2nd plots 
See Supplementary File simple_1_2.pdf 
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XI. Appendix B: Analysis script examples 

1. Flight test analysis example 

This example shows the processing of flight test data from the 8025 flight test 

shown in the thesis.  This is a typical analysis setup, just done with the new command 

line. 

run_cases.m 
clear; clc; close all 
  
% Specify flight number 
flight = '8025'; 
  
% Choose windows 
window = [36,20,15,10,5]; 
  
% Link time history events with channel names and min/max frequencys 
events = { 
    3   'VIPPITCH'  'VIP PITCH AXIS CHRIP'          'EP' 'FP' [35,20,15,10,5]    .5   25 
    4   'VIPROLL'   'VIP ROLL AXIS CHRIP'           'ER' 'FR' window             .8   25 
    5   'VIPYAW'    'VIP YAW AXIS CHRIP'            'EY' 'FY' window             .5   45 
    6   'VIPVERT'   'VIP VERTICAL AXIS CHRIP'       'EC' 'FC' window             0   20 
    7   'DRBPITCH'  'HIGH DRB PITCH AXIS CHRIP'     'EP' 'FP' window             .5   25 
    8   'DRBROLL'   'HIGH DRB ROLL AXIS CHRIP'      'ER' 'FR' window             .7   25 
    9   'DRBYAW'    'HIGH DRB YAW AXIS CHRIP'       'EY' 'FY' window             .75   43 
    10  'DRBVERT'   'HIGH DRB VERTICAL AXIS CHRIP'  'EC' 'FC' window             .45   20 
    11  'BASPITCH'  'BASELINE PITCH AXIS CHRIP'     'EP' 'FP' window             .65   25 
    12  'BASROLL'   'BASELINE ROLL AXIS CHRIP'      'ER' 'FR' window             .6   25 
    13  'BASYAW'    'BASELINE YAW AXIS CHRIP'       'EY' 'FY' window             .6   40 
    14  'BASVERT'   'BASELINE VERTICAL AXIS CHRIP'  'EC' 'FC' window             .3   20 
    }; 
  
% Prepare the command line interface for use 
setup_CIFER; 
  
warning('off','UH60M_CIFER:Field_missing') 
% Interate through each event 
for i = 1:size(events,2) 
    % Perform some transformation and unit conversions on the flight test 
    % data 
    [filename, data, uh60_2_cifer, cifer_2_uh60] =  ... 
        uh60m_cifer(['.' filesep 'data\'],flight,events{i,1}); 
  
    % Generate a blank frespid_obj 
    fre = frespid_obj; 
    % Set the case name and comments 
    fre.name = events{i,2}; 
    fre.comments = events{i,3}; 
  
    % These responses are SISO, so no need for cross correlation 
    fre.crosscor = false; 
  
    % Set the input and output names 
    fre.controls{1} = events{i,4}; 
    fre.outputs{1} = events{i,5}; 
  
    % Setup the time history file, in this case it is from a MATLAB .MAT 
    % file, source 4 
    fre.thfiles(1).source = 4; 
    fre.thfiles(1).flight = str2double(flight); 
    fre.thfiles(1).event = events{i,1}; 
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    fre.thfiles(1).filename = filename; 
  
    % Compute all response pairs 
    fre.frcalc(:) = true; 
  
    window_length = events{i,6}; 
    min_freq = events{i,7}; 
    max_freq = events{i,8}; 
  
    % Set the windows 
    for j = 1:numel(window_length) 
        fre.windows(j).on = true; 
        fre.windows(j).length = window_length(j); 
        fre.windows(j).min_freq = min_freq; 
        fre.windows(j).max_freq = max_freq; 
    end 
  
    % Create the composite case 
    com = composite_obj(fre); 
  
    clean_BATDIR(fre.name) 
  
    % Submit COMPOSITE FRESPID job 
    job = batch(fre); 
    wait(job); 
  
    if(~check(job)) 
        error('FRESPID job %d failed', i) 
    end 
  
    % Submit the COMPOSITE job 
    job = batch(com); 
    wait(job); 
  
    if(~check(job)) 
        error('COMPOSITE job %d failed', i) 
    end 
  
    frname{i} = [events{i,2} '_COM_ABCDE_' events{i,4} '_' events{i,5}]; 
  
    fr{i} = ciffrq(frname{i}); 
  
    % Compute gain and phase margins, and bandwidth 
    [phase{i}, gain{i}] = crossover(fr{i}); 
    bw{i} = bandwidth(fr{i}); 
end 
  
for i = 1:numel(fr) 
    % Write the frequency responses to .mat files for overlaying 
    writeFRfile(fr{i}.name,[fr{i}.name '.mat'], 'M', int32([1 -1 1])); 
end 
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2. XV-15 batch validation example 

The plots for the XV-15 example were generated using the following script.  The 

2nd order elements and RASCAL validations were done via similar scripts. 

close all;clc 
  
fields = {'id', 'in', 'out','bl','stick_fac'}; 
  
outputs = {'v' 'p' 'r' 'ay' 'phi' 'psi'}; 
  
% Maximum stick amounts 
lat_max = 4.8; 
ped_max = 2.5; 
  
% Specific the input, output and switches for the validation 
data = { 
    'Closed loop LAT'  'd_lat_s' 'p'           [] lat_max 
    'Closed loop PED'  'd_ped_s' 'r'           [] ped_max 
    'Broken loop LAT'  'd_lat_c_in' 'd_lat_c_out'  1  lat_max*1.5 
    'Broken loop PED'  'd_ped_c_in', 'd_ped_c_out' 2  ped_max*2.8}; 
  
cases = cell2struct(data, fields, 2); 
  
% Percent throw 
Amps = [.002 .15 .5]; 
% Iterate over each percentage 
for j = 1:numel(Amps) 
    minfreq = .1; 
    maxfreq = 10; 
    Amp = Amps(j); 
    scenarios = {}; 
    switches = []; 
  
    % Iterate over each case 
    for i = 1:numel(cases) 
        fprintf('%.3f\n',100*(i/numel(cases))) 
  
        % This function calls LINMOD and does the CIFER sweeping 
process 
        % and returns the frequency response, the frespid and composite 
        % case, and the time history data 
        [linmod_tf{i,j}, cifer_fr{i,j}, fre, com, thdata{i,j}] = ... 
            validate_short(cases(i).in, cases(i).out, switches, ... 
            cases(i).bl, scenarios, minfreq, maxfreq, ... 
            Amp*cases(i).stick_fac); 
    end 
  
end 
  
% Save the results for plotting 
save results linmod_tf cifer_fr cases thdata Amps 
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XII. Appendix C: Sweep equation 
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XIII. Appendix D: Second order elements metrics 

Case  Source 

Gain 
Margin 
(dB) 

Phase 
Margin 
(deg) 

Crossover 
frequency 
(rad/sec) 

Bandwidth 
(rad/sec) 

Baseline (open loop) CIFER 9.553 17.725 4.717 N/A 
  LINMOD 9.571 17.788 4.713 N/A 
  Difference 0.188% 0.358% -0.078% N/A 
Hysteresis (open loop) CIFER 2.994 7.396 4.428 N/A 
  LINMOD N/A N/A N/A N/A 
  Difference N/A N/A N/A N/A 
Dead zone (open loop) CIFER 12.203 24.858 4.058 N/A 
  LINMOD 9.571 17.788 4.713 N/A 
  Difference -21.567% -28.443% 16.161% N/A 
Saturation (open loop) CIFER 10.509 20.411 4.471 N/A 
  LINMOD 9.571 17.788 4.713 N/A 
  Difference -8.924% -12.852% 5.420% N/A 
Lookup table (open loop) CIFER 10.591 20.570 4.457 N/A 
  LINMOD 15.591 36.571 3.236 N/A 
  Difference 47.213% 77.792% -27.396% N/A 
Memory block (open loop) CIFER 6.051 13.699 4.716 N/A 
  LINMOD 9.571 17.788 4.713 N/A 
  Difference 58.171% 29.844% -0.053% N/A 
Time delay (open loop) CIFER 1.401 4.193 4.715 N/A 
  LINMOD 1.372 4.286 4.713 N/A 
  Difference -2.031% 2.205% -0.032% N/A 
Rate limit (open loop) CIFER 3.983 14.527 4.684 N/A 
  LINMOD 9.571 17.788 4.713 N/A 
  Difference 140.276% 22.445% 0.622% N/A 
Baseline (good design) CIFER 18.732 49.471 2.554 4.274 
 LINMOD 18.483 49.339 2.577 4.274 
 Difference -1.324% -0.268% 0.912% -0.006% 
Baseline (bad design) CIFER 9.543 17.833 4.694 7.210 
 LINMOD 9.571 17.788 4.713 7.196 
 Difference 0.289% -0.254% 0.405% -0.194% 
Hysteresis (good design) CIFER 9.898 40.530 1.805 3.732 
 LINMOD N/A N/A N/A N/A 
 Difference N/A N/A N/A N/A 
Hysteresis (bad design) CIFER 6.376 14.316 4.648 6.914 
 LINMOD N/A N/A N/A N/A 
 Difference N/A N/A N/A N/A 
Dead zone (good design) CIFER 27.611 N/A N/A 3.600 
 LINMOD 18.483 49.339 2.577 4.274 
 Difference -33.059% N/A N/A 18.721% 
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Dead zone (bad design) CIFER 11.427 19.915 4.459 6.866 
 LINMOD 9.571 17.788 4.713 7.196 
 Difference -16.244% -10.679% 5.710% 4.813% 
Saturation (good design) CIFER 18.083 48.848 2.474 3.728 
 LINMOD 18.483 49.339 2.577 4.274 
 Difference 2.212% 1.006% 4.170% 14.638% 
Saturation (bad design) CIFER 12.091 34.318 3.664 5.493 
 LINMOD 9.571 17.788 4.713 7.196 
 Difference -20.846% -48.167% 28.641% 31.011% 
Lookup table (good design) CIFER 21.455 68.796 1.689 3.939 
 LINMOD 24.504 75.460 1.294 2.741 
 Difference 14.212% 9.686% -23.411% -30.423% 
Lookup table (bad design) CIFER 10.136 18.136 4.645 7.045 
 LINMOD 15.591 36.571 3.236 5.099 
 Difference 53.828% 101.650% -30.330% -27.617% 
Memory block (good 
design) CIFER 15.105 47.269 2.554 4.307 
 LINMOD 18.483 49.339 2.577 4.274 
 Difference 22.369% 4.378% 0.876% -0.784% 
Memory block (bad design) CIFER 6.126 13.775 4.687 7.213 
 LINMOD 9.571 17.788 4.713 7.196 
 Difference 56.223% 29.130% 0.553% -0.232% 
Time delay (good design) CIFER 10.361 42.141 2.549 4.352 
 LINMOD 10.285 41.957 2.577 4.346 
 Difference -0.736% -0.437% 1.073% -0.130% 
Time delay (bad design) CIFER 1.387 4.347 4.645 7.131 
 LINMOD 1.372 4.286 4.713 7.080 
 Difference -1.036% -1.418% 1.466% -0.722% 
Rate limit (good design) CIFER 13.737 50.138 2.539 4.109 
 LINMOD 18.483 49.339 2.577 4.274 
  Difference 34.552% -1.593% 1.484% 3.996% 
Rate limit (bad design) CIFER 8.847 14.998 4.698 7.223 
  LINMOD 9.571 17.788 4.713 7.196 
  Difference 3.611% 18.606% 0.327% -0.370% 
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