

VALIDATION OF LINEARIZED FLIGHT MODELS USING

AUTOMATED SYSTEM-IDENTIFICATION

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Aerospace Engineering

by

Keith Eric Rothman

May 2009

 ii

© 2009
Keith Eric Rothman

ALL RIGHTS RESERVED

 iii

Committee Membership

TITLE: Validation of Linearized Flight Models using

 Automated System-Identification

AUTHOR: Keith Eric Rothman

DATE SUBMITTED: May 2009

COMMITTEE CHAIR: Dr. Daniel J. Biezad

 Aerospace Engineering Professor

COMMITTEE MEMBER: Dr. Eric Mehiel

 Aerospace Engineering Professor and Co-Chair

COMMITTEE MEMBER: Dr. Mark B. Tischler

 Army Aeroflightdynamics Directorate

COMMITTEE MEMBER: Kenny K. Cheung

 UARC

 iv

Abstract
Validation of Linearized Flight Models using

Automated System-Identification

Keith Eric Rothman

Optimization based flight control design tools depend on automatic linearization tools,
such as Simulink®’s LINMOD, to extract linear models. In order to ensure the
usefulness and correctness of the generated linear model, this linearization must be
accurate. So a method of independently verifying the linearized model is needed. This
thesis covers the automation of a system identification tool, CIFER®, for use as a
verification tool integrated with CONDUIT®, an optimization based design tool. Several
test cases are built up to demonstrate the accuracy of the verification tool with respect to
analytical results and matches with LINMOD. Several common nonlinearities are tested,
comparing the results from CIFER and LINMOD, as well as analytical results where
possible. The CIFER results show excellent agreement with analytical results. LINMOD
treated most nonlinearity as a unit gain, but some nonlinearities linearized to a zero,
causing the linearized model to omit that path. Although these effects are documented
within Simulink, their presence may be missed by a user. The verification tool is
successful in identifying these problems when present. A section is dedicated to the
diagnosis of linearization errors, suggesting solutions where possible.

 v

Acknowledgements

The author would like to give thanks to Dr. Daniel J. Biezad, Professor at Cal

Poly, San Luis Obispo, CA, Dr. Mark B. Tischer, Flight Control Group Leader, Army

Aeroflightdynamics Directorate, Ames Research Center, CA, Kenny K. Cheung,

Developer, UARC, Ames Research Center, CA, and Dexter Hermstad, Developer,

UARC, Ames Research Center, CA, for the patience and hard work they have given to

make this thesis possible; Thanks to Mohammadreza Hossein Mansur and Christy Ivler

for making sense of strange questions. To everyone that has played a part in making this

thesis possible, I thank you.

 vi

Table of Contents

Table of Figures ...viii

Table of Tables... xi

Nomenclature .. xii

I. Introduction ... 1

II. Background Information .. 2

A. Optimization based Flight Control Design ... 2

B. Validation .. 3

C. System Identification ... 8

1. CIFER ... 8

2. Describing functions and CIFER .. 8

3. CIFER Process ... 9

III. CIFER command line interface .. 13

A. Legacy command line interface ... 13

B. Object-based command line interface... 14

1. Goals ... 14

2. FRESPID Classes .. 15

3. MISOSA and COMPOSITE Classes .. 23

4. CIFER Frequency Response Class ... 25

IV. Analyzing simulation using system identification .. 31

A. Automating the process.. 31

1. Obtain time histories from the Simulink diagram ... 31

2. Packaging the data ... 35

3. Creating a FRESPID case .. 35

4. Generating the frequency responses ... 40

B. Integration with CONDUIT ... 41

C. Limitations .. 47

V. Comparison of system identification results with theoretical predictions and

LINMOD for a simple open loop elements .. 49

A. Validations .. 50

1. Baseline ... 50

 vii

2. Hysteresis .. 52

3. Saturation... 54

4. Dead zone .. 57

5. Lookup Table ... 59

6. Time delay ... 61

7. Memory block and unit delay ... 64

8. Rate limiting .. 66

B. Table of results .. 70

VI. Analysis of simple feedback flight control systems .. 71

A. Closed loop validation for simple 2nd order system .. 71

B. XV-15 ... 79

VII. Simplification and verification of a comprehensive flight control system 84

A. Block diagram simplification ... 84

B. Comparisons between the simplified block diagram and flight test data 90

VIII. Validation of linearized model of a simplified flight control system model 95

IX. Conclusion... 101

X. Appendix A: 1st over 2nd plots .. 103

XI. Appendix B: Analysis script examples ... 104

1. Flight test analysis example ... 104

2. XV-15 batch validation example .. 106

XII. Appendix C: Sweep equation ... 107

XIII. Appendix D: Second order elements metrics .. 108

XIV. Works Cited... 110

 viii

Table of Figures

Figure 1: Example system ... 4

Figure 2: Bandwidth example .. 6

Figure 3: Broken loop setup... 6

Figure 4: Broken loop metrics ... 7

Figure 5: Old FRESPID CLI ... 16

Figure 6: New FRESPID CLI .. 17

Figure 7: Time history plotting .. 19

Figure 8: Crossover plot .. 26

Figure 9: Error plot example .. 28

Figure 10: Sweep frequency .. 33

Figure 11: Sweep amplitude .. 33

Figure 12: Completed sweep without noise (1-10 rad/sec) ... 34

Figure 13: Frequency point distribution ... 37

Figure 14: CONDUIT Broken Loop Switch... 42

Figure 15: CONDUIT Broken Loop Switch Off .. 43

Figure 16: CONDUIT Broken Loop Switch On (Ref 7.) .. 43

Figure 17: Linearization Validation Tool ... 44

Figure 18: Estimate correction example ... 46

Figure 19: Simple 2nd order setup .. 49

Figure 20: Baseline validation ... 51

Figure 21: Hysteresis placement .. 52

Figure 22: Hysteresis ... 52

Figure 23: Open loop Hysteresis validation ... 53

Figure 24: Saturation ... 54

Figure 25: Open loop Saturation validation .. 55

Figure 26: Saturation parameters ... 56

Figure 27: Dead zone .. 57

Figure 28: Open loop dead zone validation .. 58

Figure 29: Lookup table .. 59

 ix

Figure 30: Open loop lookup table validation .. 60

Figure 31: Open loop time delay validation with non-zero Pade order 62

Figure 32: Open loop time delay validation with Pade order zero 63

Figure 33: Open loop memory validation... 65

Figure 34: Rate limiting effects ... 66

Figure 35: Open loop rate limit validation ... 68

Figure 36: Time domain effect of rate limiting case ... 69

Figure 37: Step response of the good design .. 72

Figure 38: Step response of the bad design .. 72

Figure 39: Closed loop (good design) .. 72

Figure 40: Hysteresis closed loop (good design) .. 73

Figure 41: Hysteresis closed loop (bad design) .. 73

Figure 42: Hysteresis broken loop (good design) ... 73

Figure 43: Hysteresis broken loop (bad design) ... 73

Figure 44: Dead zone closed loop (good design) .. 74

Figure 45: Dead zone closed loop (bad design) .. 74

Figure 46: Dead zone broken loop (good design) ... 74

Figure 47: Dead zone broken loop (bad design) ... 74

Figure 48: Lookup table closed loop (good design) .. 75

Figure 49: Lookup table closed loop (bad design) .. 75

Figure 50: Lookup table broken loop (good design) ... 75

Figure 51: Lookup table broken loop (bad design) ... 75

Figure 52: Delay closed loop (good design) ... 76

Figure 53: XV-15 Block diagram ... 79

Figure 54: Lateral broken loop .. 80

Figure 55: Direction broken loop ... 80

Figure 56: Lateral closed loop ... 81

Figure 57: Directional closed loop ... 81

Figure 58: Broken loop setup ... 81

Figure 59: Unstable broken loop .. 83

Figure 60: Full-up vs. Simplified Broken Loop .. 87

 x

Figure 61: Step response in Pitch ... 89

Figure 62: Step response in Roll .. 89

Figure 63: Step response in Yaw ... 89

Figure 64: Pitch broken loop ... 90

Figure 65: Pitch broken loop error ... 90

Figure 66: Roll broken loop ... 91

Figure 67: Roll broken loop error .. 91

Figure 68: Yaw broken loop .. 92

Figure 69: Yaw broken loop error .. 92

Figure 70: Corrected pitch broken loop.. 94

Figure 71: Corrected roll broken loop .. 94

Figure 72: Corrected yaw broken loop ... 94

Figure 73: Pitch broken loop ... 95

Figure 74: Pitch broken loop error ... 95

Figure 75: Roll broken loop ... 96

Figure 76: Roll broken loop error .. 96

Figure 77: Yaw broken loop .. 97

Figure 78: Yaw broken loop error .. 97

Figure 79: Memory blocks in path ... 98

Figure 80: Pade order zero ... 99

Figure 81: Corrected pitch broken loop.. 99

Figure 82: Corrected pitch broken loop error ... 99

 xi

Table of Tables

Table 1: Windowing parameters .. 36

Table 2: Percent change between CIFER and LINMOD in open loop 70

Table 3: Simple 1/2 closed loop summary ... 71

Table 4: Summary of Percent metric changes between CIFER and LINMOD 77

Table 5: Block Summary ... 86

Table 6: Stability margin changes between diagrams ... 88

Table 7: Flight test margin summary ... 93

Table 8: Summary of found time delays .. 97

 xii

Nomenclature
A = Amplitude of oscillation

nA = Fourier coefficients

AIL = Aileron control
ADS = Aeronautical Design Standards
AFDD = Army Aeroflightdynamics Directorate
B = Hysteresis dead band width

nB = Fourier coefficients

bl_in = Broken loop input
bl_out = Broken loop output

()fˆ
xy
2γ = Coherence function

1C = Sweep constant 1

2C = Sweep constant 2
CIFER® = Comprehensive Identification from FrEquency Responses
ciffrq = CIFER frequency response object
coh = Coherence
COMPOSITE = “CIFER program to combine multiple windows to achieve a final frequency response”

(Ref 2.)
composite_obj = COMPOSITE case interface object
CONDUIT® = Control Designer’s Unified Interface
CZT = Chirp-Z transform, zoom transform
δ = Actuator output

comδ = Actuator command

noiseδ = Frequency sweep noise

pilotδ = Pilot input

sweepδ = Frequency sweep

D = Dead zone width
dB = Decibel
deg = Degrees
DERIVID = “CIFER program used to identify a state-space model” (Ref 2.)
DFT = Discrete Fourier Transform
dt = Time history step size (seconds)
e = Error signal

f = Feedback signal

filterf = Filter frequency (Hz)

samplef = Sample frequency (Hz)

FFT = Fast Fourier Transform
FRESPID = “CIFER program that calculates SISO frequency responses using a chirp z-transform”

(Ref 2.)
frespid_obj = FRESPID case interface object

()fG
~

xx = Rough input auto-spectrum

()fĜxx = Smooth input auto-spectrum

()fG
~

yy = Rough output auto-spectrum

 xiii

()fĜyy = Smooth output auto-spectrum

()fG
~

xy = Rough cross spectrum

()fĜxy = Smooth cross spectrum

GUI = Graphical user interface

1Ĥ = Input frequency response estimate

2Ĥ = Output frequency response estimate

1k = Lookup table inner slope

2k = Lookup table outer slope

lat = Lateral control
LINMOD = Simulink’s block diagram linearization function
LTI = Linear time invariant
mag = Magnitude (dB)
MATLAB® = MATrix LABoratory from The MathWorks™
MIMO = Multi-input/Multi-output
MISOSA = “CIFER program that determines frequency responses when multiple inputs are

present” (Ref 2.)
misosa_obj = MISOSA case interface object
MUAD = Maximum unnoticeable added dynamics
NAVFIT = “CIFER program used to identify a transfer-function model” (Ref 2.)
p = Roll rate (radian/second)

ped = Pedal input
PIO = Pilot induced oscillation
r = Yaw rate (radian/second)
R = Rate limit
rad = Radian
S = Saturation limit
SAS = Stability Augmentation System
sec = Second
Simulink® = Block diagram modeling software from The MathWorks™
τ = Time constant (seconds)
SISO = Single-input/Single-output

()tθ = Sine argument (radians)
TIC = Theil inequality coefficient

maxT = Maximum chosen window size (second)

it
T

limmax = Maximum allowable window size (second)

minT = Minimum chosen window size (second)

recT = Record length (second)

fadeint = Frequency sweep fade-in length (second)

fadeoutt = Frequency sweep fade-out length (second)

thdt = Time history step size (second)

parkt = Amount of time spent at low frequency during sweep (second)

trimt = Amount of time sweep held at zero for trim (second)

zerot = Amount of time sweep held at zero (second)

VERIFY = “CIFER program (state-space model verification) used to check the time-domain

 xiv

predict accuracy of an identified model” (Ref 2.)
y = Output

ŷ = Measured output
W = Lookup table width
ω = Sine frequency (radian/second)

limω = Rate limiting limit frequency (radian/second)

maxω = Maximum frequency of interest (radian/second)

limitmaxω = Maximum allowable frequency of interest (radian/second)

minω = Minimum frequency of interest (radian/second)

itlimminω = Minimum allowable frequency of interest (radian/second)

onsetω = Rate limiting on-set frequency (radian/second)

 1

I. Introduction
Modern flight control simulation diagrams are complicated to the point where

automated linearization tools are important for efficient analysis. These tools are being

integrated into smarter analysis tools and optimizers. However, the validation of such

linearization tools is lacking.

This thesis utilizes a frequency domain system identification method, CIFER®

(Ref 2.), to provide a truth model for the validation of linearization tools. The need and

development of a more robust and flexible command line interface to CIFER for

automated system identification is discussed. One integration method with Simulink®

block diagrams is explained and implemented in a validation tool.

The validation tool is for an integrated control design suite called CONDUIT®

(Ref 11.). CONDUIT uses the linearization method LINMOD, a linearization method for

Simulink diagrams. In this thesis several validations are performed against examples of

increasing complexity to demonstrate the validation tool’s ability to provide a truth model

and some potential problems with the LINMOD linearization.

 2

II. Background Information

A. Optimization based Flight Control Design
With the increased power of flight computer systems, some modern flight control

systems can now be complicated enough that manual gain selection is impractical.

Optimization based control design is a method that uses computers to choose gain sets

given a set of objectives and constraints. This thesis specifically focuses on CONDUIT,

a program that uses this approach to control design (Ref 11.).

CONDUIT is a control design program that uses Simulink diagrams to express the

system plant and control system. CONDUIT drives the optimization using results from

the Simulink diagram.

CONDUIT utilizes time-domain and frequency-domain metrics to drive the

optimization. For time-domain metrics, CONDUIT uses Simulink to perform a

simulation given input time signals and it returns the output time responses. Simulink’s

simulation accurately accounts for all blocks present in the diagram, such as hysteresis or

S-Functions. This can be used for time domain metrics based on step responses and

impulses or looking for time-domain performance specifications, such as rise time.

For frequency-domain metrics, CONDUIT uses the functionality provided by the

MATLAB® Control System Toolbox™ to extract a linearized state-space model from a

Simulink diagram. In the linearization, some blocks have exact analytical forms, such as

transfer functions or gains. However some blocks will not have exact analytical forms,

so the linearization process will either perturb the block or it will use a representation

chosen by the user. Given this state-space system, frequency responses based on

 3

particular input-output pairs can be generated. CONDUIT then calculates frequency

domain performance metrics such as gain and phase margin, crossover or bandwidth.

For piloted aircraft, CONDUIT uses handling quality specifications based on the

appropriate literature (ADS 33 (Ref 13.), 9490 (Ref 12.), etc.) as constraints and

objectives. For each of these specifications, a numerical score is assigned based on its

ability to meet the specification. The optimizer uses a gradient-based algorithm to search

for a new set of gains that satisfies the constraints and improves the worst score.

CONDUIT repeats the process until it satisfies all constraints and has reached an

optimized solution. The gains that CONDUIT generates are then based entirely on the

quality of the time responses and linear models generated from the Simulink diagram. If

the time responses or linear models from the diagram do not adequately match the aircraft

response as measured in flight, then the gains will not generate the expected performance,

requiring further refinement, or worse CONDUIT is not optimizing on a representative

model of the aircraft.

B. Validation
In order to prevent mismatch between the aircraft and the model as represented in

the Simulink diagram, the diagram must be validated. There are two types of validation

that need to be performed. The first is validation between the aircraft and the Simulink

diagram. The second is a validation between the Simulink diagram and the linearized

state-space model extracted from the diagram.

The validation between the aircraft and the diagram requires flight testing to

gather the data for analysis. For this thesis, a frequency domain-based validation

procedure will be discussed that compares the frequency response attained from flight

 4

test data with those attained from the simulation. The process of generating frequency

responses from the time history data will be discussed later. This validation ensures the

simulation is representative of the aircraft. Errors shown in this validation would indicate

a modeling deficiency.

The second class of validation is between the Simulink simulation of the diagram

and the generated linearized state-space model extracted from the diagram. This ensures

that the dynamic response of the linearized model is an accurate characterization of the

complete block diagram. This validation is between frequency responses data from the

simulation and the linearized state-space model. Any differences between the frequency

responses from the time history data and the linearized model are discrepancies in the

linearization processes. The validation between the Simulink diagram and the linearized

model of the simulation will be the focus of this thesis.

In both classes of validation there are three different frequency response pairs that

should be checked. Each response will check characteristics of the model, so all three

need to be done. The frequency response only needs to match in the frequency range of

interest, which is near crossover. The rule of thumb for frequency range of interest is one

third to three times the crossover frequency (Ref 10.).

Figure 1: Example system

The first set of response pairs to check is the bare airframe responses. This is

from either before or after the actuators to sensor output. In the example system shown

ŷcomδ δ
pilotδ

 5

above, the bare airframe is either
δ
ŷ

 or
com

ŷ

δ
 depending on where the actuator sensing is

located. These responses characterize the core behaviors of the aircraft in the absence of

augmentation. The accuracy of these responses will determine the accuracy of the

modeling of the bare airframe. If improvements in agreement between the aircraft and

the Simulink diagram are needed, system identification techniques can be used to directly

generate a model to match flight test data. When performing system identification to

obtain a model, the match quality between the simulation and the aircraft is only a

function of the identification method and flight data quality. When using physics-based

modeling to generate the simulation plant, errors that show up in the validation will need

to be tracked down in the physics-based modeling code.

The second set of frequency responses to check is the closed loop response pairs.

This is from pilot stick to sensor output. In the system shown in the figure above, the

closed loop pair is
pilot

ŷ

δ
. These pairs will be used to determine bandwidth, and will be

ultimately what the pilot experiences. Bandwidth is typically defined as the frequency

where the magnitude drops 3 dB below the steady state value. The figure below shows a

second order system and its bandwidth. Bandwidth represents the maximum frequency

that the system can pass through and can be considered the speed of response of the

system. However, just matching the closed loop response pairs is insufficient to validate

the simulation because the loop closures will wash out the key features of the feedback

system. For that reason, bare airframe and broken loop responses must also be checked.

 6

10
−1

10
0

10
1

−40

−30

−20

−10

0

10
Calculated bandwidth at 3db below steady−state is 4.3056 rad/sec.

G
ai

n
[d

B
]

Frequency [rad/sec]

10
−1

10
0

10
1

−200

−150

−100

−50

0

Frequency [rad/sec]

P
ha

se
 [d

eg
]

Figure 2: Bandwidth example

Figure 3: Broken loop setup

The last set of response pairs to check is the broken loop responses. This is from

error to feedback

e

f
. This will capture all the important characteristics that determine

closed loop behavior. It will include the characteristics of the bare airframe as well as

time-delay or dynamics in the feedback system, such as computational delays. Errors in

the broken loop responses can be from a large number of sources, including the bare

airframe response. For this reason, conduct bare airframe validation before the broken

loop will help eliminate math modeling errors. Ensuring the broken loop responses

 7

match will provide good confidence that the CONDUIT analysis results are good

representations of the aircraft.

The broken loop is used to generate gain margin, phase margin, and crossover

frequency. Crossover frequency is the point where the system crosses 0 dB. Phase

margin is the phase above -180 degrees at the crossover frequency. Gain margin is the

magnitude in dB below 0 at the -180 degree phase crossing. These points are illustrated

below. Crossover frequency is used as a prediction of closed loop bandwidth, and

therefore system speed. Gain and phase margins are measures of stability and robustness

against unknown plant changes. Have too little margin means unknown variation may

cause the closed loop system to go unstable. Phase margin is also a measure of closed

loop damping ratio. Having too little phase margin will cause many overshoots. Having

too much phase margin may cause a first order response, which is slower than a well

damped second order response. Pilots tend to expect second order responses in systems.

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

−360

−270

−180

−90

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 4: Broken loop metrics

 8

C. System Identification

1. CIFER

The generation of frequency responses for validation from time history data can

be achieved using a frequency domain system identification method. This thesis uses

CIFER (Ref 2.) to perform frequency domain system identification. CIFER provides a

set of tools that will filter time history data, perform a discrete Fourier transform on the

time history data, and generate a frequency response. CIFER utilizes a multi-window

averaging technique to get good resolution over the frequency range of interest and

minimize noise. It has been used on many flight programs with success, proving it to be a

reliable system identification tool (e.g. UH-60M (Ref 8.), XV-15 (Ref 9.), RMAX UAV

(Ref 2.)). It also provides the ability for both parametric SISO and MIMO modeling,

depending on the desired goal.

2. Describing functions and CIFER

Describing functions (DF) are methods for linearizing nonlinearities. The most

common describing function class and the one that is going to be used through-out this

thesis is one that assumes a sinusoidal input. The output is not necessarily a sinusoid;

however we can approximate the output utilizing a Fourier series (Ref 3.):

 9

() ()

() ()() () ()()

() () ()

() () ()∫

∫

∑

=

=

++≅=

=
∞

=

π

π

ωω
π

ωω
π

ωω

ω

2

0

2

0

0
0

1

1

tdtnsintyB

tdtncostyA

where

tnsinBtncosAAtxfty

tsinAtx

n

n

n
nn

 (1)

Describing functions only use the fundamental harmonic (i.e. drop terms n>1) and

assumes a symmetric function ()00 =A :

 ()

∠

+
=

1

1
2
1

2
1

B

A
arctan

A

BA
,AN ω (2)

This form can be amplitude and frequency dependent. There are methods utilizing the

describing functions for nonlinearities that can predict limit cycles that could arise due to

the presence of nonlinear elements in feedback system.

CIFER utilizes a particular Fast Fourier transforms (FFT) to generate frequency

responses. Effectively CIFER is computing a numerical describing function of the input

to output response. This means CIFER can generate a frequency response from records

with the presence of nonlinear elements, such as hysteresis. Active nonlinearities will be

shown during validations and their effect on the system.

3. CIFER Process

Generation of frequency responses based on time history data is performed in

three programs within CIFER. The three programs are FRESPID, MISOSA and

COMPOSITE. FRESPID takes the time history data and generates frequency responses

for each input-output pair utilizing a specialized DFT. MISOSA performs multi-input

conditioning, and COMPOSITE performs multi-window averaging. Each of these

 10

programs has a batch program that performs the actual calculations after the input data

has been provided a case.

FRESPID is the most input intensive of these three programs. FRESPID takes a

time history file and associates each channel of data to an input or output. The data in the

channels can be filtered and decimated or interpolated. FRESPID also must remove bias

and slope from the time history channels to meet the mathematical requirements of the

transform used. FRESPID utilizes a specialized fast Fourier transform (FFT) called the

chirp-Z transform (CZT) or zoom transform. The CZT has more flexibility than the FFT

and this flexibility is controlled through window settings. The window settings are the

number of input points, the number of output points, minimum and maximum frequency,

and decimation ratio. Control over the minimum and maximum frequency allows a user

to generate points only in the frequency range of interest and thereby increase frequency

resolution in that range. FRESPID supports generation of up to five windows. This

means that for each input-output pair, up to five frequency responses can be generated.

The meaning and selection of the windows will be covered in detail later.

The responses generated from the CZT are not immediately frequency responses;

the CZT generates are the Fourier coefficients of the input ()()fX and the output ()()fY .

These are complex valued arrays for each frequency point the CZT generated. To get to

a frequency response, first three spectral functions must be generating from the Fourier

coefficients, rough input autospectrum, the rough output autospectrum and the rough

cross spectrum (Ref 2.).

 11

 () () 22
fX

T
fG

~

win
xx = (3)

 () () 22
fY

T
fG

~

win
yy = (4)

 () () ()[]fYfX
T

fG
~ *

win
xy

2= (5)

These spectral functions will have errors, some of a deterministic nature and some of a

non-deterministic (random) nature. If the number of input time history points to the CZT

is less than the size of the time history record, multiple transforms can be taken into the

data. Each CZT can then be averaged together. The random errors ideally average to

zero, resulting in smooth estimates of the spectral functions (Ref 2.).

 ()∑
=

=

rn

k
k,xx

r
xx fG

~

Un
Ĝ

1

1
 (6)

 ()∑
=

=

rn

k
k,yy

r
yy fG

~

Un
Ĝ

1

1
 (7)

 ()∑
=

=

rn

k
k,xy

r
xy fG

~

Un
Ĝ

1

1
 (8)

From the smooth estimates, two frequency response estimates can be made, 1Ĥ

and 2Ĥ . The equations for these estimates are shown below (Ref 2.). These two

estimates will only be equal in the absence of noise processes and nonlinear elements.

()
()fĜ

fĜ
Ĥ

xx

xy=1 (9)

()
()fĜ

fĜ
Ĥ

yx

yy=2 (10)

From the two frequencies response estimates the coherence function can be

defined. The equation is shown below. The coherence is a representation of the linearity

of the response. When the coherence is one the output is a linear function of the input.

 12

The coherence function is essential in the CIFER system identification process because of

its ability to indicate the quality of the response. In COMPOSITE and parametric

analyses, coherence is used to weight responses.

 ()
() ()
() ()

()
() ()fĜfĜ

fĜ

fĜfĜ

fĜfĜ

Ĥ

Ĥ
fˆ

yyxx

xy

yyxx

yxxy

xy

2

2

12 ===γ (11)

When examining a MIMO system, the resulting frequency responses generated

from FRESPID will detect output response due to inputs in all channels, not just due to

the primary input. MISOSA utilizes the cross-correlation transfer functions between

inputs to remove output frequency content due to off-axis inputs. The result is ideally a

transfer function that corresponds to the SISO input-output relationship, in the absence of

other inputs (Ref 2.).

COMPOSITE takes up to five windowed frequency responses and generates a

single response by doing a weighted average of the frequency response points based on

the random error and coherence function (Ref 2.). This new response has the best

characteristics of each of the windows. The resulting response is now ready for further

analysis.

At this point in the process, the user is free to conduct several analyses in CIFER.

There are several non-parametric analyses available, such as computing stability margins,

crossover frequency, or bandwidth. The user can plot or export the frequency responses

as well. If the user wants a parametric model, two options are available. If only a SISO

transfer function is required, NAVFIT can be used to fit a transfer function to the

frequency response. If working with a MIMO system, DERIVID and VERIFY provide

the ability to construct and validate a state-space representation.

 13

III. CIFER command line interface

A. Legacy command line interface
Before the work of this thesis, sweeps of simulation diagrams were done

manually within AFDD. The user would add a sweep block in Simulink to generate the

sweep, add data recorders, etc. The user would then need to manually enter data into the

CIFER program. The primary goal of this thesis is to streamline and automate this

process, and demonstrate results based on several case studies. In order to automate this

process, the CIFER system identification process must be scriptable. However, the

CIFER program was originally developed with only an interactive mode of operation.

The nature of processing flight test data is slow and requires user knowledge

about the parameters that drive the identification. This means ease of use was of primary

importance when CIFER was originally designed. For this reason, CIFER utilizes a GUI

to input data for processing. Automation was not done through the GUI, since it tends to

be fragile, requiring updates every time the GUI changes.

Work to script the CIFER tools was started in an earlier Cal Poly San Luis Obispo

Master Thesis (Ref 6.) wherein the author proposed and demonstrated porting CIFER

from a text-based environment into a MATLAB based GUI environment with options for

scripting provided by command line functions (Ref 6.). Rupnik developed MATLAB

interfaces to the underlying CIFER methods, providing the first command line interface.

This command line interface provided access to some of the functionality in CIFER

through functions called with name-value pairs. In particular he provided interfaces into

FRESPID, MISOSA and COMPOSITE, the three main utilities used in transforming time

history data into frequency responses.

 14

However, to automate the system identification process, the command line

interface used needed to be robust, easy to use, internally consistent, well encapsulated,

and extensible. The command line interface created by Rupnik does not meet these

requirements. As a result a new command line interface was developed based on

MATLAB classes.

B. Object-based command line interface

1. Goals

The primary goal of the new command line interface is consistency. At no point

should the user be utilizing a data structure that is not internally consistent. This means

at all times users are able to save the case and open it in the GUI and make changes.

This goal also means consistency with MATLAB error handling and calling

conventions. The use of the exception handling allows stack traces and “stop on error”

features to be used. The calling convention is now more like other toolboxes such as the

Control System Toolbox. This allows better interfaces to loading, saving, batch and

plotting. The functionality is exposed through the data structure fields similar to handle

graphics. Lastly the new command line interface has more descriptive names for fields to

reduce the need for excessive lookup from the documentation.

The new command line interface consists of 17 classes, each with member

functions providing addition features as needed. The total source lines of code are 12415,

across 422 files. The following sections will document some of the features and changes

that went into the new command line interface.

 15

2. FRESPID Classes

The legacy command line interface contained all the FRESPID case information

in one structure, resulting in 44 fields at the top level, covering control, output and time

history definitions, and windowing parameters, as well as other assorted options. Under

the new object-based design, FRESPID now consists of three classes: frespid_obj, thfile

and windows. The frespid_obj class contains thfile and windows objects. The

frespid_obj deals with loading and saving to the database, assigning control and output

channels, and executing FRESPID jobs. Time history and windowing parameters

became their own individual classes, and the control and output definitions were folded

into a structure. The end result was only 22 fields at the top level. Below are printouts

from MATLAB of the old and new FRESPID structures. Notice that the new interface is

much more concise.

 16

fre = frespid('XVLATSWP',1)

fre =

 casename: 'XVLATSWP'
 comments: 'LATERAL FR SWP FOR XV15 HOVER'
 controls: {10x1 cell}
 outputs: {20x1 cell}
 caseout: 'XVLATSWP'
 crosscor: 'Y'
 savfile: 'N'
 froutdir: 'C:\CIFER_Pro\jobs\tfdata'
 savdb: 'Y'
 plot: 'N'
 evntnum: [883 884 0 0 0 0 0 0 0 0]
 flghtnum: [150 150 0 0 0 0 0 0 0 0]
 strttim: [0 0 0 0 0 0 0 0 0 0]
 stoptim: [0 0 0 0 0 0 0 0 0 0]
 source: 5
 thdt: 0.0040
 biasflag: 'Y'
 thfile: {10x1 cell}
 conchnl: {10x5 cell}
 conunit: {10x1 cell}
 conscfac: [10x5 double]
 outchnl: {20x5 cell}
 outunit: {20x1 cell}
 outscfac: [20x5 double]
 frall: 'N'
 frcalc: {20x10 cell}
 freqcut: 5.0266
 dtfinal: 0.0400
 conditioning: [2x10 double]
 condunit: {'Hz' '' '' '' '' '' '' '' '' ''}
 savconth: 'N'
 winon: {'*' '*' '*' '*' '*'}
 winid: {'45 sec' '35 sec' '30 sec' '20 sec' '15 sec'}
 winlen: [45 35 30 20 15]
 wininpt: [1125 875 750 500 375]
 winoutpt: [923 149 274 524 137]
 windec: [1 1 1 1 1]
 minfft: [0.1396 0.1795 0.2094 0.3142 0.4189]
 maxfft: [12 12 12 12 12]
 plotopt: [12x1 double]
 plotdev: 'P'
 grid: 'Y'
 lrgplot: 'Y'
 plotdec: 'Y'
 ec: [1x1 struct]

Figure 5: Old FRESPID CLI

 17

>> fre = frespid_obj('XVLATSWP')

fre =

 name: 'XVLATSWP'
 comments: 'LATERAL FR SWP FOR XV15 HOVER'
 caseout: 'XVLATSWP'
 db_out: 1
 crosscor: 1
 fr_file_out: 0
 fr_file_format: 'CIFER'
 fr_file_dir: 'C:\CIFER_Pro\jobs\tfdata'
 th_file_out_unformatted: 0
 th_file_out_ascii: 0
 controls: {'AIL' 'RUD'}
 outputs: {'P' 'R' 'AY' 'VDOT' 'PHI'}
 windows: [1x5 windows]
 thfiles: [1x2 thfile]
 frcalc: [5x2 logical]
 gen_plots: 0
 plots: [0 0 1 0 0 0 0 0 0 0 0 0]
 heavy_grid: 1
 large_plot: 1
 decimate_data: 1
 plot_format: 'PostScript'
 frnames: {5x2x5 cell}

Figure 6: New FRESPID CLI

By breaking the time history file into its own class, all time history error checking

was removed from frespid_obj. The result is that thfile as a stand-alone class can be used

to read, write, and plot time history files in a simple manner. This also means by the time

the user is done setting up the thfile object, it has already checked the existence of the

time history file before it is assigned within the frespid_obj.

In the example below, a CIFER Text time history file has been loaded using the

thfile class. The time history step size (“thdt”) and “channels” fields are dynamic

fields generated by examining the time history file. These fields are internally fairly

cumbersome function calls, but with the new class system they are just another field in

the structure.

 18

>> thfil = thfile;
>> thfil.source = 5;
>> thfil.filename = 'Flt150_Event883.dat';
>> thfil.event = 883;
>> thfil.flight = 150;
>> thfil

thfil =

 source: 5
 event: 883
 flight: 150
 start_time: 0
 stop_time: 0
 filename: 'Flt150_Event883.dat'
 thdt: 0.0040
 channels: {'A300' 'D009' 'D022' 'D024' 'D284' 'D645'
'V012' 'V014' 'VDOT'}
 desired_rate: 0
 filter_cutoff: 0
 finaldt: 0.0040

FRESPID supports concatenating multiple time history files together, so the thfile

object uses standard MATLAB concatenation syntax to represent this behavior.

However, all the records must come from the same source and must undergo the same

conditioning. For this reason, the thfile object enforces these restrictions when users

create an array of thfile objects. If the user plots the concatenated object, the plot is of

the concatenated record.

 19

plot(thfil,'A300');

 Chirp FFT analysis: DUMMY ID:

 INPUT : A300=A300
 EVENTS/FLIGHTS: 883/ 150 884/ 150

 DT = 0.004000

0 20 40 60 80 100 120 140 160 180

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

TIME(SEC)

C
O

N
T

R
O

L
D

E
F

L
E

C
T

IO
N

Figure 7: Time history plotting

Choosing windowing parameters has several constraints based on the time history

step size. Because of the complicated nature of this process, windowing parameters were

split into their own class that deals solely with window configuration. Depending on

which field the user changes, the class behavior will also change dynamically. For

example, changing the “length” or “input_points” fields will result in a

recomputation of the window parameters. If the user changes the other fields it will only

check that the new value is valid.

The code below shows how the legacy and new command line interfaces would

change the window length and submit a batch job. Notice how the new command line

interface splits the tasks into several smaller lines. Each of these lines has its own error

checking. In the legacy command line interface, the second argument being a “3”

indicates the batch job will be submitted after modifying the data structure. Notice the

separate batch job call in the new command line interface, clarifying and separating the

different actions. The legacy command line interface would also not return user control

until the batch job was done. The new command line interface does not require waiting

 20

for batch job completion. The “wait” call replicates the waiting that happens in the

legacy command line interface, but it is not required.

frespid(fre,3,...
 'winlen',[25,20,15,10,5],...
 'maxfft',[30,30,30,30,30],...
 'wininpt',[0,0,0,0,0],...
 'winoutpt',[0,0,0,0,0],...
 'windec',[0,0,0,0,0],...
 'minfft',[0,0,0,0,0]);

win = fre.windows;
[win.length] = ...
 deal(25,20,15,10,5);
[win.max_freq] = deal(30);
fre.windows = win;
job = batch(fre);
wait(job);

Because FRESPID, MISOSA, and COMPOSITE cases are executed in a batch

manner, the batch_job class was created to handle monitoring submitted jobs. It provides

a way for the user to check if a job is done, wait until a job is done, and get locations of

log files and plots.

With these components all combined, frespid_obj provides a complete interface

into FRESPID, with better error handling, syntax, and consistency. Below is an example

showing how a FRESPID case is defined and run between the legacy and the new

command line interfaces. The new command line interface does take more lines than the

old interface; however the additional lines add clarity to the actions taken. They will be

explained in more detail later.

% Assign a blank frespid structure
f_in = frespid;
thename = 'XVLATSWP';

% Fill in all the necessary
information to make the case
f_in.casename = thename;
f_in.caseout = thename;
f_in.crosscor = 'Y';
f_in.plot = 'N';

% Time history selection
parameters:
f_in.source = 5;
f_in.evntnum(1:2) = [883,884];
f_in.flghtnum(1:2) = [150,150];

% Assign a blank frespid structure
fre = frespid_obj;

fre.name = 'XVLATSWP';
% In the new command line interface,
the caseout field is automatically
% set to the case name, as it is in
% the gui

% Set which time history file to use
fre.thfiles.source = 5;
fre.thfiles(1).filename = ...
 'Flt150_Event883.dat';

 21

f_in.thfile(1:2) =
 {'Flt150_Event883.dat', ...
 'Flt150_Event884.dat'}

% channel definition parameters:
f_in.controls(1:2) = {'AIL','RUD'};
f_in.outputs(1:4) = ...
 {'P','R','AY','VDOT' 'PHI'};

f_in.conunit(1:2) = {'deg','deg'};
f_in.conchnl(1:2,1) = ...
 {'D645','D284'};
f_in.outunit(1:4) =
 {'rad/s', 'rad/s', ...
 'ft/sec2', 'ft/sec2'};
f_in.outchnl(1:4,1) = ...
 {'V012','V014','A300', ...
 'VDOT', 'D009'};
f_in.outscfac(1:4,1) = ...
 [0.0175,0.0175,32.174, ...
 0.0175,0.0175];

% Frequency response selection
parameters
f_in.frcalc(1:4,1:2) = {'*'};

% Conditioning parameters
f_in.conditioning(1,1:2) = [3,2];
f_in.conditioning(2,1:2) = [4,25];

% Window Parameters
f_in.winid = {
 '45 sec'

fre.thfiles(1).event = 883;
fre.thfiles(1).flight = 150;

fre.thfiles(2).filename = ...
 'Flt150_Event884.dat';
fre.thfiles(2).event = 884;
fre.thfiles(2).flight = 150;

% Set the control and output names
fre.controls = {'AIL' 'RUD'};
fre.outputs = {'P' 'R' 'AY' ...
 'VDOT' 'PHI'};

% Associate control names with time
history channels
fre.controls('AIL').units = 'deg';
fre.controls('AIL').channel = ...
 'D645';

fre.controls('RUD').units = 'deg';
fre.controls('RUD').channel = ...
 'D284';

fre.outputs('P').units = 'rad/s';
fre.outputs('P').channel = 'V012';
fre.outputs('P').scale = 0.0175;

fre.outputs('R').units = 'rad/s';
fre.outputs('R').channel = 'V014';
fre.outputs('R').scale = 0.0175;

fre.outputs('AY').units = 'ft/sec2';
fre.outputs('AY').channel = 'A300';
fre.outputs('AY').scale = 32.174;

% The channel defaults to the input
name if
% it exists in the time history
fre.outputs('VDOT').units = ...
 'ft/sec2';

fre.outputs('PHI').units = 'RAD/S';
fre.outputs('PHI').channel = 'D009';
fre.outputs('PHI').scale = 0.0175;

% Logicals are used instead of cell
% array of strings for flags
fre.frcalc(:) = true;

fre.thfiles.filter_cutoff = 4;
fre.thfiles.desired_rate = 25;

fre.windows(1).comments = '45 sec';
fre.windows(1).length = 45;

 22

 '35 sec'
 '30 sec'
 '20 sec'
 '15 sec'};
f_in.winlen = [45,35,30,20,15];

f_in.winon(1:5) = {'*'};
f_in.maxfft(:) = 12;

% Save the structure into the
database
frespid(f_in,2);

fre.windows(2).comments = '35 sec';
fre.windows(2).length = 35;
fre.windows(3).comments = '30 sec';
fre.windows(3).length = 30;
fre.windows(4).comments = '20 sec';
fre.windows(4).length = 20;
fre.windows(5).comments = '15 sec';
fre.windows(5).length = 15;

for i = 1:5
 fre.windows(i).on = true;
 fre.windows(i).max_freq = 12;
end

save(fre);

The channels assignment is one of the major changes between the two command

line interfaces. Below is a line taken from the example above. In the legacy command

line interface “conchnl” is the association between control names and channels. The

row “1:2” is indicates “select the first and second channel”, and the column “1” indicates

the first of five channels for each control. In the new command line interface the

particular channel is identified by name 'AIL', and the first channel is just the

“channel” field. The association between the control and the channel is much clearer

in the new command line interface.

f_in.conchnl(1:2,1) = ...
 {'D645','D284'};

fre.controls('AIL').channel = 'D645';
fre.controls('RUD').channel = 'D284';

 23

In the legacy command line interface, the time history conditioning was specified

with the array “conditioning”, that has two rows. The first row is the action to

take: 1 is interpolation, 2 is decimation, and 3 is filtering. The second row was the

parameter, i.e. the filtering frequency or the new rate. The old-style conditioning allowed

up to 10 different conditioning actions to be taken on the time history file. This was

found to be completely unnecessary and unused, so it was simplified. The new command

line interface takes advantage of this, by completely removing the “conditioning” array

and replacing it with two parameters, the “filter_cutoff” frequency and the time

history “desired_rate”. Below is taken from the above example showing the same

action in each command line interface. Notice how much clearer the intended action is.

In this case, the new field name is much more specific to the action.

f_in.conditioning(1,1:2) = [3,2];
f_in.conditioning(2,1:2) = [4,25];

fre.thfiles.filter_cutoff = 4;
fre.thfiles.desired_rate = 25;

3. MISOSA and COMPOSITE Classes

Both MISOSA and COMPOSITE only require a subset of information required

for FRESPID. For this reason MISOSA and COMPOSITE cases can be inferred from

the FRESPID case. The new command line interface provides a way to generate

template MISOSA objects (misosa_obj) or COMPOSITE objects (composite_obj) from

existing frespid_obj objects. Most users will only need the batchall command built into

frespid_obj which generates the MISOSA and COMPOSITE cases from a frespid_obj

case, and runs all the batch jobs. The only reason to directly use misosa_obj or

composite_obj is to adjust plotting options or to gain finer control over the batch job

processing. If the user needs to change plotting options, he is able to generate template

MISOSA or COMPOSITE cases from the FRESPID case by calling the misosa_obj or

 24

composite_obj constructor, respectively on a frespid_obj object. Below is an example

showing how the old command line interface created MISOSA and COMPOSITE cases,

and how simple it is to create them with the new command line interface.

% Set up blank misosa case
m_in = misosa;

% Fill in appropriate values
m_in.casename = thename;
m_in.casein = thename;
m_in.caseout = thename;
m_in.controls(1:2) = {'AIL','RUD'};
m_in.outputs(1:4) =
{'P','R','AY','VDOT','PHI'};
m_in.winon(1:5) = {'*'};
m_in.frcalc(1:5) = {'*'};

% save case to database
misosa(m_in,2);

% Set up blank composite case
c_in = composite;

% Fill in appropriate values
c_in.casename = thename;
c_in.casein = thename;
c_in.caseout = thename;
c_in.inpgm = 'MIS';
c_in.controls(1) = {'AIL'};
c_in.outputs(1:4) =
{'P','R','AY','VDOT','PHI'};
c_in.winon(1:5) = {'*'};
c_in.frcalc(1,1) = {'*'};

% Save case into database
composite(c_in,2);

% Run the cases
frespid(thename,3);
misosa(thename,3);
composite(thename,3);

% Create a misosa case from
% the frespid_obj
mis = misosa_obj(fre);

save(mis);

% Create a composite case from
% the misosa_obj
com = composite_obj(mis);

save(com);

wait(batch(fre));
wait(batch(mis));
wait(batch(com));

 25

4. CIFER Frequency Response Class

The non-parametric analyses for CIFER are all available through the ciffrq object.

Primarily it provides access to the frequency response database, giving the ability to load

a frequency response from the database and access the data in the MATLAB workspace.

The code below shows how easy it is to load a frequency response from the database.

The freq, mag, phase and coh fields are the underlying frequency data as expected.

>> fr = ciffrq('XVLATSWP_FRE_A0000_AIL_P')

fr =

 name: 'XVLATSWP_FRE_A0000_AIL_P'
 comments: 'LATERAL FR SWP FOR XV15 HOVER'
 freq: [1x399 double]
 mag: [1x399 double]
 phase: [1x399 double]
 coh: [1x399 double]
 info: [1x1 struct]

The plot command is overridden for the ciffrq object, internally calling the

underlying QPlot functionality available in the GUI. The other non-parametric analysis

tools: RMS, bandwidth, crossover, and arithmetic are similarly available as functions.

 26

Additional plotting methods are provided. The MATLAB Control System

Toolbox Bode plot-style is available via the bode function. An interactive Bode plot with

gain and phase margins is created via plot_perf.

fr = ciffrq('CLROLL_COM_AB000_LAT_P');
plot_perf(fr,'correct', ...
 corrset('spower', -1),'construct',false,'markers',true)

Figure 8: Crossover plot

For comparison of two frequency responses the command line interface provides

a function to display the error between two responses. In this case the error function used

is shown in the first equation below. The resulting magnitude and phase curves are the

difference in magnitude (in dB) and difference in phase.

ectedexp

actual
error = (12)

 27

 ectedexpactualerr magmagmag −= (13)

 ectedexpactualerr phasephasephase −= (14)

An example error plot is shown below. The actual response was the expected

response multiplied by a gain and a phase delay. The positive magnitude curve indicates

that the actual response has a higher magnitude curve than the expected response. The

negative phase curve indicates that the actual response has a lower phase curve than the

expect response. There are also two addition curves on each plot. These are the

Maximum Unnoticeable Added Dynamics (MUAD) bounds developed based on handling

qualities research. The bounds were created during a fixed-wing handling qualities

survey. The bounds were developed by overlaying the variations in closed loop

responses that did not result in a change in the Chopper-Harper pilot rating for that study

(Ref 1.). The bounds are intended to represent the maximum amount of change an

aircraft could undergo without the pilot changing the rating of the aircraft. The bounds

are narrowest near crossover indicates that pilots are more sensitive to changes in that

range. This agrees and explains why validation near the crossover region is important for

model validation. For that reason, MUAD bounds will be used in this thesis to evaluate

the quality of match between frequency responses (Ref 9.). The command line interface

provides these plots via the plot_error function.

 28

fr1 = ciffrq(1, logspace(-1,1.5,1000));
fr2 = correct(fr1,corrset('time_delay',.05))*1.2;
plot_error(fr2,fr1)

−20

−10

0

10

20
Error Bounds

D
el

ta
 M

ag
ni

tu
de

10
−1

10
0

10
1

−180

−90

0

90

180

D
el

ta
 P

ha
se

Frequency (Rad/sec)

Error
MUAD bounds

Figure 9: Error plot example

In addition to providing the functional call for arithmetic, the ciffrq class supports

arithmetic operators such as + and -. The new response can then be named and saved

back to the database. Below is an example showing multiplication of the frequency

response by a scale factor.

>> fr2 = 5*fr

fr2 =

 name: ''
 comments: ''
 freq: [1x1000 double]
 mag: [1x1000 double]
 phase: [1x1000 double]
 coh: [1x1000 double]
 info: [1x1 struct]

The example below shows how to multiply by a power of s using the “correct” command.

 29

>> fr3 = correct(fr,corrset('spower',-1))

fr3 =

 name: 'XVLATSWP_COM_ABCDE_AIL_P'
 comments: ''
 freq: [1x987 double]
 mag: [1x987 double]
 phase: [1x987 double]
 coh: [1x987 double]
 info: [1x1 struct]

Two frequency responses can be multiplied as shown below.

>> fr6 = fr*fr2

fr6 =

 name: ''
 comments: ''
 freq: [1x1000 double]
 mag: [1x1000 double]
 phase: [1x1000 double]
 coh: [1x1000 double]
 info: [1x1 struct]

 30

The last major feature is compatibility with the built-in MATLAB Control System

Toolbox LTI objects. The ciffrq class supports conversion to and from the frd object, the

frequency response LTI object. frd objects are compatible with many of the LTI tools

available in the MATLAB Control System Toolbox, so users can easily use these tools

with frequency responses generated from CIFER. Any LTI object that can be converted

to an frd object can also be converted to the ciffrq class. This feature allows users to

multiply a frequency response by a transfer function object (tf class) or state-space object

(ss class). This is shown below.

>> s = tf('s')

Transfer function:
s

>> fr5 = fr*(s+1)/(s-1)

fr5 =

 name: ''
 comments: ''
 freq: [1x1000 double]
 mag: [1x1000 double]
 phase: [1x1000 double]
 coh: [1x1000 double]
 info: [1x1 struct]

These classes provide a robust and user-friendly interface to the CIFER frequency

domain system identification process. They provide the base to develop automated tools

involving CIFER.

 31

IV. Analyzing simulation using system identification
Now that a more robust and user-friendly command line interface was developed,

an integrated simulation and system identification tool could be developed.

Traditionally, generating frequency responses from a block diagram involves the user

moving data from Simulink to CIFER and back again. The basic flow of the process

follows:

1. Obtain time histories from the Simulink diagram

2. Package data into CIFER compatible format

3. Create a FRESPID case

4. Run FRESPID batch

5. Create a MISOSA case if needed

6. Run MISOSA batch if needed

7. Create a COMPOSITE case

8. Run COMPOSITE batch

9. Check frequency response and look for low coherence or abnormalities

10. Go back to step 1 if frequency response is not good enough

The new command line interface consolidates steps 4-8 into one command,

“batchall”. In the following sections, the details of the work flow will be explained

within the context of an automated validation tool designed to sweep a block diagram.

A. Automating the process

1. Obtain time histories from the Simulink diagram

There are several steps involved in sweeping the block diagram. First, a data

gathering mechanism needs to be added to the Simulink diagram. Root level output ports

 32

are a good option because the SIM command returns the time histories from these ports.

However, the “To Workspace” and “To File” blocks work as well. The sweep signal

needs to be defined within the diagram, or computed before running the simulation and

passed in via a root level input port or “From Workspace” block.

The simulation time step and duration need to be compatible with the frequency

range of interest. The high frequency limit determines the maximum time step size, and

the low frequency determines the minimum record size. The details of these parameters

can vary. However the rules are thumb are what were used (Ref 2.). These are shown

below. The filter frequency ()filterf is set such that frequency content before the

maximum frequency of interest is not attenuated. The sample frequency ()samplef is set

such that the filter can operate with sufficient data and not encounter effects of being near

the Nyqist limit ()sampleNyq ff 2= . Step size ()dt is defined as the inverse sample

frequency.

 π
ω
2

5 max
filterf = (15)

 filtersample ff 5= (16)

samplef

dt
1=

 (17)

The time history record size is the summation of several components. Because of

the requirement from CIFER that the time record must begin and end in trim the sweep

needs to have region of zero input at the beginning and the end for zerot seconds, as

illustrated in Figure 11.

 33

In order to capture the low frequency data, the sine function is held for a full

period parkt seconds at the low frequency. Following the full period, an exponential ramp

up of frequency from the lower frequency limit to the upper frequency limit will excite

the system across the entire frequency range. The length of the exponential ramp is five

times the largest window size to be used, which is twice the parkt time. The sweep

frequency with the park and exponential ramp are shown in Figure 10 below.

0 tzero tzero+tpark Trec
0

Wmin

Wmax

Time

F
re

qu
en

cy

Frequency of sweep

Figure 10: Sweep frequency

At the beginning of the sweep there is a ramp up for fadeint seconds to full

amplitude. Similarly, at the end of the sweep, there is a ramp down for fadeoutt seconds.

This is shown in Figure 11.

0 tzero tzero+tfadein Trec-tzero-tfadeout Trec-tzeroTrec

0

20

40

60

80

100

Time

A
m

pl
itu

de
 (

%
)

Percent amplitude of sweep

Figure 11: Sweep amplitude

 34

 The total length of the record then becomes the summation of each of these. It is

defined below, along with its components. The maximum window size ()maxT is typically

defined by the maximum period of interest, which is parkt in this case. The total record

length ()recT should be five times the maximum window size to allow adequate data for

identification. The zero time and fade in and fade out are added to that because they

provide no content, and do not really count towards the five times maximum window size

rule.

 fadeoutfadeinzerorec tttTT +++= 25 max , where

min

2
ω

π=parkt

 parktT 2max = (18)

 2== fadeoutfadein tt

 2+= trimzero tt

The last component of a computed sweep is noise. Injecting low amplitude white

noise into the sweep aids the identification process by increasing high frequency input.

In Appendix C, the equations of the sweep are listed, in both integral form and

analytic form. Below is an example sweep from 1 rad/sec to 10 rad/sec.

0 10 20 30 40 50 60 70

-100

-50

0

50

100

Time

S
w

ee
p

am
pl

itu
de

 (
%

)

Completed sweep without noise

Figure 12: Completed sweep without noise (1-10 rad/sec)

 35

With the input sweep defined, the simulation with the input sweep needs to be

performed. MATLAB provides the SIM command to inject the sweep into a designated

root level input port, and return the time histories at the designated root level output port.

2. Packaging the data

The time histories generated from the SIM command are going to be passed to the

FRESPID program in CIFER as a MATLAB MAT-file. For SISO identifications,

generic channel names such as ‘IN’ and ‘OUT’ can be used because there are only two

channels. In the more general MIMO case, user name bindings will be required in order

to construct the time history file.

3. Creating a FRESPID case

A FRESPID case requires four sets of information: 1) time history specification

and conditioning, 2) control name and channels, 3) output name and channels, and 4)

windowing parameters.

In the automated sweeping process, the program just wrote the time history file,

so it knows all the specifications of the time history (format, filename, sample rate, and

filtering). For SISO cases it will also have the generic control and output names, which

can also be the channel names. For MIMO cases the user specified control and output

names are also present, so the first three sets of information are known simply because of

the integrated process. The only missing set of information for generating the FRESPID

case from the sweeping process is the windowing parameters.

The windowing parameters have the most flexibility of the other FRESPID case

parameters. The majority of the other parameters only have one correct input (the

filename of the time history file, for example). However, the windowing parameters have

 36

to be adjusted to suit the individual identification. There are six windowing parameters

as shown in the table below.

Table 1: Windowing parameters

Parameter Units
Window length Seconds
Number of input points Positive Integer
Number of output points Positive Integer
Decimation Ratio Positive Integer
Minimum Frequency Radians per second
Maximum Frequency Radians per second

The first three windowing parameters are coupled by algorithm requirements.

The window length and the number of input points are related by the time history step

size. For example, a window length of 10 seconds with a step size of .01 will have 1001

points in the window. The CZT used within CIFER requires the number of input points

plus the number of output points to be a power of two.

The frequency response output points are the output of FRESPID, so there needs

to be an adequate number of points over the frequency range. The frequency range for a

given window is determined by the minimum frequency and maximum frequency

parameters, as provided by the user. These are subject to limits provided by the window

size and step size. The spacing of the output points in the frequency domain is always

constant, so the points have even coverage on a linear frequency plot. However, on a

logarithmic plot the number of points at low frequency is much fewer than that at high

frequency as shown in Figure 13. So in order to increase the resolution in the low

frequency, the user may need to decrease the upper frequency limit, which decreases the

frequency increment. If too few points are located in the low frequency, the frequency

limits may need to be adjusted to increase the frequency resolution at low frequencies.

 37

10
0

10
1

0

50

100

150

200

250
Distrubution of linear frequency points on a log scale (1000 points evenly spaced between 1 and 10)

Frequency

N
um

be
r

of
 p

oi
nt

s

Figure 13: Frequency point distribution

Choosing the window lengths is primarily a trade between two objectives. The

first is to capture low frequency data points. The second is minimizing random noise in

the responses. In order to capture low frequency data points, long windows must be used.

However, long windows means fewer transforms can be performed on the data. If the

window length is equal to the record length, then only one transform can be performed on

that data. Any random noise present in the frequency response is impossible to remove.

However, if the window length is half that of the record length, then in the absence of

overlap two transforms can be performed on the data, one on the first half and one on the

second half. Now there are two sets of frequency responses, which should be identical

assuming the plant remains constant in the frequency domain over time. If the set of

points are averaged then the random variations will tend to zero. If more overlap is

allowed, more transforms can be performed on the data, each time averaging the

frequency points. The random errors cancel out and result in a smooth response with

 38

fewer variations due to noise. Smaller windows allow for more overlapping transforms

to be performed, small windows are less affected by random noise.

Given the trade between small and large windows, how should windows be

picked? FRESPID allows for up to five windows, allowing the user to fill the trade

space. The integrated tool uses five windows to span the trade space. When system

identification is performed on simulation data, the windowing trade is less important

because the data is collected in a perfectly controlled environment without external

influences as opposed to collecting flight test data. In simulation, the only noise present

is the noise added by the user, which is small compared with the sweep amplitude. The

simulation will probably have fewer nonlinearities than an actual aircraft, which further

simplifies the problem. In the end, only reasonable windows need to be chosen in order

to get acceptable results.

Given a frequency range of interest (the target minimum and maximum

frequencies), target minimum ()minT and maximum windows ()maxT can be created.

There are bounds for the window sizes that cannot be violated in either direction. For a

hard limit on the minimum window size, there must be at least 5 points of data in each

window ()
limitmaxω . However, this is an impractical window size, because there would be

no frequency range, as the minimum frequency point is the maximum frequency point for

that window. For this reason the smallest window size is set to have a window minimum

frequency one decade before the target maximum frequency. This ensures one decade of

data is available in that window (Ref 2.). Anything smaller than that will provide

insufficient frequency content for subsequent CIFER programs. This window size should

always be larger than the hard lower limit because the tool should have chosen a step size

 39

25 times the maximum frequency of interest. In the case where the target minimum and

maximum frequencies are less than a decade apart, the integrated tool sets the target

maximum frequency to be one decade above the target minimum frequency.

dt5

2
limitmax

πω = (19)

()

⇒<

⇒≥
=

min
minmax

max
minmax

min 2
12

220
12

ω
πωω

ω
πωω

T
 (20)

(Ref 2.)

For the target maximum window, the upper limit is the length of the time history

records ()
it

T
limmax . This is impractical as a limit because there will be no repeated

transforms, so the random error will be high. For this reason, the maximum window size

is half the record length, which determines the minimum frequency allowed ()
itlimminω .

The target maximum window size is twice the period of the target minimum frequency

(Ref 2.). This allows the CZT to capture lower than the target minimum frequency.

 ()recTT
it

min
limmax = (21)

()

it

it T
lim

lim

max
min

22 πω = (22)

()
min

max

22

ω
π=T

 (23)

(Ref 2.)

The remaining three windows are distributed evenly between the minimum and

maximum windows sizes. This automated window selection functionality is available in

 40

the command line interface through the auto_window function provided for the

frespid_obj class.

The code below demonstrates the auto_window function. Internally it checks for

the input minimum and maximum frequencies based on step size and record length. It

also adjusts the decimation and filtering based on equation 15 and 16. The output is a

new frespid_obj with the modified windows and thfile objects. The user can then

perform additional adjustments as needed or proceed to generate the frequency responses.

>> fre = auto_window(fre, .1, 30)
??? Error using ==> frespid_obj.auto_window at 60
Requested minimum frequency exceed minimum frequency possible with
given thfiles (0.133 rad/sec)

>> fre = auto_window(fre, .133, 30)

fre =

 name: 'XVLATSWP'
 comments: 'LATERAL FR SWP FOR XV15 HOVER'
 caseout: 'XVLATSWP'
 db_out: 1
 crosscor: 1
 fr_file_out: 0
 fr_file_format: 'CIFER'
 fr_file_dir: 'C:\CIFER_Pro\jobs\tfdata'
 th_file_out_unformatted: 0
 th_file_out_ascii: 0
 controls: {'AIL' 'RUD'}
 outputs: {'P' 'R' 'AY' 'VDOT' 'PHI'}
 windows: [1x5 windows]
 thfiles: [1x2 thfile]
 frcalc: [5x2 logical]
 gen_plots: 0
 plots: [0 0 1 0 0 0 0 0 0 0 0 0]
 heavy_grid: 1
 large_plot: 1
 decimate_data: 1
 plot_format: 'PostScript'
 frnames: {5x2x5 cell}

4. Generating the frequency responses

Once the FRESPID case is generated, the tool can proceed to generating the

frequency responses with the “batchall” command. For SISO analysis, there is no need to

 41

run MISOSA, so only a COMPOSITE case needs to be generated. At this point, the

initial automation is done, and the frequency responses are returned to the user. The user

is free to examine the generated frequency responses and go back and refine the

FRESPID case if needed.

The command line interface now provides steps 2-4 in one function, cifer_siso,

which conducts the SISO analysis as explained above. It requires a case name, control

and output names, time, control and output time histories, and minimum and maximum

target frequencies as inputs. It then packages the data, sets up the FRESPID case, and

invokes the FRESPID and COMPOSITE batch jobs, and returns the final frequency

response. A MIMO process was prototyped, but never fully developed, and was set aside

for future work.

B. Integration with CONDUIT
With the command line interface providing a function that can perform SISO

analysis with given data, the last step is to integrate the data gathering process with

CONDUIT in order to perform model validations.

The CONDUIT problem format requires all input/output pairs to be connected to

root level input and output ports. This provides access to all the time histories the

validation tool needs. CONDUIT also utilizes the names of input and output ports when

binding with specifications for the problem. This approach will be used as well in the

validation tool.

There are three sets of validation: bare airframe, closed loop and broken loop.

Each set of validations requires different input and output ports for the analysis. The

closed loop is the simplest, and only requires the piloted input port and its corresponding

 42

output port. The bare airframe has special requirements because it is a MIMO analysis,

so for the scope of this thesis it will be ignored. The broken loop response validation

requires additional considerations.

When performing broken loop response validation using CIFER, the loop must be

closed in the case of unstable open loops. This is due to the fact that CIFER requires

bounded time history records, as well as the fact that linear simulations are only valid

near their trim point. For this reason, special input/output ports are required to capture

this data, while maintaining the loop closure.

CONDUIT also requires special input/output ports for broken loop analysis. For

LINMOD to return the broken loop response, the loop must be broken. CONDUIT

provides a special Simulink switch block, called a “CONDUIT Gain/Phase Margin

Switch” for use where a broken loop analysis is required. It has 2 inputs and 2 outputs.

The first input and output connects to the control loop; the second input and output are

the special input/output ports for broken loop analysis. Figure 14 shows an example

wiring that uses the block.

Figure 14: CONDUIT Broken Loop Switch

In the figure above is an example system with the CONDUIT Broken Loop

Switch. The broken loop is from e�f. When the switch is off, it acts like the system

below. If bl_in and bl_out are unused, it is as if the switch were not even there. When

 43

sweeping the diagram using CIFER, the sweep is injected in bl_in. CIFER gathers the

data on bl_out.

Figure 15: CONDUIT Broken Loop Switch Off

The data that needs to be passed to CIFER is e and f, not bl_in and bl_out. The

math is rather simple to create e and f from bl_in and bl_out. These equations are shown

below:

outblinble

outblf

__

_

−=
=

 (24)

When performing linearization, the loop closure needs to be opened. The

CONDUIT Broken Loop Switch is like the figure below. In this case bl_out is f and

bl_in is e, so no changes are needed to get the broken loop response.

Figure 16: CONDUIT Broken Loop Switch On (Ref 7.)

When validating a broken loop response of a given axis with CIFER, the

corresponding CONDUIT Broken Loop Switch must be activated during the LINMOD

analysis, but deactivated during the CIFER analysis. This is different from most of the

other CONDUIT tools, where the switches remain constant throughout an analysis.

 44

With the details of the CONDUIT integration worked out, a GUI was developed

to provide an interactive interface for a user to define the required inputs for validation as

well as an interface to the results. The Linearization Validation Tool GUI is shown

below. The top two-thirds is the results section, with plots display. The bottom third is

the input section.

Figure 17: Linearization Validation Tool

The results section can have two different plots. On the left hand side is the

overlay plot between the linearized model as extracted using LINMOD and the CIFER

frequency responses as extracted for the simulation time history data. On the right hand

 45

side are error plots that show the linearized model response divided by the CIFER

response. The MUAD bounds are also present.

The seven inputs in the input section above the options pane define the validation

to be performed. The “Sweep/Input channel” and “Output channel” fields select the input

and output ports used for CIFER and LINMOD. The “Switches and Scenarios” field is a

standard CONDUIT feature that allows for different configurations to be tested. The

“Broken loop switch” drop down allows the user to specify the corresponding broken

loop switch. The user selects either “Closed loop”, which means during both analyses the

switches and scenarios configuration are the same, or a particular switch number to

facilitate a broken loop response, which means during LINMOD analysis the switch is

“on” and during CIFER analysis the switch is “off”. “Min Freq” and “Max Freq” control

the automatic windowing scheme, the minimum step size, and the sweep that is

generated. The “Sweep amplitude” field controls the sweep amplitude.

 46

Most of the other optional features in the GUI are output or plot adjustments. The

“Estimate correction” button utilizes the transfer function fitting program within CIFER

called NAVFIT. It fits a gain and time delay to the error response.

In the figure below is an example system. In the titles of the error plots the gain

and delay estimations, as well as the “cost”, are shown. The cost is the measure of how

good the transfer function fit is. A cost of less than 50 is considered an excellent model.

In this case the cost is .1, which implies the fit is basically perfect. The gain is very close

to 1, but the time delay is -.0144 seconds. This is about 1.5 time steps in this 100 Hz

simulation.

Figure 18: Estimate correction example

 47

C. Limitations
It is known that this automation process has some drawbacks. The primary

drawback is the lack of sanity checking by a human. The time history data is passed

directly into CIFER and the CIFER output is checked against LINMOD. Broken loop

responses are particularly sensitive to well-behaved simulations. As will be seen later,

one case has been encountered with rate-limiter saturation where the feedback loop

response dominated the sweep and CIFER identifies a -1 instead of the broken loop

which will be discussed later. Since then a check has been added and warnings that help

identify problems such as unstable loops, but it is still important to examine the time

history data.

Besides the time history problems, choosing small windows could create

difficulties in capturing lightly damped roots. The general rule of thumb is that the user

needs a target minimum frequency of one tenth the frequency of the lightly damped root

(Ref 2.). In the case of the validation tool, the tool can use the LINMOD results to warn

about lightly damped roots and suggest a new minimum frequency. The problem with

lowering minimum frequency is that it requires long time histories. So besides taking

longer to run the simulation, this leads into another problem with windowing.

The auto-windowing mechanism works best when the frequency range is around

two decades. At less than a decade separation, the small window criterion is violated,

and the maximum frequency is automatically increased to one decade separation. At very

large decade separations the time history records become very long and time steps

become very small. The result is the small windows have plenty of points, but the large

windows have too many. When decimating, the lower frequency points get removed

much faster than the high frequency points. This means the large windows have poor

 48

resolution in the low frequency, the region where they are supposed to have good

resolution. Tangentially, the combination of long records with small time steps means

that the number of points in the records can exceed the internal CIFER limits.

In general, the automation attempts to remove the requirement for the user to

understand the underlying principles behind CIFER before he can perform model

validation. This means the user will be getting results from a very streamlined process.

The entire point of utilizing CIFER as the truth model was that it is transparent and very

robust. The automation removes some of that transparency and if the automation proves

to be flawed, validations that expose a flaw will return spurious results. However, the

next three examples should demonstrate the ability of the validation tool to perform its

intended task, and ability to identify when it is not working.

 49

V. Comparison of system identification results with
theoretical predictions and LINMOD for a simple open
loop elements

The first example case is a simple first over second analytic transfer function,

with an actuator in the open loop. Different nonlinearities are placed after the actuator

model. Both LINMOD and CIFER will be used to identify the transfer function for the

system. In the open loop, the magnitude of the input to the nonlinearities is going to be

fairly constant, so describing function analysis will be available to compare against the

two numerical results. The following nonlinearities were evaluated:

1. Hysteresis

2. Saturation

3. Dead zone

4. Lookup Table

5. Memory block

6. Time delay

7. Rate limiter

Figure 19: Simple 2nd order setup

The sweep amplitudes and nonlinearity parameters were intentionally chosen to

demonstrate when CIFER and LINMOD will diverge, and to confirm that CIFER is

correctly capturing the describing function of the system and can be serve as the truth

model for the validation process.

 50

A. Validations

1. Baseline

Before adding any nonlinearities, the frequency response of the actuator and plant

were generated to serve as the baseline of this validation exercise. Because there are no

nonlinearities, it is expected that the validation will show an exact match between CIFER

and LINMOD. As can be seen below, the first column shows the two frequency

responses overlaid. The CIFER curve in the magnitude and phase plots cannot be seen

because the LINMOD curve is directly on top of it. Third row is the coherence plot

which is an indication of the quality of the CIFER response. In this case it is always at 1,

indicating a very good response over this frequency range. In the right column are error

plots. The error plots are the LINMOD response divided by the CIFER response. The

red lines in the error plots are MUAD bounds. Errors within these bounds will not be

noticed by pilots in flight. As expected, it can be seen that the CIFER and LINMOD

curves agree exactly and the error curves are constant at 0 dB and 0 deg.

 51

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator open loop

CIFER
LINMOD

−10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.2

0.4

0.6

0.8

1
C

oh
er

en
ce

Frequency (Rad/sec)

Figure 20: Baseline validation

 52

2. Hysteresis

A hysteresis or backlash is a nonlinear behavior due to directional “stickness”. It

could represent loose linkages connecting an actuator to a swash plate. For the validation

it was modeled in between the actuator and the plant, as shown below.

Figure 21: Hysteresis placement

Figure 22: Hysteresis

In describing function analysis, the hysteresis effect is only a function of the

width of the dead band (b shown above) and the input amplitude ()A . The describing

function is (Ref 5.):

 ()

−−

−

 −+

 −+=
2

2

2

2 2
211

2

1

A

b

A

bi

A

b

A

b

A

b

A

b
arcsinb,ANbacklash π

π
π

 (25)

For open loop cases, the input amplitude is constant, so the effect on the baseline

case is a scalar multiplication. In this case, because there is an imaginary term as well as

a real component, there is an effect a drop in magnitude and an increased phase loss.

Width of dead band - b

 53

−10

0

10

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and hysteresis open loop

CIFER
LINMOD (not visible)
Baseline
Backlash DF theory

−10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

0

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 23: Open loop Hysteresis validation

In the figure above is the validation of the open loop response. There are four

curves, CIFER results, LINMOD results, the baseline results, and the baseline results

with the theoretical hysteresis describing function multiplied. In this case, LINMOD

linearizes the system with hysteresis to zero, resulting in the LINMOD magnitude curve

being at –Inf, so there is no LINMOD curve shown in the above figure. The magnitude

error plot is also at –Inf, so it is not visible. On the other hand, the CIFER and theoretical

hysteresis describing function curves are exactly overlaid. This confirms CIFER’s ability

to capture describing functions of systems with hysteresis. The CIFER and DF curves

show a constant magnitude shift down and phase loss, which agrees with the form of the

equation. Comparing against the baseline, CIFER shows a gain margin drop of ~6.5 db

and a phase margin drop of ~10 degrees. The crossover frequency dropped by .3 rad/sec.

 54

The reason LINMOD linearizes hysteresis blocks as a zero is because of the

method LINMOD uses to linearize blocks. Some blocks, like state-space or transfer

function, have closed form linearization. All other blocks are linearized utilizing a

perturbation method. Apply a perturbation to a hysteresis block by any amount smaller

than the dead band width, the output is not affected and the linearized gain is zero.

For linearization hysteresis blocks should either be removed, or bypassed

specially when using LINMOD for linearization. For this example, the amplitude was

chosen that would demonstrate the nonlinearity. For larger inputs, the effect of

nonlinearity is minimized.

If a control system is operating in the amplitude where the hysteresis has a large

effect, the effect of hysteresis will need to be accounted for in some other way.

3. Saturation

Saturation is an element that exists in all flight systems due to the nature of

control surfaces. There are limits to the amount of deflection a control surface can move,

and saturation provides a way to express the limitation in a model.

Figure 24: Saturation

The saturation describing function is a function of the saturation limit ()S and the

input amplitude ()A . Saturation is active only if the input amplitude is greater than

saturation limit. For the validation shown, the sweep amplitude was internationally

chosen to be slightly larger than the saturation limit. The describing function for

saturation is (Ref 3.):

Saturation limit - S

 55

 ()

⇒≤

−+

⇒>

=

1

1arcsin
2

,

2

SA

A

S

A

S

A

S
SA

ASN saturation π (26)

The saturation describing function has no imaginary part, so it will only affect magnitude

in the open loop response.

−10

0

10

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and sat. open loop

CIFER
LINMOD
Baseline
Saturation DF theory

−10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

P
ha

se
 (

de
g)

−90

0

90
D

el
ta

 P
ha

se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 25: Open loop Saturation validation

Like the hysteresis validation plots there are four curves in the figure above.

Again the CIFER and the describing function curves are overlaid, confirming CIFER’s

validity. The effect of the saturation is seen as a constant magnitude drop with no phase

loss as expected by the form of the equation. Compared against LINMOD, CIFER

 56

shows a 1 dB increase in gain margin, a 2.5 degrees increase in phase margin, and a .25

rad/sec decrease in crossover frequency.

This time the LINMOD result is non-zero. However, it can be seen that the

LINMOD and the baseline curves are directly on top of each other. This means that

LINMOD is treating the saturation as a unit gain. Examine the Simulink Saturation block

parameters shown in the figure below, it can be seen that there is an option “Treat as gain

when linearizing” which controls the behavior. This option is turned on by default. If

this option is unchecked, LINMOD will perform a perturbation analysis. When

linearizing about trim the saturation will not be active, so the effect of the saturation will

linearize as a one. However, when linearizing near saturation limit, the perturbation

analysis may result in a zero, hence the option to treat it as a unit gain.

Figure 26: Saturation parameters

From a linearization perspective, saturation should not be an issue because the

“Treat as gain when linearizing” option is on by default, and even if it is unchecked most

linearization’s are not done near a saturation point.

 57

4. Dead zone

Dead zone is a zeroing of the output near the origin of a signal. It can be used to

minimize sign changes or reduce noise at the center of a pilot control. Physically,

joysticks have dead zones when the spring tension switches near the center.

Figure 27: Dead zone

The dead zone describing function is only a function of dead zone width ()D and

input amplitude ()A . The dead zone describing function can be expressed using the

saturation describing function as (Ref 3.):

 () ()ADNADN saturationdeadzone ,1, −= (27)

Again, dead zone only affects the magnitude of the response in the open loop. Unlike

saturation, dead zone is always an active element. If the input amplitude is smaller than

the dead zone width, the output is always zero. If the input amplitude is greater than the

dead zone width, the describing function of the dead zone asymptotically approaches 1.

Dead zone width - D

 58

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and deadband open loop

CIFER
LINMOD
Baseline
Deadband DF theory

−10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 28: Open loop dead zone validation

Figure 28 shows the results of the validation. As in the other cases, there are four

curves again. CIFER and the theoretical describing function theory agree very well.

Like saturation, the effect is a constant magnitude drop with no phase loss. This agrees

with the fact that the dead zone expression is very similar to the saturation expression.

Compared against LINMOD, CIFER shows a 2.6 dB increase in gain margin, a 7 degree

increase in phase margin, and a .6 rad/sec decrease in crossover frequency. As expected

the direction of change of the frequency domain metrics due to the dead zone is the same

as saturation.

 The LINMOD curve is overlaying the baseline curve, meaning it is treating the

dead zone as a unit gain. Like saturation, the Simulink dead zone blocks have the “Treat

as unit gain” option that is checked by default. Unlike saturation, a linearization about

 59

the trim point for a dead zone results in a zero response. If a user unchecks the “Treat as

unit gain” option, LINMOD results of a response with a dead zone will probably be a

zero.

The effect of the dead zone all depends on its amplitude. Even if a system is not

operating within the dead zone, its affect will still be seen.

5. Lookup Table

A lookup table is a very flexible element, but in this case the focus is on a

sensitivity change near the origin. This element is similar to a dead zone, because a dead

zone can be interpreted as a lookup table with an inner slope ()1k of zero.

Figure 29: Lookup table

 The inner slope ()1k does not have to be less than the outer slope ()2k . This

describing function is only a function of the lookup table parameters ()Skk ,, 21 and

amplitude ()A . The describing function for this setup is (Ref 3.):

 () ()

−+

−
+⇒≥

⇒<

= 2

21
2

1

21 1arcsin2
,,,

A

S

A

S

A

Skk
kSA

kSA

AkkSNlookup

π
 (28)

This nonlinearity only affects magnitude in the open loop.

Inner slope – k1

Outer slope – k2
Inner slope width - S

 60

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and look−up table open loop

CIFER
LINMOD
Baseline
Look−up table DF theory

−10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.2

0.4

0.6

0.8

1
C

oh
er

en
ce

Frequency (Rad/sec)

Figure 30: Open loop lookup table validation

For this case both CIFER and LINMOD register a change. CIFER and the

theoretical describing function curves match very well. The magnitude drop from the

baseline is very small because the effective gain is some weighted average of the two

slopes. Compared with LINMOD, CIFER shows a 5 dB decrease in gain margin, a 16

degrees decrease in phase margin, and a 1.2 rad/sec increase in crossover frequency.

LINMOD however shows a greater decrease in magnitude because the gain it uses

is only the k1 slope. This is due to the perturbation analysis. A larger perturbation would

raise the LINMOD magnitude curve up closer to the CIFER and baseline curves. The

 61

key to note here is the perturbation analysis by default will only capture the slope near the

linearization point. If it is expected that the linearized model to represent the simulation

over larger amplitudes than the default LINMOD perturbation size, then the effect needs

to be accounted for separately during linearization.

6. Time delay

Equivalent time delays can be included to model high frequency dynamics and

computational delays that are not explicitly simulated. Time delay is a critical element to

be modeled correctly because phase errors due to time delay grow with frequency. For

flight control, time delays must be accurate because the phase loss due to time delay has

large effect on phase and gain margins.

 There is a linear relationship between the frequency and the phase drop. The

complex value for time delay is defined as:

 () ωτωτ i
timedelay eN ⋅−=, (29)

In Simulink, time delay blocks have the option to approximate it with a Pade

approximation when performing linearization. The Pade approximation is a re-ordering

of a Taylor series into a rational expression. The Taylor series is of timedelayN . For the

purpose of this validation, a second order Pade approximation was used. Higher order

approximations are valid over a longer frequency range, and second order is enough in

this case.

 62

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and delay open loop

CIFER
LINMOD
Baseline
Exact time delay

−10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.2

0.4

0.6

0.8

1
C

oh
er

en
ce

Frequency (Rad/sec)

Figure 31: Open loop time delay validation with non-zero Pade order

In the figure above it can be seen that the magnitude curves for all cases agree

very well. The phase curves from CIFER, LINMOD and the analytical equation given

above all show the growing phase loss with no magnitude drop. Looking over at the

error plots, there is no phase error between the CIFER and LINMOD responses. Because

of the good agreement between the curves, the gain margin, phase margin, and crossover

frequency agree very well between the CIFER and LINMOD responses.

This agreement indicates that time delay elements are safe for linearization if and

only if the Pade order is greater than zero. However in Simulink, the default Pade order

 63

is zero. Below is a validation result when the Pade order is set to zero. This removes the

time delay from the linearization.

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and delay open loop

CIFER
LINMOD
Baseline

−10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 32: Open loop time delay validation with Pade order zero

The figure above shows phase error between LINMOD and CIFER due to the

missing delay. The baseline and LINMOD curves are directly overlaid, indicating that

LINMOD is treating the time delay as a unit gain. Around 6 rad/sec the phase error is

great enough to exceed the MUAD bounds. Therefore, it is very important for the user to

ensure that the Pade order is not set to zero in order to have agreement between the time-

 64

domain simulation and the linearized model. Future work might include making a

diagram scanner to check that the Pade order is non-zero.

7. Memory block and unit delay

The memory block and unit delay are elements that can be used in the simulation

model to represent computation delays or to solve algebraic loop errors. They delay the

output one integration step from the input, so they function like time delays. The

difference between a time delay and a memory block or a unit delay is that the amount of

delay is a function of the sample time. The difference between memory blocks and unit

delays are how Simulink treats their sample time. Memory blocks also have the option

“Treated as unit delays” during linearization.

Because memory block and unit delays are like time delays their effect on the

open loop frequency response is only a function of the time step and frequency. The

function for these elements is based on the time delay equation:

 () ωω idt
memory e,dtN ⋅−= (30)

Below is the validation result with a memory block modeled after the actuator.

The CIFER curve shows a phase delay behind the LINMOD and baseline responses.

Because the “Treat as unit delay” option is unchecked in the memory block, LINMOD is

treating it as a unit gain. The delay difference between CIFER and LINMOD using the

estimate correction feature in the validation tool shows a delay of .015 seconds, around

1.5 dt.

 65

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and memory block open loop

CIFER
LINMOD
Baseline

−10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.2

0.4

0.6

0.8

1
C

oh
er

en
ce

Frequency (Rad/sec)

Figure 33: Open loop memory validation

Comparing against LINMOD, CIFER shows 3.5 dB decrease in gain margin, and

a 4 degree decrease in phase margin. Because there was no change in the magnitude

curve, there was no change in the crossover frequency.

This particular discrepancy in linearization can be resolved, because memory

blocks behave similarly to time delays, but the latter have the Pade approximation option

for linearization. Time delays of 1 dt can replace memory blocks to make the two

responses agree. If the memory block was being used to prevent an algebraic loop error,

time delays can fulfill that function as well.

 66

8. Rate limiting

Another nonlinearity that is intrinsic to real systems is rate limiting. No actuator

can slew infinitely fast, so rate limiters are used to account for this. The describing

function of a rate limiter is a function of the rate limit, frequency and input amplitude.

Before a certain frequency, called the onset frequency, the rate limiter has no

effect. Beyond the onset frequency there is a transition region where the phase will roll

off faster until the limit frequency is reached. Beyond the limit frequency the phase loss

asymptotically approaches 90 degrees. Below are an example effect of rate limiting and

the describing function for rate limiting (Ref 4.):

−40

−30

−20

−10

0

M
ag

ni
tu

de
 (

dB
)

Rate limiting effect

wonset wlim
−90

0

P
ha

se
 (

de
g)

Frequency (rad/sec)

Figure 34: Rate limiting effects

 67

()
() ()()

→⇒>>
⇒≤

⋅
⇒≥

=

+=

=

−

wAwRNAwRNsplinewww

ww

e
w

w
ww

AwRN

ww

w

rateonsetrateonset

onset

w

wj

onset

rate

onset

onset

onset

,,,,,

1

4

,,

2

4

A

R

limlim_lim_lim

2
arccos

lim

lim_

2

lim

π

π

π

(31)

Beyond the limit frequency, the phase will have rolled off by about 90 degrees, a

fairly significant amount. Most systems do not carry more than 40-50 degrees of phase

margin, so a loss of ~90 degrees of phase at the crossover frequency is unacceptable.

Below is the validation result with the rate limiter. The LINMOD curve is

directly over the baseline curve, implying that LINMOD is treating the rate limiter as a

unit gain. The CIFER and rate limit theoretical describing function curves are directly

overlaid, so CIFER is correctly capturing the describing function of the system. For the

chosen amplitude of the sweep, the onset frequency is ~5.5 rad/sec. In the error plots

both the magnitude and phase exceed the MUAD bounds by ~6 rad/sec.

 68

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and rate limit and good feedback open loop

CIFER
LINMOD
Baseline
Rate limit DF theory −10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 35: Open loop rate limit validation

Compared against LINMOD, the CIFER response shows a 5.5 dB decrease in

gain margin, and a 3 degree decrease in phase margin. The crossover frequency did not

change much because the onset frequency was just after crossover.

 69

Below is the time history record before and after the rate limiter from the CIFER

sweep used to generate the frequency responses above. At around 50 seconds the rate

limiting effect becomes active.

0 10 20 30 40 50 60 70 80 90
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Time history effect of rate limit

0 10 20 30 40 50 60 70 80 90
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

No rate limit
With rate limit

0 10 20 30 40 50 60 70 80 90
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Time history effect of rate limit

0 10 20 30 40 50 60 70 80 90
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Difference between no rate limit and rate limit

No rate limit
With rate limit

0 10 20 30 40 50 60 70 80 90
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3
Time history effect of rate limit

0 10 20 30 40 50 60 70 80 90
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
Difference between no rate limit and rate limit

No rate limit
With rate limit

Figure 36: Time domain effect of rate limiting case

LINMOD is not able to handle rate limiting correctly. The validation tool can

indicate that rate limiting is happening, but the effect of this nonlinearity needs to be

analyzed in some other way.

The reason it is so important to capture the effects of rate limiting is it has been

observed in almost all PIO cases (Ref 14.). To capture this within CONDUIT, the Open

Loop Operating Point (OLOP) specification is used, which is a predication of pilot

 70

induced oscillations due to rate limiting, allowing the user to capture the rate limiting

effect (Ref 4.). It utilizes the onset frequency given maximum stick deflection to

determine if pilot induced oscillation (PIO) is likely.

B. Table of results
Table 2: Percent change between CIFER and LINMOD in open loop

(+%: LINMOD>CIFER)

Case
Gain
Margin

Phase
Margin

Crossover
frequency

Baseline 0.19% 0.36% -0.08%
Hysteresis N/A N/A N/A
Dead zone -21.57% -28.44% 16.16%
Saturation -8.92% -12.85% 5.42%
Lookup table 47.21% 77.79% -27.40%
Memory block 58.17% 29.84% -0.05%
Time delay -2.03% 2.20% -0.03%
Rate limiting 140.28% 22.45% 0.62%

For the open loop elements, CIFER captured every describing function almost

identically, showing that it is a good truth model for the validation. LINMOD was only

able to match CIFER for the case with nonlinearities and time delay. Most of the

nonlinearities were ignored (treated as a unit gain). Hysteresis was linearized as a zero

gain, making it an element that must be bypassed before linearization. Memory blocks

were the only nonlinearity that could be replaced to allow LINMOD to match the CIFER

responses. The lookup table element was linearized about the trim flight condition,

which may or may not be the correct effect, depending on the need.

 71

VI. Analysis of simple feedback flight control systems
The previous section dealt solely with open loop systems. In this section, two

closed loop examples will be examined using the validation tool. The first example is a

follow on to previous section, where the loop is closed around the simple 2nd order

transfer function with two different compensators. The same nonlinearities as in the

previous section will be tested and examined using the validation tool. Because of the

loop closure there will be no theoretical describing function analysis to accompany the

CIFER and LINMOD results. The second example is based on a simplified XV-15

control system. Closed and broken loop validations will be performed for the on-axis

channels.

A. Closed loop validation for simple 2nd order system
To demonstrate and gather some more baseline results for comparison, closed and

broken loop results were generated for the nonlinearities used in the previous section. In

order to show the effect of different feedbacks, two loop closures were designed, a “Good

design” with ~44 degrees of phase margin and a “Bad design” with ~18 degrees of phase

margin. Below is a summary of the gain and phase margins for the two feedbacks.

Table 3: Simple 1/2 closed loop summary

 Good Bad
Gain Margin (dB) 17.35 9.57

Phase Margin (deg) 44.17 17.89
Crossover freq (rad/sec) 2.6 4.7

By looking at the step responses shown below, the good design has a better

behaved response.

 72

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Good design: Step Input

Time (sec)

A
m

pl
itu

de

Figure 37: Step response of the good design

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Bad design: Step Input

Time (sec)

A
m

pl
itu

de

Figure 38: Step response of the bad design

The majority of the validation results are similar to the open loop results. All

validation results with no nonlinearities show excellent agreement between CIFER and

LINMOD. The closed loop response for the good design is shown below. The complete

set of plots of the validation results are in appendix A.

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and good design closed loop

CIFER
LINMOD

−10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

0

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 39: Closed loop (good design)

 73

Shown below are the closed and broken loop responses with hysteresis. Like the

open loop case, LINMOD linearizes the hysteresis as a zero and so that response is not

visible in the figures below. The baseline response is the response in the absence of

nonlinearities. In this case based on the CIFER analysis, the good design shows the

effect of the hysteresis more than the bad design because the amplitude of the feedback is

smaller.

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and hysteresis and good design closed loop

CIFER
LINMOD
Baseline

−10

0

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

0

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 40: Hysteresis closed loop (good design)

−20

0

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and hysteresis and bad design closed loop

CIFER
LINMOD
Baseline −10

0

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

0

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1
C

oh
er

en
ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 41: Hysteresis closed loop (bad design)

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and hysteresis and good design broken loop

CIFER
LINMOD
Baseline −10

0

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

0

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 42: Hysteresis broken loop (good design)

−20

0

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and hysteresis and bad design broken loop

CIFER
LINMOD
Baseline −10

0

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

0

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 43: Hysteresis broken loop (bad design)

 74

The dead zone results are shown below. Like in the open loop results, dead zone

is treated as a unit gain by LINMOD, so the results overlap directly with the baseline

results. LINMOD treats saturation, rate limiters, and memory blocks in the same way, so

these plots are not shown here. See appendix A for the remainder of the plots.

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and dead zone and good design closed loop

CIFER
LINMOD
Baseline −10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

0

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 44: Dead zone closed loop (good design)

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and dead zone and bad design closed loop

CIFER
LINMOD
Baseline −10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

0

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 45: Dead zone closed loop (bad design)

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and dead zone and good design broken loop

CIFER
LINMOD
Baseline −10

0

10

20
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 46: Dead zone broken loop (good design)

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and dead zone and bad design broken loop

CIFER
LINMOD
Baseline −10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

0

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 47: Dead zone broken loop (bad design)

Shown below are the results with lookup tables. Unlike the other nonlinearities

besides time delay, the LINMOD response changes from the baseline. Here CIFER is

closer to the baseline response because the effective gain of the lookup table is close to

one. LINMOD on the other hand only sees the smaller gain near the origin, hence the

shift in magnitude seen in the broken loop response and the large change in the closed

loop response. This is an example where validation tool would generate valuable data

 75

because some lookup tables will not need special treatment, and the validation tool will

quickly show if the lookup table needs to be replaced by a gain for analysis. In cases

where the lookup has a dramatic effect, the system might need to be optimized at both

gain levels (either simultaneously or sequentially), depending on the setup (i.e. gain

scheduling, in-detent/out-detent mode specs, etc).

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and look−up table and good design closed loop

CIFER
LINMOD
Baseline −10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

0

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 48: Lookup table closed loop (good design)

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and look−up table and bad design closed loop

CIFER
LINMOD
Baseline −20

−10

0

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

0

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 49: Lookup table closed loop (bad design)

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and look−up table and good design broken loop

CIFER
LINMOD
Baseline −10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 50: Lookup table broken loop (good design)

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and look−up table and bad design broken loop

CIFER
LINMOD
Baseline −10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 51: Lookup table broken loop (bad design)

Below are the results for the good design system with a time delay in closed loop.

As seen, CIFER and LINMOD agree very well in the frequency range of interest. Like

 76

the results with no nonlinearity, only the good design closed loop result is shown because

the other plots all show similar good agreement.

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

TF w/ linear actuator and delay and good design closed loop

CIFER
LINMOD
Baseline

−10

−5

0

5

10
Error Bounds

D
el

ta
 M

ag
ni

tu
de

−270

−180

−90

0

P
ha

se
 (

de
g)

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 52: Delay closed loop (good design)

 77

Below is a table summarizing the percent differences between frequency domain

metrics as computed from the CIFER frequency responses and the LINMOD frequency

responses. The complete table with original values can be found in appendix D. Note

that a positive percentage means LINMOD has a higher value than CIFER, or is more

liberal. A negative percentage means LINMOD has a lower value than CIFER, or is

more conservative.

The baseline errors are all within 1.5%, so consider less than 5% change a match.

The hysteresis rows are all N/A because the LINMOD responses were all zeros, so no

metrics were found.

Table 4: Summary of Percent metric changes between CIFER and LINMOD

(+%: LINMOD>CIFER)

Case
Gain
Margin

Phase
Margin

Crossover
frequency Bandwidth

Baseline (good design) -1.32% -0.27% 0.91% -0.01%
Baseline (bad design) 0.29% -0.25% 0.41% -0.19%
Hysteresis (good design) N/A N/A N/A N/A
Hysteresis (bad design) N/A N/A N/A N/A
Dead zone (good design) -33.06% N/A N/A 18.72%
Dead zone (bad design) -16.24% -10.68% 5.71% 4.81%
Saturation (good design) 2.21% 1.01% 4.17% 14.64%
Saturation (bad design) -20.85% -48.17% 28.64% 31.01%
Lookup table (good design) 14.21% 9.69% -23.41% -30.42%
Lookup table (bad design) 53.83% 101.65% -30.33% -27.62%
Memory block (good design) 22.37% 4.38% 0.88% -0.78%
Memory block (bad design) 56.22% 29.13% 0.55% -0.23%
Time delay (good design) -0.74% -0.44% 1.07% -0.13%
Time delay (bad design) -1.04% -1.42% 1.47% -0.72%
Rate limit (good design) 34.55% -1.59% 1.48% 4.00%
Rate limit (bad design) 3.61% 18.61% 0.33% -0.37%

For both of the dead zone cases the magnitude loss causes the gain margin in the

CIFER responses to increase. The good design’s magnitude dropped completely below 0

dB, so the phase margin and crossover frequency metrics were not found.

 78

For saturation, the good design did not saturate as much as the bad design, so the

margins did not change much between CIFER and LINMOD. The bad design saturated a

lot, causing a large magnitude drop, resulting in LINMOD showing lower gain and phase

margins, but higher crossover frequency and bandwidth.

The lookup table cases showed dramatic variations, especially in the bad design.

The LINMOD responses showed higher gain and phase margins, but lower crossover

frequency and bandwidth than the CIFER responses.

The memory block cases shows little change in crossover frequency, which is

expected given that it should only have a phase effect in the broken loop. However effect

on gain and phase margin is pretty significant for the bad design. The effect on

bandwidth is minimal in this case because the magnitude changes were small.

The time delay cases show very little metric changes, which is to be expected

because the Pade approximation used by LINMOD for time delays was seen to accurately

capture the effect on phase.

The rate limiting cases show changes in gain and phase margins, but little change

in crossover frequency and bandwidth. Most the margins are larger in LINMOD, except

for phase margin in the good design.

Ultimately in this exercise, only two cases were correctly captured by LINMOD,

the case without nonlinearities and the case with time delay. Hysteresis resulted in a zero

in the linearized model, so these elements must be removed or by-passed. Lookup tables

are accounted for, but LINMOD may exaggerate the effect due to the perturbation

analysis, so care must be taken. The lookup table may need to be removed and different

scenarios may be needed to capture the different gains provided by the lookup table.

 79

Saturation, dead zone, memory blocks and rate limiters are completely ignored, so any

effect they have on the system will be neglected. As mentioned earlier, memory blocks

can be replaced with time delays, so the delay effect can be captured in the linearized

model. Rate limiters will be examined in more details in the next example.

B. XV-15
The XV-15 is a tilt-rotor aircraft with which AFDD has many research

experiences. The block diagram used is of the XV-15 in hover with a stability

augmentation system (SAS) for lateral and directional axes only. The bare airframe

model is a plant identified from flight test data processed using CIFER (Ref 2.). The

actuator models are 2nd order transfer functions with rate limiting and saturation block

elements. The two input axes in the model, lateral cyclic and directional cyclic, each

have a PID SAS. The lateral stick is limited to 4.8 stick inches of throw, and the pedals

are limited to 2.4 stick inches of throw. A representation of the block diagram is shown

below.

Figure 53: XV-15 Block diagram

 80

The two modeled nonlinearities, saturation and rate limiting, are more active with

large amplitudes, so small inputs should minimize any differences between CIFER and

LINMOD. Saturations have no effect unless the input amplitude is greater than the

saturation limit. Rate limiting is both amplitude and frequency dependent. The onset

frequency of the rate limiter is inversely proportional to the input amplitude. Because the

validation tool only looks at a specific frequency range, a small sweep size should

eliminate any differences between CIFER and LINMOD responses.

Below are the broken loop frequency responses in lateral and directional axes.

The amplitudes are specified in percentage of full throw. For the smallest amplitude

(0.2%), the CIFER frequency response does not show the effect of the rate limiter and

agrees with LINMOD. However, the second (15%) and third (50%) amplitude show the

characteristic magnitude and phase loss beyond the onset frequency of the rate limiter.

As the amplitude of the input increases, the onset frequency continues to decrease, as

expected.

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

Broken loop LAT

−90

0

90

180

270

P
ha

se
 (

de
g)

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)

LINMOD
CIFER Amplitude (%) 0.2
CIFER Amplitude (%) 15
CIFER Amplitude (%) 50

Figure 54: Lateral broken loop

−40

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Broken loop PED

−270

−180

−90

0

P
ha

se
 (

de
g)

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)

LINMOD
CIFER Amplitude (%) 0.2
CIFER Amplitude (%) 15
CIFER Amplitude (%) 50

Figure 55: Direction broken loop

 81

In the closed loop responses shown below, the onset frequency of the rate limiting

is basically the same because the relative amplitude sweep sizes are the same. However,

in the closed loop response the phase loss is more pronounced than in the broken loop.

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Closed loop LAT

−270

−180

−90

0

90

P
ha

se
 (

de
g)

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)

LINMOD
CIFER Amplitude (%) 0.2
CIFER Amplitude (%) 15
CIFER Amplitude (%) 50

Figure 56: Lateral closed loop

−20

−10

0

10

20

M
ag

ni
tu

de
 (

dB
)

Closed loop PED

−270

−180

−90

0

P
ha

se
 (

de
g)

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)

LINMOD
CIFER Amplitude (%) 0.2
CIFER Amplitude (%) 15
CIFER Amplitude (%) 50

Figure 57: Directional closed loop

In both the broken and closed loop responses, the effect of the rate limiter on the

frequency response is dramatic. In the broken loop there is ~70 degrees phase loss after

onset, and in the closed loop ~90 degrees phase loss after onset. As seen in the simple 2nd

order case, LINMOD treats the rate limiter as a unit gain in the buildup of the linear

model. However, due to the large effect on phase, the rate limiter is an effect that must

be accounted for in the analysis.

Figure 58: Broken loop setup

In a pathological case, the sweep amplitude was intentionally increased to 200%

maximum deflection to demonstrate a weakness in the validation tool. When performing

broken loop identification, the response to identify is feedback over error,
e

f
. When

 82

using CIFER, this is done by feeding an input sweep into u and measuring e and f.

Ideally the result is GH
e

f = , which is the broken loop. However
e

f
 is really:

 1
1 −=

u

ee

f
 (32)

For GH
e

f = to be true,

u

e
1

 must not be zero. When the actuator encounters rate limiting

the system self excites in a limit cycle.

u

e
1

is effectively zero because there is no

relationship between the external input and actual response. The result is CIFER

identifies 1−=
e

f
, with a coherence of 1. The math explains why this answer is correct,

but this is not the broken loop frequency response. Because this result is clearly not the

correct response, when using the validation tool it should be noticeable when this error

occurs. The validation tool also has a check for trim at the beginning and end of the time

history record that could catch a problem like this.

 83

-20

0

20

M
ag

ni
tu

de
 (

dB
)

-270

-180

-90

P
ha

se
 (

de
g)

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)

LINMOD

CIFER

Figure 59: Unstable broken loop

This error is made possible because of the simplified validation process that is

utilized by the validation tool. In the normal interactive operation, the time history files

are checked for strange behavior before the identification process begins and therefore

this issue would have been caught early in the validation process.

The results from these two closed loop example validations have confirmed what

was seen in the open loop example. First, the CIFER and LINMOD agree very well in

the absence of nonlinearities or a time delay. Second, CIFER is capable of capturing the

describing functions of systems with nonlinearities. And third, it can be seen that

LINMOD either ignores or miscomputes the majority of the nonlinearities tested.

 84

VII. Simplification and verification of a comprehensive
flight control system

In the previous examples, the systems were intentionally chosen to demonstrate

the validation tool in environments where the results were known to ensure that the tool

was functioning properly. The next example is based on the highly complex RASCAL

fly-by-wire flight control system (Ref 8.). The RASCAL helicopter is a UH60 used for

experimental fly-by-wire control systems and in-flight simulation at AFDD.

The RASCAL block diagram ultimately is converted to flight code to go on the

aircraft, so it represents a level of complexity found in real-world systems. However, the

diagram’s complexity made it prohibitive to work with. This section will mainly deal

with the simplified version of the diagram and its verification. In the end, both block

diagrams were used in this example, the original more complicated diagram is denoted as

the “full-up” diagram, and the simplified diagram is denoted as the “simplified” diagram.

A. Block diagram simplification
The full-up RASCAL block diagram has 33627 blocks, with multiple modes and

complex switch networks to account for different flight conditions. The bare airframe

model in the analysis is either an identified model from flight test data using CIFER or a

physics based model. The physics based airframe model is a 25 state state-space

respresntation. Of the 33000, 21937 of the blocks are just organizational element,

SubSystems, Inports, and Outports.

The reason for all this complexity is that the block diagram is design to be auto-

coded using The MathWorks Real-Time Workshop®. The flight ready code from Real-

Time Workshop has been installed on the aircraft and flight tested. The block diagram

 85

has been validated by the RASCAL team to behave exactly as the final flight control

system will, so ideally it provides accurate results during analysis.

The drawback to all this complexity is added cost of computational speed. The

block diagram takes almost a minute to load, several seconds to start a time domain

simulation, and over 11 minutes on a high-end machine for a single performance

evaluation in CONDUIT. There are Stateflow® logics to handle gain scheduling and

mode transition, which requires special handling in the CONDUIT case to get the

diagram into different modes for analysis. The linear analysis requires the use of a more

advanced linearization algorithm in MATLAB called LINEARIZE, that allows the model

to “fly” to the trim point before performing the linearization.

The idea behind the simplified diagram is ultimately to reduce the high block

count due to both organization and control logic that are unnecessary from a control

design perspective. If the broken loop responses of both models are close in the

frequency range of interest, then from an analysis stand-point the diagrams can be used

interchangeably for control design purposes. The full-up diagram can still be auto-coded,

but the optimized set of gains is obtained from the CONDUIT analysis based on the

simplified diagram.

The simplified block diagram was provided by AFDD for the study. This thesis

will present the simplified model’s improvements and the verification of the simplified

diagram against both the full-up model and flight test data. The core of the validation

tool was used to generate broken loop frequency responses for the full-up and simplified

diagrams, and the new CIFER command line interface was used to process the flight test

data. The scripts for these analyses are in Appendix B.

 86

The simplified diagram managed to capture the key dynamics present in the full-

up model with a total of 1886 blocks, more than an order of magnitude of reduction. The

amount of organizational overhead dropped as well, with only 706 SubSystem, Inports

and Outports, less than half of the total count. Below is a table comparing block counts

between the full-up and simplified diagram.

Table 5: Block Summary

 Full-up (%) Simplified (%)
Total 33627 100.00% 1886 100.00%
Abs 38 0.11% - 0.00%

BusCreator 41 0.12% - 0.00%
BusSelector 100 0.30% - 0.00%
Concatenate 3 0.01% - 0.00%

Constant 1679 4.99% 188 9.97%
DataTypeConversion 484 1.44% - 0.00%

Demux 52 0.15% 12 0.64%
Display 67 0.20% 4 0.21%

EnablePort 77 0.23% - 0.00%
From 1491 4.43% 179 9.49%
Gain 487 1.45% 103 5.46%
Goto 1008 3.00% 96 5.09%

Ground 346 1.03% 26 1.38%
Inport 9330 27.75% 310 16.44%

Integrator 20 0.06% 40 2.12%
Logic 521 1.55% 10 0.53%

Lookup 40 0.12% - 0.00%
Lookup2D 10 0.03% - 0.00%

Math 21 0.06% 8 0.42%
Memory 5 0.01% 1 0.05%
MinMax 82 0.24% - 0.00%

Mux 39 0.12% 8 0.42%
Outport 5108 15.19% 297 15.75%
Product 833 2.48% 136 7.21%

RelationalOperator 427 1.27% - 0.00%
Rounding 9 0.03% - 0.00%

Scope 16 0.05% 2 0.11%
Selector 2 0.01% 2 0.11%

SignalConversion 5 0.01% - 0.00%
SignalSpecification 400 1.19% - 0.00%

Signum 2 0.01% - 0.00%
Stateflow 12 0.04% - 0.00%

Step 103 0.31% 25 1.33%
SubSystem 7499 22.30% 99 5.25%

Sum 876 2.61% 119 6.31%
Switch 1567 4.66% 98 5.20%

 87

 Full-up (%) Simplified (%)
Terminator 394 1.17% 37 1.96%

TransferFcn 2 0.01% 36 1.91%
TransportDelay 4 0.01% 25 1.33%

Trigonometry 12 0.04% 25 1.33%
TruthTable 3 0.01% - 0.00%
UnitDelay 412 1.23% - 0.00%

The simplified diagram is smaller and has a significant speed improvement over the full-

up diagram. The Stateflow logic was removed, so the system was loaded at trim and

there was no longer a need to “fly” to a trim point while the Stateflow logic initialized.

For this reason, LINMOD can now be used instead of LINEARIZE.

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Pitch axis

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Roll axis

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Yaw axis

−360

−270

−180

−90

P
ha

se
 (

de
g)

−270

−180

−90

0

P
ha

se
 (

de
g)

−270

−180

−90

P
ha

se
 (

de
g)

10
0

10
1

0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (rad/sec)
10

0
10

1
0

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Frequency (rad/sec)

Full−up
Simplified

Comparison of Full−up and Simplified block diagram broken loop frequency responses

Figure 60: Full-up vs. Simplified Broken Loop

 88

Figure 60 above shows the broken loop frequency responses generated from

sweeping both the full-up and simplified block diagrams. Both systems are in good

agreement from .5 to 16 rad/sec. At high frequency, the simplified diagram has a higher

phase roll-off. There is a small phase delay difference of ½ time step present due to the

fact that the simplified diagram is continuous, and the full-up diagram is hybrid. The

phase delay makes the simplified diagram more conservative in most axes. The small

difference in crossover frequency in the roll axis is due to the flatness near crossover,

allowing very small changes in magnitude to have an effect on crossover frequency. The

changes in stability margins are summarized in the table below.

Table 6: Stability margin changes between diagrams

Axis Diagram Crossover
Frequency
(rad/sec)

Phase
Margin
(deg)

Gain Margin
(dB)

180 Crossing
(rad/sec)

Pitch Full-up 3.5 50.29 -9.86, 10.03 0.9, 9.8
Simplified 3.5 48.00 -9.05, 9.97 0.9, 9.3

Roll Full-up 3.8 53.83 -11.51, 7.80 1.2, 8.7
Simplified 3.6 55.06 -10.25, 6.68 1.2, 8.0

Yaw Full-up 5.7 26.96 -23.89, 7.89 0.7, 13.2
Simplified 5.7 25.54 -26.15, 7.54 0.6, 12.4

To compare both systems in time domain, step inputs were injected into the three

attitude axes. In the figures below, the rate responses to the corresponding step inputs are

shown. In the title of each plot, the RMS cost, as well as Theil inequality coefficient

(TIC) for the error between the two diagrams are displayed. A cost less than 1 and a TIC

less than .25 are considered excellent for model matching (Ref 2.).

 89

0 2 4 6 8 10
−0.02

−0.01

0

0.01

0.02

0.03

0.04

Step response in Pitch
RMS Cost: 0.016, TIC: 0.083

q
(d

eg
/s

ec
)

Pitch (%)

Full−up
Simplified

Figure 61: Step response in Pitch

0 2 4 6 8 10
−0.04

−0.02

0

0.02

0.04

0.06

0.08

Step response in Roll
RMS Cost: 0.038, TIC: 0.107

p
(d

eg
/s

ec
)

Roll (%)

Full−up
Simplified

Figure 62: Step response in Roll

0 2 4 6 8 10
−0.01

0

0.01

0.02

0.03

0.04

Step response in Yaw
RMS Cost: 0.012, TIC: 0.016

r
(d

eg
/s

ec
)

Yaw (%)

Full−up
Simplified

Figure 63: Step response in Yaw

Given the good agreement from the frequency responses, stability margins, and

step responses, the simplified diagram can be considered as a valid simplification of the

full-up diagram. With the reduced computation cost the new CONDUIT case is easier to

work with and was optimized in a reasonable amount of time.

 90

B. Comparisons between the simplified block diagram and
flight test data

Another check that needs to be done is the validation between the simplified

diagram and the aircraft based on flight test data. These results are based on a new set of

gains, so the stability margins have changed. Below are the Bode plots of the pitch axis

broken loop response, overlaying the two cases on the left and error plot on the right. It

can be seen that the simplified diagram is representative of the aircraft from about 2

rad/sec to 14 rad/sec in the pitch axis. The crossover frequency is near 3 rad/sec, so the

low frequency magnitude needs improvement. The phase curves are in good agreement

across the frequency range.

−40

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Pitch broken loop

−360

−270

−180

−90

P
ha

se
 (

de
g)

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)

Flight test (8025, 0G12, DRB)
CONDUIT (TOS_V13_BOTH, 13CPR)

Figure 64: Pitch broken loop

−20

−10

0

10
Pitch broken loop error

D
el

ta
 M

ag
ni

tu
de

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

F1 : Flight test (8025, 0G12, DRB)

Figure 65: Pitch broken loop error

 91

Below are the roll broken loop responses. Similar to the pitch axis, the high

frequency region has a better match, with magnitude errors at low frequency. The good

fit range is from 3 rad/sec to 15 rad/sec. The fact that the errors near crossover frequency

are exceeding the MUAD bounds is problematic, so the low frequency magnitude needs

improvement.

−40

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Roll broken loop

−360

−270

−180

−90

P
ha

se
 (

de
g)

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)

Flight test (8025, 0G12, DRB)
CONDUIT (TOS_V13_BOTH, 14CPR)

Figure 66: Roll broken loop

−20

−10

0

10
Roll broken loop error

D
el

ta
 M

ag
ni

tu
de

−90

0

90

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

F1 : Flight test (8025, 0G12, DRB)

Figure 67: Roll broken loop error

 92

Below is the yaw broken loop results. Unlike pitch and roll, the yaw low

frequency matchs up to 1.6 rad/sec, but the phase and magnitude errors at high frequency

are much more dramatic than the pitch and roll results. The crossover frequency of the

yaw channel is also at a higher frequency, 4.39 rad/sec, so the high frequency errors are

going to affect the accuracy of the analysis of the yaw axis more.

−60

−40

−20

0

20

M
ag

ni
tu

de
 (

dB
)

Yaw broken loop

−450

−360

−270

−180

−90

P
ha

se
 (

de
g)

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)

Flight test (8025, 0G12, DRB)
CONDUIT (TOS_V13_BOTH, 15CPR)

Figure 68: Yaw broken loop

−20

0

20

40

Yaw broken loop error

D
el

ta
 M

ag
ni

tu
de

−180

−90

0

90

180

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

F1 : Flight test (8025, 0G12, DRB)

Figure 69: Yaw broken loop error

 93

Below is a table comparing the stability margins obtained from CIFER against

that from the flight test data. The stability margin differences are significant in all of the

axes. This indicates that the current model is insufficient in some way. Because of the

close agreement between the full-up and simplified diagrams, the control system portion

of the block diagram is probably not the problem. Both the full-up and the simplified

diagrams rely on the same math models, so the simplification would not have affected

that portion of the diagram. That indicates that the problem is a math model issue.

Table 7: Flight test margin summary

Axis Diagram Crossover
(rad/sec)

Phase
Margin
(deg)

Gain Margin
(dB)

180 Crossing
(rad/sec)

Pitch Flight 2.5 51.77 -7.07, 11.67 0.9, 10.5
Simplified 2.9 38.94 -13.12, 10.35 0.9, 9.1

Roll Flight 3.3 55.19 -7.71, 8.55 1.1, 8.9
Simplified 4.1 46.65 -17.94, 6.22 0.9, 8.3

Yaw Flight 4.2 56.05 -11.04, 3.5 0.8, 22.1
Simplified 4.4 35.17 N/A, 5.6 N/A, 7.7

 94

The discrepancies seen here were documented and provided to the principle

investigator, who confirmed that the math modeling inaccuracies accounted for the

discrepancies. These errors were corrected by adding a gain and time delay to the block

diagram. Below are some of the new broken loop response overlays based on the

updated block diagram. Further flight test data from the recently published AHS paper

shows a much better match between the aircraft with two flight test records (9009 and

8025) and the updated CONDUIT block diagram (Ref 8.).

-40

-20

0

20

40

dB

-300

-200

-100

0

de
g

10
-1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Frequency (rad/sec)

C
oh

Flight (9009)

Flight (8025)
CONDUIT

Figure 70: Corrected pitch broken loop

-40

-20

0

20

40

dB

-300

-200

-100

0

de
g

10
-1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Frequency (rad/sec)

C
oh

Flight (F9009)

Flight (F8025)

CONDUIT

Figure 71: Corrected roll broken loop

-40

-20

0

20

40

dB

-300

-200

-100

0

de
g

10
-1

10
0

10
1

10
2

0

0.2

0.4

0.6

0.8

1

Frequency (rad/sec)

C
oh

Flight (9009)
Flight (8025)
CONDUIT

Figure 72: Corrected yaw broken loop

 95

VIII. Validation of linearized model of a simplified flight
control system model

The previous section was completely focused on frequency responses generated

from CIFER based on frequency sweeps. After correcting the problems found between

the simplified model and the aircraft, it is necessary to check that the linearization of the

new diagram is correct. Like the previous sections, the comparisons are between

frequency responses generated from LINMOD to those generated from CIFER, to ensure

the integrity of the linear model obtained with LINMOD.

Broken loop responses in the three attitude channels were checked. Below is the

pitch broken loop. Agreement is excellent across the entire frequency range, but there is

a small phase error between the two responses, which will be discussed later.

−40

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Pitch broken loop

−180
−90

0
90

180
270

P
ha

se
 (

de
g)

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)

CIFER
LINMOD

Figure 73: Pitch broken loop

−10

0

10

20
Pitch broken loop error bounds

D
el

ta
 M

ag
ni

tu
de

−90

0

90

180

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 74: Pitch broken loop error

 96

Figure 75 and Figure 76 show the roll broken loop comparisons between CIFER

and LINMOD. Unlike pitch, there appears to be some errors at ~.5 rad/sec. This is the

location of a lightly damped mode. Lightly damped modes typically require much long

window sizes to capture, which is impractical. The location of the root is very close in

both CIFER and LINMOD, so there is no reason to expect linearization errors there. At

frequencies below the lightly damped mode the magnitude curve matches again.

However, the phase appears to have a large error. This is just due to phase wrapping,

which is confirmed on the error plot that there is no real problem. At high frequency

there is a similar phase roll off as found in pitch.

−40
−20

0
20
40
60

M
ag

ni
tu

de
 (

dB
)

Roll broken loop

−540
−450
−360
−270
−180

−90
0

P
ha

se
 (

de
g)

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)

CIFER
LINMOD

Figure 75: Roll broken loop

−20

0

20
Roll broken loop error bounds

D
el

ta
 M

ag
ni

tu
de

−180

−90

0

90

180

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 76: Roll broken loop error

 97

In the yaw axis, the same small high frequency phase roll-off is present as in pitch

and roll. Additionally, in these figures at the low frequency errors there are some

problems with the CIFER frequency responses as indicated by the drop in coherence.

This is limitation of the validation tool due to drift in the system. However, the range of

good identification is from .4 to 20 rad/sec, which is more than enough to compare

validation results against CONDUIT.

−20
0

20
40
60
80

M
ag

ni
tu

de
 (

dB
)

Yaw broken loop

−270

−180

−90

P
ha

se
 (

de
g)

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)

CIFER
LINMOD

Figure 77: Yaw broken loop

−20

0

20
Yaw broken loop error bounds

D
el

ta
 M

ag
ni

tu
de

−90

0

90

180

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 78: Yaw broken loop error

Since each of the axes has a additive phase delay, there must be some elements in

the block diagram that is causing the discrepancy. Below is a table summarizing the

estimated time delay errors in each channel. The fact that the delays are close to 1-2 time

step is the first hint to the problem. Looking back to the validation work for the open

loop simple 2nd order system, this error looks very much like an error due to a memory

block.

Table 8: Summary of found time delays

Axes Time delay (msec) N*dt
Pitch 20.8 2.56
Roll 10.0 1.28
Yaw 11.2 1.4

 98

Looking through the simplified block diagram, memory blocks were indeed found

in front of the system plant, as show in the figure below. As discussed earlier, if the

memory block is replaced with a time delay of 1 time step, the time domain simulation

will be unaffected and the linearized model will capture the delay correctly.

Figure 79: Memory blocks in path

After replacing the memory blocks with time delays, the estimated delay error

decreased by ~10 ms, although each channel still had phase errors at high frequency.

After examining the diagram further it was found that several time delays in the feedback

path had their Pade approximation order set to zero. This means that LINMOD was

completely ignoring the effect of the time delay, and hence the error showed up during

the validation.

 99

Figure 80: Pade order zero

It was not clear why the Pade order was left at the default value of zero. Perhaps

the engineer that developed the Simulink block diagram forgot to set the order to two, or

there may have been some other engineering reason for leaving the order at zero.

Regardless, the setting caused LINMOD to ignore the time delay. This error introduces a

small, but present difference between the linearized model and the full simulation model.

By replacing the memory blocks with time delays and setting the Pade order to non-zero

in the existing time delays, the CIFER and LINMOD results agree perfectly in the

frequency range of interest, as seen in the figures below.

−40

−20

0

20

40

M
ag

ni
tu

de
 (

dB
)

Pitch broken loop

−180
−90

0
90

180
270

P
ha

se
 (

de
g)

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (rad/sec)

CIFER
LINMOD

Figure 81: Corrected pitch broken loop

−10

0

10

20
Pitch broken loop error bounds

D
el

ta
 M

ag
ni

tu
de

−90

0

90

180

D
el

ta
 P

ha
se

10
0

10
1

0

0.5

1

C
oh

er
en

ce

Frequency (Rad/sec)

Figure 82: Corrected pitch broken loop error

 100

The amount of phase margin lost due to the discrepancies was around 4 degrees.

Differences in gain margins were also seen because the 180 degree point was reached

sooner. The biggest problem with these discrepancies would show up when tuning

correction factors. If tuned to the LINMOD frequency responses, the corrected model

will be more liberal in margins than indicated by CIFER frequency response or the model

in the time domain. Now that the LINMOD and CIFER frequency responses match,

tuning done to the model will achieve the correct effect in both time and frequency

domains.

 101

IX. Conclusion
The new CIFER command line interface has provided a reliable and stable

platform to create the validation tool. The MATLAB class structure allows for reduced

complexity of the out-lying code by encapsulating and streamlining the CIFER system

identification process. The new frequency response class also allows the retrieval

frequency responses from the CIFER database and frequency response plots to be

generated with little work.

The process for sweeping block diagrams is now easy enough to be performed on

any CONDUIT block diagram with little to no setup. The validation tool GUI provides a

simple push-button functionality to perform validation work. The ease of the validation

tool should benefit users by reducing the time it takes to validate the linearization

process.

The simple 2nd order and XV-15 examples give confidence that CIFER is

providing an accurate truth model from the time domain simulation. CIFER matches the

analytic describing function for all of the tested nonlinearities. In the few cases where the

validation process broke down, the coherence provided enough information to determine

the valid range of the validation. In the observed case where CIFER did not correctly

identify the broken loop response due to rate limiting and the missing indication from the

coherence data, the CIFER results were obviously not the broken loop response and a

warning was added to notify the user of the potential problem.

The RASCAL example showed how a complex block diagrams can be validated

using the CIFER command line interface for more than the linearization process. The

RASCAL simplified diagram was validated utilizing the CIFER command line interface

 102

against both the full-up diagram and flight test data. Additionally the linearization

validation showed some small linearization problems, and they were fixed. These

validations proved that the automated sweeping process can handle complex diagrams.

The validation of linearization method against system identification has proven to

be effective. Some mistakes were found and fixed, and the validation tool allows for re-

validation to be performed very quickly.

Thanks to this work, system identification of Simulink simulations can now be

done quickly and effectively when associated with a CONDUIT case. Part of the future

work will be to generalize the Simulink integration to allow system identification of any

Simulink diagram in an automated fashion.

 103

X. Appendix A: 1st over 2nd plots
See Supplementary File simple_1_2.pdf

 104

XI. Appendix B: Analysis script examples

1. Flight test analysis example

This example shows the processing of flight test data from the 8025 flight test

shown in the thesis. This is a typical analysis setup, just done with the new command

line.

run_cases.m
clear; clc; close all

% Specify flight number
flight = '8025';

% Choose windows
window = [36,20,15,10,5];

% Link time history events with channel names and min/max frequencys
events = {
 3 'VIPPITCH' 'VIP PITCH AXIS CHRIP' 'EP' 'FP' [35,20,15,10,5] .5 25
 4 'VIPROLL' 'VIP ROLL AXIS CHRIP' 'ER' 'FR' window .8 25
 5 'VIPYAW' 'VIP YAW AXIS CHRIP' 'EY' 'FY' window .5 45
 6 'VIPVERT' 'VIP VERTICAL AXIS CHRIP' 'EC' 'FC' window 0 20
 7 'DRBPITCH' 'HIGH DRB PITCH AXIS CHRIP' 'EP' 'FP' window .5 25
 8 'DRBROLL' 'HIGH DRB ROLL AXIS CHRIP' 'ER' 'FR' window .7 25
 9 'DRBYAW' 'HIGH DRB YAW AXIS CHRIP' 'EY' 'FY' window .75 43
 10 'DRBVERT' 'HIGH DRB VERTICAL AXIS CHRIP' 'EC' 'FC' window .45 20
 11 'BASPITCH' 'BASELINE PITCH AXIS CHRIP' 'EP' 'FP' window .65 25
 12 'BASROLL' 'BASELINE ROLL AXIS CHRIP' 'ER' 'FR' window .6 25
 13 'BASYAW' 'BASELINE YAW AXIS CHRIP' 'EY' 'FY' window .6 40
 14 'BASVERT' 'BASELINE VERTICAL AXIS CHRIP' 'EC' 'FC' window .3 20
 };

% Prepare the command line interface for use
setup_CIFER;

warning('off','UH60M_CIFER:Field_missing')
% Interate through each event
for i = 1:size(events,2)
 % Perform some transformation and unit conversions on the flight test
 % data
 [filename, data, uh60_2_cifer, cifer_2_uh60] = ...
 uh60m_cifer(['.' filesep 'data\'],flight,events{i,1});

 % Generate a blank frespid_obj
 fre = frespid_obj;
 % Set the case name and comments
 fre.name = events{i,2};
 fre.comments = events{i,3};

 % These responses are SISO, so no need for cross correlation
 fre.crosscor = false;

 % Set the input and output names
 fre.controls{1} = events{i,4};
 fre.outputs{1} = events{i,5};

 % Setup the time history file, in this case it is from a MATLAB .MAT
 % file, source 4
 fre.thfiles(1).source = 4;
 fre.thfiles(1).flight = str2double(flight);
 fre.thfiles(1).event = events{i,1};

 105

 fre.thfiles(1).filename = filename;

 % Compute all response pairs
 fre.frcalc(:) = true;

 window_length = events{i,6};
 min_freq = events{i,7};
 max_freq = events{i,8};

 % Set the windows
 for j = 1:numel(window_length)
 fre.windows(j).on = true;
 fre.windows(j).length = window_length(j);
 fre.windows(j).min_freq = min_freq;
 fre.windows(j).max_freq = max_freq;
 end

 % Create the composite case
 com = composite_obj(fre);

 clean_BATDIR(fre.name)

 % Submit COMPOSITE FRESPID job
 job = batch(fre);
 wait(job);

 if(~check(job))
 error('FRESPID job %d failed', i)
 end

 % Submit the COMPOSITE job
 job = batch(com);
 wait(job);

 if(~check(job))
 error('COMPOSITE job %d failed', i)
 end

 frname{i} = [events{i,2} '_COM_ABCDE_' events{i,4} '_' events{i,5}];

 fr{i} = ciffrq(frname{i});

 % Compute gain and phase margins, and bandwidth
 [phase{i}, gain{i}] = crossover(fr{i});
 bw{i} = bandwidth(fr{i});
end

for i = 1:numel(fr)
 % Write the frequency responses to .mat files for overlaying
 writeFRfile(fr{i}.name,[fr{i}.name '.mat'], 'M', int32([1 -1 1]));
end

 106

2. XV-15 batch validation example

The plots for the XV-15 example were generated using the following script. The

2nd order elements and RASCAL validations were done via similar scripts.

close all;clc

fields = {'id', 'in', 'out','bl','stick_fac'};

outputs = {'v' 'p' 'r' 'ay' 'phi' 'psi'};

% Maximum stick amounts
lat_max = 4.8;
ped_max = 2.5;

% Specific the input, output and switches for the validation
data = {
 'Closed loop LAT' 'd_lat_s' 'p' [] lat_max
 'Closed loop PED' 'd_ped_s' 'r' [] ped_max
 'Broken loop LAT' 'd_lat_c_in' 'd_lat_c_out' 1 lat_max*1.5
 'Broken loop PED' 'd_ped_c_in', 'd_ped_c_out' 2 ped_max*2.8};

cases = cell2struct(data, fields, 2);

% Percent throw
Amps = [.002 .15 .5];
% Iterate over each percentage
for j = 1:numel(Amps)
 minfreq = .1;
 maxfreq = 10;
 Amp = Amps(j);
 scenarios = {};
 switches = [];

 % Iterate over each case
 for i = 1:numel(cases)
 fprintf('%.3f\n',100*(i/numel(cases)))

 % This function calls LINMOD and does the CIFER sweeping
process
 % and returns the frequency response, the frespid and composite
 % case, and the time history data
 [linmod_tf{i,j}, cifer_fr{i,j}, fre, com, thdata{i,j}] = ...
 validate_short(cases(i).in, cases(i).out, switches, ...
 cases(i).bl, scenarios, minfreq, maxfreq, ...
 Amp*cases(i).stick_fac);
 end

end

% Save the results for plotting
save results linmod_tf cifer_fr cases thdata Amps

 107

XII. Appendix C: Sweep equation
() ()[]

()

() ()

()
()()

()
()

() ()

() () ()
()

−+

−++

−

−−
−⇒≤+

−⇒+<≤
⇒<

=

=
−

=

=

−=

−+⇒+≥

⇒+<≤
⇒<

=

=

⇒<−

++−
−⇒−<≤−−

⇒−−<≤+

−
⇒+<≤

⇒<

=

+=

−−
−−

−−
−−

∫

zeroparkzero

ttT

tttC

zeroparkrec
parkzero

zeroparkzerozero

zero

C

ttT

tttC

parkzero

parkzerozero

zero

zerorec

fadeout

fadeoutzerorec
zeroreczerofadeoutrec

zerofadeoutrecfadeinzero

fadein

zero
fadeinzerozero

zero

noisesweep

ttttte
C

ttT
Cttt

tttttt

tt

t

e
C

C

eCtK

tKttt

tttt

tt

t

dttt

ttT

t

ttTt
tTtttT

ttTttt

t

tt
tttt

tt

tA

ttA

zeroparkrec

zeropark

zeroparkrec

zeropark

min
2

1
minmax2

min

2

1

2
2

minmaxmin

min

1
2

0

0187.
1

0023.1

4

1

0

0

1

1

0

sin

1

1

1

ωωω

ωθ

ωωω
ωω

ωθ

δθδ

 108

XIII. Appendix D: Second order elements metrics

Case Source

Gain
Margin
(dB)

Phase
Margin
(deg)

Crossover
frequency
(rad/sec)

Bandwidth
(rad/sec)

Baseline (open loop) CIFER 9.553 17.725 4.717 N/A
 LINMOD 9.571 17.788 4.713 N/A
 Difference 0.188% 0.358% -0.078% N/A
Hysteresis (open loop) CIFER 2.994 7.396 4.428 N/A
 LINMOD N/A N/A N/A N/A
 Difference N/A N/A N/A N/A
Dead zone (open loop) CIFER 12.203 24.858 4.058 N/A
 LINMOD 9.571 17.788 4.713 N/A
 Difference -21.567% -28.443% 16.161% N/A
Saturation (open loop) CIFER 10.509 20.411 4.471 N/A
 LINMOD 9.571 17.788 4.713 N/A
 Difference -8.924% -12.852% 5.420% N/A
Lookup table (open loop) CIFER 10.591 20.570 4.457 N/A
 LINMOD 15.591 36.571 3.236 N/A
 Difference 47.213% 77.792% -27.396% N/A
Memory block (open loop) CIFER 6.051 13.699 4.716 N/A
 LINMOD 9.571 17.788 4.713 N/A
 Difference 58.171% 29.844% -0.053% N/A
Time delay (open loop) CIFER 1.401 4.193 4.715 N/A
 LINMOD 1.372 4.286 4.713 N/A
 Difference -2.031% 2.205% -0.032% N/A
Rate limit (open loop) CIFER 3.983 14.527 4.684 N/A
 LINMOD 9.571 17.788 4.713 N/A
 Difference 140.276% 22.445% 0.622% N/A
Baseline (good design) CIFER 18.732 49.471 2.554 4.274
 LINMOD 18.483 49.339 2.577 4.274
 Difference -1.324% -0.268% 0.912% -0.006%
Baseline (bad design) CIFER 9.543 17.833 4.694 7.210
 LINMOD 9.571 17.788 4.713 7.196
 Difference 0.289% -0.254% 0.405% -0.194%
Hysteresis (good design) CIFER 9.898 40.530 1.805 3.732
 LINMOD N/A N/A N/A N/A
 Difference N/A N/A N/A N/A
Hysteresis (bad design) CIFER 6.376 14.316 4.648 6.914
 LINMOD N/A N/A N/A N/A
 Difference N/A N/A N/A N/A
Dead zone (good design) CIFER 27.611 N/A N/A 3.600
 LINMOD 18.483 49.339 2.577 4.274
 Difference -33.059% N/A N/A 18.721%

 109

Dead zone (bad design) CIFER 11.427 19.915 4.459 6.866
 LINMOD 9.571 17.788 4.713 7.196
 Difference -16.244% -10.679% 5.710% 4.813%
Saturation (good design) CIFER 18.083 48.848 2.474 3.728
 LINMOD 18.483 49.339 2.577 4.274
 Difference 2.212% 1.006% 4.170% 14.638%
Saturation (bad design) CIFER 12.091 34.318 3.664 5.493
 LINMOD 9.571 17.788 4.713 7.196
 Difference -20.846% -48.167% 28.641% 31.011%
Lookup table (good design) CIFER 21.455 68.796 1.689 3.939
 LINMOD 24.504 75.460 1.294 2.741
 Difference 14.212% 9.686% -23.411% -30.423%
Lookup table (bad design) CIFER 10.136 18.136 4.645 7.045
 LINMOD 15.591 36.571 3.236 5.099
 Difference 53.828% 101.650% -30.330% -27.617%
Memory block (good
design) CIFER 15.105 47.269 2.554 4.307
 LINMOD 18.483 49.339 2.577 4.274
 Difference 22.369% 4.378% 0.876% -0.784%
Memory block (bad design) CIFER 6.126 13.775 4.687 7.213
 LINMOD 9.571 17.788 4.713 7.196
 Difference 56.223% 29.130% 0.553% -0.232%
Time delay (good design) CIFER 10.361 42.141 2.549 4.352
 LINMOD 10.285 41.957 2.577 4.346
 Difference -0.736% -0.437% 1.073% -0.130%
Time delay (bad design) CIFER 1.387 4.347 4.645 7.131
 LINMOD 1.372 4.286 4.713 7.080
 Difference -1.036% -1.418% 1.466% -0.722%
Rate limit (good design) CIFER 13.737 50.138 2.539 4.109
 LINMOD 18.483 49.339 2.577 4.274
 Difference 34.552% -1.593% 1.484% 3.996%
Rate limit (bad design) CIFER 8.847 14.998 4.698 7.223
 LINMOD 9.571 17.788 4.713 7.196
 Difference 3.611% 18.606% 0.327% -0.370%

 110

XIV. Works Cited
[1] Hodgkinson, John. Aircraft Handling Qualities. Reston, VA: American Institute of

Aeronautics and Astronautics, 1999. Page 68.

[2] Tischler, Mark B. and Robert K. Remple. Aircraft and Rotorcraft System

Identification. Reston, VA: American Institute of Aeronautics and Astronautics,

2006. Page 89-90, 169-177

[3] Ogata, Katsuhiko. Modern Control Engineering. Englewood Cliffs, N. J.: Prentice-

Hall, 1970. Page 540-545

[4] Duda, Holger. "Effects of Rate Limiting Elements in Flight Control Systems - A New

PIO-Criterion." AIAA Guidance, Navigation and Control. 1995. DLR, German

Aerospace Research Establishment.

[5] Gelb, Arthur and Wallace E. Vander Velde. "Sinusoidal-Input Describing Function

(DF)." Multi-input Describing Functions and Nonlinear System Design. New

York, NY: McGraw-Hill, 1968.

[6] Rupnik, Brian K. CIFER-MATLAB Interfaces: Development and Application.

California Polytechnic State University, 2005. Aerospace Engineering - Flight

Simulator - Cal Poly San Luis Obispo. 2007. California Polytechnic State

University. 1 May 2009 <http://aerosim.calpoly.edu/library.html>.

[7] Cheung, Kenny. "CONDUIT Setup and Run Modes." CONDUIT Training Course.

2009

 111

[8] Mansur, Mohammadreza H., Jeff A. Lusardi, Mark B. Tischler, and Tom Berger.

"Achieving the Best Compromise between Stability Margins and Disturbance

Rejection Performance." American Helicopter Society 65th Annual Forum. 2009

May. 2009. Aeroflightdynamics Directorate (AMRDEC), U.S. Army RDECOM,

UC Santa Cruz (UARC).

[9] Tischler, Mark B., “System Identification Methods for Aircraft Flight Control

Development and Validation,” NASA TM-110369, 1995.

[10] Ivler, Christy. “Simulation Requirements.” CONDUIT Training Course. 2009

[11] Tischler, Mark B., Jason D. Colbourne, Mark R. Morel, Daniel J. Biezad, William S.

Levine, and Veronica Moldoveanu. CONDUIT - A New Multidisciplinary

Integration Environment for Flight Control Development. 1997. Moffet Field:

NASA and US Army, 1997.

[12] Anon, “Flight Control Systems - Design, Installation And Test Of Piloted Aircraft,

General Specification For,” MIL-DTL-9490E, Department of Defense, April

2008.

[13] Anon, “Aeronautical Design Standard, Performance Specification, Handling

Qualities Requirement for Military Rotorcraft,” US Army Aviation and Missile

Command, USAAM-COM, ADS-33E-PRF, March 2000.

[14] National Research Council (U.S.). Aviation Safety and Pilot Control. Washington:

National Academy Press, 1997.

