
Continuations from Generalized Stack Inspection ∗

Greg Pettyjohn
Northeastern University

John Clements
Northeastern University

Joe Marshall
Northeastern University

Shriram Krishnamurthi
Brown University

Matthias Felleisen
Northeastern University

Abstract
Implementing first-class continuations can pose a challenge if the
target machine makes no provisions for accessing and re-installing
the run-time stack. In this paper, we present a novel translation
that overcomes this problem. In the first half of the paper, we
introduce a theoretical model that shows how to eliminate the
capture and the use of first-class continuations in the presence
of a generalized stack inspection mechanism. The second half of
the paper explains how to translate this model into practice in
two different contexts. First, we reformulate the servlet interaction
language in the PLT Web server, which heavily relies on first-class
continuations. Using our technique, servlet programs can be run
directly under the control of non-cooperative web servers such as
Apache. Second, we show how to use our new technique to copy
and reconstitute the stack on MSIL.Net using exception handlers.
This establishes that Scheme’s first-class continuations can exist on
non-cooperative virtual machines.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Control prim-
itives; H.3.4 [Information Storage and Retrieval]: Systems and
Software—World Wide Web (WWW); I.2.2 [Artificial Intelli-
gence]: Automatic Programming—Program transformation; F.3.2
[Logics and Meanings of Programs]: Semantics of Programming
Languages—Operational semantics

General Terms Languages, Theory

Keywords A-normal form, continuation-passing style, stack in-
spection, Web programming, continuations, defunctionalization,
Scheme

1. Motivation: Continuations, VMs, and the Web
When an interactive Web program issues a query, a non-local trans-
fer of control takes place. It is now the user (possibly an intelligent

∗ This research has been supported by NSF awards to Felleisen and Krish-
namurthi as well as a Microsoft donation to Felleisen.

agent) who is in charge. This user may decide to respond to the
query once, twice or many times (or not at all), thus re-launching
the rest of the program’s computation once, twice, or many times.
Many people have therefore concluded that a language with first-
class continuations (such as Scheme [19]) is a strong match for
implementing this kind of interactive program [11, 18, 26, 33].

Over the past several years, we have explored the continuation
model of Web programming in two different directions. Initially,
we designed, implemented, and evaluated a Web server that imple-
ments the run-time primitives for Web interactions via Scheme’s
first-class continuations [14]. The investigation validated that this
approach is suitable for a variety of situations and even led to a
commercial product [20]. Sadly, only programs running on a cus-
tom Web server can benefit from this approach.

To address this concern, we also experimented with a variant
of the continuation-passing transformation (CPS) for automatically
restructuring interactive programs for the Web [13, 21]. In prin-
ciple, this transformation can be used with a wide range of pro-
gramming languages and should therefore help Web programmers
in many situations. The problem, however, is that the transforma-
tion affects the entire program. Since modern Web applications
are often written in multiple languages, it is nearly impossible to
perform a whole-program transformation of them. Worse, CPS re-
quires tail-call optimization or, in its absence, trampolines, a tech-
nique due to Jon L. White [personal communication June 2005],
which can be much more expensive. It is therefore economically
impossible to use this idea with existing languages and run-time
libraries. In short, we are left with the challenge of equipping con-
ventional programming languages with the capabilities of grabbing
and reinstalling a continuation even if these languages’ run-time
organizations do not support such actions.

The very same problem comes up in a different context: the
implementation of languages with continuations on virtual ma-
chines such as Sun’s JVM [34] or Microsoft’s CLR [22]. Mirror-
ing traditional programming languages, these machines do not pro-
vide instructions for installing and saving the run-time stack. Usu-
ally, Scheme-on-VM implementors give up on first-class continu-
ations [1, 2], or they allocate the control stack in the heap of the
machine [23]. As Bres, et al. [2, section 2] point out, however, with
this second strategy, “it might be expected that . . . JITs are far less
efficient on codes that manages their own stack” [sic]. Furthermore,
allocating the stack on the heap effectively disguises the stack, hid-
ing it from the rich set of programming tools such as steppers, de-
buggers, and profilers, as well as contemporary security managers,
which expect to find run-time information on the stack.

In this paper, we present a solution to this dilemma, first in the
context of a theoretical model and then in the context of two pro-

CORE Metadata, citation and similar papers at core.ac.uk

Provided by DigitalCommons@CalPoly

https://core.ac.uk/display/19137443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(define (fact n)
(if (= n 0)

(begin
(display (c-c-m))
1)

(w-c-m n (∗ n (fact (− n 1))))))
(fact 3)
7→
console output: (1 2 3)
computed value: 6

Figure 1. A factorial function with continuation marks

(define (fact-tr n a)
(if (= n 0)

(begin
(display (c-c-m))
a)

(w-c-m n (fact-tr (− n 1) (∗ n a)))))
(fact-tr 3 1)
7→
console output: (1)
computed value: 6

Figure 2. A tail-calling factorial function with continuation marks

totype implementations. The core idea is to translate Scheme pro-
grams with call/cc into a language with a generalized stack inspec-
tion mechanism. For our theoretical model and for one of our pro-
totypes, we use PLT Scheme’s continuation mark mechanism; for
the other prototype, we show how exception handlers and exception
throws can collaborate to simulate continuation marks. The result-
ing transformation is less radical than CPS, and it is thus natural to
run the resulting program on the natively available stack.

2. Continuation Marks
Most programming languages and programming environments in-
clude mechanisms for manipulating the stack in some form or an-
other. Java, for example, implements a form of security via stack
inspection [35]. Programming environments such as Visual Studio
have privileged access to the stack for various debugging tasks. The
most ubiquitous examples of such mechanisms, though, are excep-
tion signalers and handlers. They erase portions of the control stack
and transfer control to exception handlers in a non-local manner.

MzScheme [9], the implementation language of the DrScheme
programming environment [7], provides a novel abstraction of all
these mechanisms: continuation marks [4]. Roughly speaking, con-
tinuation marks support a powerful form of stack inspection gen-
eralizing Java’s mechanism with the same name. Using the w-c-m
language form (short for “with continuation marks”), a program-
mer can attach values to the control stack during the execution of
a program. Later, the stack-walking primitive c-c-m (“current con-
tinuation marks”) can retrieve these values from the stack.

To preserve the spirit of Scheme, attaching continuation marks
to the stack does not interfere with Scheme’s tail-calling require-
ment. Furthermore, MzScheme’s marks are parameterized by keys.
By choosing fresh keys, programmers can ensure that adding marks
to a computation does not affect the result of the computation,
enabling the use of marks for multiple purposes. In particular,
MzScheme implements exceptions and a trace facility with con-
tinuation marks, while the tools of DrScheme rely on them to im-
plement a stepper, a debugger, and a performance profiler.

The two programs in figures 1 and 2 illustrate how a program-
mer might use the w-c-m and c-c-m constructs to instrument func-
tions. Both definitions implement factorial; both mark the continua-
tion at the recursive call site; and both report the continuation-mark

e ::= a
| (w e)
| (letrec ([σ v]) e)
| (call/cc w)
| (case w l)

l ::= (K x) ⇒ e
a ::= w | (K a)
w ::= v | x
v ::= (λ(x) e) | (K v) | κ.E | σ

x ∈ Variables
σ ∈ References

where Variables ∩ References = ∅

E ::= [] | (v E)
Σ ::= ∅ | Σ[σ 7→ v]

(X denotes zero or more occurrences of X)

Figure 3. SL Syntax

list before returning. The one in figure 1 is properly recursive, while
the one in figure 2 is tail-recursive. For the properly recursive pro-
gram, the console output shows that the continuation contains three
mark frames. For the tail-recursive variant, only one continuation
mark remains; the others have been overwritten during evaluation.

3. Continuations from Continuation Marks
Equipped with a basic understanding of MzScheme’s continuation
marks, we can now show how to use this generalized stack inspec-
tion mechanism to eliminate call/cc from Scheme programs. We
present the idea in two steps. The first step is to translate programs
with call/cc into semantically equivalent programs that use contin-
uation marks to store functional representations of continuations.
The second step replaces the marks with structures, using a variant
of Reynolds’ defunctionalization [27].

3.1 The Source Language

The language in figure 3, dubbed SL for source language, is a
modified version of A-Normal form (ANF) [8]. It uses λ instead
of let. Furthermore, we allow applications of arbitrary length. The
language is extended with call/cc, letrec and algebraic datatypes.
The latter are needed in the target language for the operational
semantics and are used during defunctionalization, the last step of
our translation. For consistency they are also included in the source
language.

Instances of algebraic datatypes are constructed with construc-
tors (K, Km) and destructured with case. We leave the actual set of
constructors unspecified, though we assume it contains the standard
list constructors cons and nil. For convenience, we use a shorthand
for lists, where (list e0 e1 . . .) stands for the aggregate construction
(cons e0 (list e1 . . .)) and (list) stands for the empty list.

The operational semantics is specified via the rewriting system
in figure 4. The first rule is the standard βv-rewriting rule for call-
by-value languages [24]. The second handles the destructuring of
algebraic datatypes.

Rules (3, 4, 5) specify the semantics for letrec. Bindings es-
tablished by letrec are maintained in a global store, Σ. For sim-
plicity, store references (σ) are distinct from variables bound in
lambda expressions [6]. Rule 5 specifies how bindings are estab-
lished by letrec. Furthermore, to simplify the syntax for evaluation
contexts, store references are treated as values, and dereferencing
is performed only when a store reference appears in application po-
sition (rule 4) or in the test position of a case expression (rule 5).

E ::= (w-c-m v F) | F where F ::= [] | (v E)

Σ/E [((λ(x) e) v)]
(1)
→TL Σ/E [e[x 7→ v]]

Σ/E [(case (K v) l)]
(2)
→TL Σ/E [e[x 7→ v]] where (K x) ⇒ e ∈ l and is unique

Σ/E [(letrec ([σ v]) e)]
(3)
→TL Σ[σ 7→ v]/E [e]

Σ/E [(σ v)]
(4)
→TL Σ/E [e[x 7→ v]] where Σ(σ) = (λ(x) e)

Σ/E [(case σ l)]
(5)
→TL Σ/E [(case Σ(σ) l)]

Σ/E [(abort e)]
(6)
→TL Σ/e

Σ/E [(w-c-m v1 (w-c-m v2 e))]
(7)
→TL Σ/E [(w-c-m v2 e)] where E 6= E ′[(w-c-m v3 [])]

Σ/E [(w-c-m v1 v2)]
(8)
→TL Σ/E [v2] where E 6= E ′[(w-c-m v3 [])]

Σ/E [(c-c-m)]
(9)
→TL Σ/E [X (E)]

where: X ([]) = (nil)
X ((v E)) = X (E)
X ((w-c-m v F)) = (cons v X (F))

Figure 6. TL Semantics

Σ/E [((λ(x) e) v)]
(1)
→SL Σ/E [e[x 7→ v]]

Σ/E [(case (K v) l)]
(2)
→SL Σ/E [e[x 7→ v]]

s.t. (K x) ⇒ e ∈ l and is unique

Σ/E [(letrec ([σ v]) e)]
(3)
→SL Σ[σ 7→ v]/E [e]

Σ/E [(σ v)]
(4)
→SL Σ/E [e[x 7→ v]]

where Σ(σ) = (λ(x) e)

Σ/E [(case σ l)]
(5)
→SL Σ/E [(case Σ(σ) l)]

Σ/E [(call/cc v)]
(6)
→SL Σ/E [(v κ.E)]

Σ/E [(κ.E ′ v)]
(7)
→SL Σ/E ′[v]

Figure 4. SL Semantics

Dereferencing store locations and beta substitution are combined
in order to simplify the treatment of defunctionalization.

First-class continuations are captured using call/cc (rule 6).
Capturing a continuation creates a continuation value, κ.E that
records the context, E , of the call/cc expression. The argument to
call/cc is then applied to this value. When a continuation value
is eventually applied to another value (rule 7), the evaluation con-
text containing the application is discarded and replaced with the
context contained in the continuation value. The hole in the new
context is filled with the argument part of the application.

3.2 The Target Language

The target language in figure 5, dubbed TL for target language,
is also a modified A-Normal form much like the source language.
Instead of call/cc, TL contains a simple abort construct and two
new forms: w-c-m and c-c-m.

The operational semantics is specified via the rewriting system
in figure 6. The first five rules are identical to the corresponding
rules for the source language. In the source language, a continua-

tion replaces the context when it is invoked. In order to simulate
such continuations, we include the abort form in the target lan-
guage, which handles the task of abandoning the context.

Continuation marks implement a mechanism for manipulating
contexts, which we exploit for the elimination of call/cc. Intu-
itively, (w-c-m v e) installs the value v into the continuation of the
expression e, while (c-c-m) recovers a list of all continuation marks
embedded in the current continuation. To preserve proper tail-call
semantics, if a rewriting step results in more than one w-c-m, sur-
rounding the same expression, the outermost mark is replaced by
the inner one. This requirement demands that an evaluation context
interleaves w-c-m constructs with other kinds of expressions.

We translate this interleaving requirement into a syntactic con-
straint with a grammar for evaluation contexts that consists of two
non-terminals. The start symbol, E , enforces the interleaving re-
quirement, while F defines the usual evaluation contexts. Thus,
multiple adjacent w-c-m expressions must be treated as a redex.
When such a redex is encountered, the redundant marks are re-
moved starting with the outermost (rule 7). Marks surrounding a

e ::= a

| (w e)

| (letrec ([σ v]) e)

| (w-c-m a e)

| (c-c-m)

| (abort e)

| (case w l)

l ::= (K x) ⇒ e

a ::= w | (K a)

w ::= v | x

v ::= (λ(x) e) | (K v) | σ

Figure 5. TL Syntax

Variables and Values:

CMT [[x]] = x (T1)

CMT [[σ]] = σ (T2)

CMT [[(λ(x) e)]] = (λ(x) CMT [[e]]) (T3)

CMT [[κ.E]] = (λ(x) (abort (resume X (CMT [[E]]) x))) (T4)

CMT [[(K a)]] = (K CMT [[a]]) (T5)

Redexes:

CMT [[(w)]] = (CMT [[w]]) (T6)

CMT [[(letrec ([σ w]) e)]] = (letrec ([σ CMT [[w]]]) CMT [[e]]) (T7)

CMT [[(call/cc w)]] = (CMT [[w]] ((λ(m)
(λ(x) (abort (resume m x))))

(c-c-m)))

(T8)

CMT [[(case w l)]] = (case CMT [[w]] CMT [[l]]) (T9)

CMT [[(K x) ⇒ e]] = (K x) ⇒ CMT [[e]] (T10)

Contexts:

CMT [[[]]] = [] (T11)

CMT [[(w E)]] = ((λ(x)(CMT [[w]] x))
(w-c-m (λ(x) (CMT [[w]] x))

CMT [[E]]))

(T12)

Compositions:

CMT [[E [r]]] = CMT [[E]][CMT [[r]]] (T13)

Figure 7. Translation from SL to TL

(letrec ([resume
(λ(l v)

(case l
(nil) ⇒ v
(cons v′ l′) ⇒ (v′ (w-c-m v′ (resume l′ v)))))])

. . .)

Figure 8. Definition of Resume

value are discarded after the evaluation of a sub-term completes,
i.e., any immediate enclosing w-c-m is removed from the result-
ing value (rule 8). The side conditions for rules (7,8) guarantee the
unique decomposition of a program into an evaluation context and
a redex (or a stuck term), which implies that the rewriting relation
defines an evaluation function. Finally, c-c-m employs the func-
tion X () to extract the marks from the evaluation context (rule 9).
Marks are extracted in order, starting with the oldest.

3.3 Replacing Callcc

Figure 7 specifies a translation from SL to TL dubbed CMT , for
continuation-mark transform that eliminates call/cc and continua-
tion invocations. The non-structural translation decomposes a term
into a context and redex:

r ::= (w) [redex]

| (letrec ([σ w]) e)
| (call/cc w)
| (case w l)

E ::= [] | (v E) [context]

The following lemma guarantees that the decomposition is unique
and thus the translation is well-defined:

LEMMA 1 (Unique Decomposition). Let e ∈ SL. Either e ∈ w,
e ∈ a or e = E [r] for some redex r.

The translation rules for variables, values, and redexes are
straightforward with the exception of call/cc applications and
continuation values. Continuation values are transformed using
rule T4. For call/cc, w-c-m is used to gather the requisite informa-
tion from the surrounding context to construct a function that also
relies on resume to reconstruct the evaluation context (rule T8).
Since continuation values do not appear in the target language, a
suitable function must be supplied. The function uses abort to oust
the current context, and then calls a top-level function, resume,
which builds a new evaluation context.

The treatment of both call/cc and continuation values relies on
the systematic insertion of continuation marks. The strategy relies
on the critical property of ANF terms that makes the continuation
of every expression obvious. More precisely, evaluation contexts in
the source language are built entirely from function applications;
thus the λ-expression in the function position is always the contin-
uation. Hence, the translation can mark each application with the
function that is about to be applied. In turn, c-c-m collects all these
functions in a list for storage and use at a later time.

The resume function (figure 8) faithfully reconstructs an evalu-
ation context from such a list of functions. It traverses the list and
recursively applies the functions from the list. An instance of w-c-
m is wrapped around each function application so that the resulting
evaluation context exactly matches and thus facilitates any future
call/cc operations.

3.4 Example

Let us illustrate the translation with a simple example. We start with
an expression that captures a continuation from within a non-trivial

evaluation context:

CMT [[(f y (call/cc (λ (k) (k z))))]]

Note, we ignore the details of the bindings for f , y, and z.
Applying the translation yields:

((λ (x0) (f y x0))
(w-c-m (λ (x0) (f y x0))

((λ (k) (k z))
((λ (m)

(λ (x1) (abort (resume m x1))))
(c-c-m)))))

The original expression can be decomposed into context and
redex as:

(f y [])[(call/cc (λ (k) (k z)))]

Observe that the evaluation context corresponding to the continu-
ation of the call/cc is exactly (f y []), which can be rendered as
the function (λ (x0) (f y x0)). This function represents the first part
of the continuation and is used as the continuation mark surround-
ing the call/cc-expression. When the result is evaluated, (c-c-m)
returns a list of the continuation marks, which in this case is (list (λ
(x0) (f y x0))). This list becomes the first argument to resume, i.e.,
the actual continuation passed to (λ (k) (k z)) is

(λ (x1)
(abort (resume (list (λ (x0) (f y x0))) x1)))

After evaluation of resume, we get:

((λ (x0) (f y x0))
(w-c-m (λ (x0) (f y x0))

z))

Thus the evaluation context captured by call/cc has been com-
pletely reconstructed. In the implementation, this corresponds to
a faithful stack reconstitution.

3.5 Correctness

Let

evalx(p) =

v if ∅/p →∗ v
⊥ if ∅/p →∗ · · ·

THEOREM 1. CMT [[evalSL(p)]] = evalTL(CMT [[p]])

To prove Theorem 1, we show that if a source term admits a re-
duction sequence of length k, then the translation of the source term
admits a sequence of length at least k, such that result of the target
sequence is the translation of the result of the source sequence. This
is proved by induction on the length (k) of the reduction sequence.
The base case is trivial. To prove the induction step, we show that
if a SL configuration Σ/e takes a single step of evaluation resulting
in Σ′/e′, then the translation CMT [[Σ]]/CMT [[e]] admits only a
finite number of evaluation steps before producing a term that is
the translation of Σ′/e′. This simulation argument is summarized
in Lemma 2.

LEMMA 2 (Simulation). If Σ/E [e] →SL Σ′/E ′[e′] then

CMT [[Σ]]/CMT [[E [e]]] →+
TL CMT [[Σ′]]/CMT [[E ′[e′]]]

The simulation lemma is proved by case analysis on the rela-
tion →SL. Recall that CMT [[·]] is defined using unique decompo-
sition. In proving this lemma, a pattern emerges. If the translation
of a SL configuration takes a step of evaluation, then the resulting
configuration may not be the image of any suitable SL configura-
tion. Lemma 3 guarantees that the target configuration ultimately
reaches a desirable state.

D[[x]]L = x

D[[σ]]L = σ

D[[(K a)]]L = (K D[[a]]L)

D[[(λm(x) e)]]L = (Km y)

where y = FV(λm(x) e)

D[[(w0 w)]]L = (apply D[[w0]]L (list D[[w]]L))

D[[(v e)]]L = (app D[[v]]L D[[e]]L)

D[[(abort e)]]L = (abort D[[e]]L)

D[[(letrec ([σw]) e)]]L = (letrec ([σD[[w]]L]) L[[e]])

D[[(w-c-m a e)]]L = (w-c-m D[[a]]L D[[e]]L)

D[[(c-c-m)]]L = (c-c-m)

D[[(case w l)]]L = (case D[[w]]L D[[l]]L)

D[[(K x) ⇒ e]]L = (K x) ⇒D[[e]]L

Figure 9. Defunctionalization

LEMMA 3 (Compositionality).

CMT [[Σ]]/CMT [[E]][CMT [[e]]] →∗

TL CMT [[Σ]]/CMT [[E [e]]]

Two more technical results are needed. First, resume restores the
evaluation context represented by its first argument.

LEMMA 4 (Reconstitution).

CMT [[Σ]]/(resume X (CMT [[E ′]]) CMT [[v]])
→+

TL CMT [[Σ]]/CMT [[E ′]][CMT [[v]]]

Second, substitution commutes with translation.

LEMMA 5 (Substitution).

CMT [[e[x 7→ v]]] = CMT [[e]][x 7→ CMT [[v]]]

3.6 Defunctionalization

Defunctionalization1 (figure 9) replaces functions with records.
Every such record belongs to exactly one variant of an algebraic
datatype, which contains one variant for each λ expression in the
program. Thus, we can view λ expressions as constructors for
functions. We also need to know what to do when a function record
appears in application position. For this, we define a global apply
function that dispatches on the type of the function record and
invokes the appropriate expression.

To defunctionalize a program, we first choose a labeling strategy
that assigns a unique label to each λ expression in the program. This
amounts to adding a superscript to each occurrence of λ. Based on
the labeling, we can define the algebraic datatype. We create one
variant for each λ, with fields corresponding to the free-variables
of the corresponding λ expression.

The corresponding apply function consumes a record and dis-
patches on the record’s constructor using case. The other argument
to apply is a list of values representing the original function’s argu-
ments. There is a clause corresponding to each λ expression, and
the right-hand-side is essentially the body of the original λ expres-
sion. Once the appropriate definitions have been made, we can re-
place every λ expression in the program with an application of the

1 Our treatment of defunctionalization was inspired by the work of Pottier et
al. [25], though we depart from their treatment due to additional constructs
in our language, such as abort, continuation marks and multi-argument
functions

(letrec ([apply (λ(f vals) (case f cm)]) . . .)
where for each m,

cm = (Km y)
⇒ (apply∗ (λ (x0) . . . (λ (xn) (λ () D[[em]]L)) . . .) vals)

(letrec ([apply∗ (λ(f vals)
(case vals

(nil) ⇒ (f)
(cons val′ vals′) ⇒ (apply∗ (f val′) vals′)))])

. . .)

(letrec ([app (λ (f v) (apply f (list v)))])
. . .)

Figure 10. Definition of Apply, Apply∗, and App

constructor of the corresponding variant. Finally, we rewrite each
application with apply.

The definition of apply is complicated because we support
multi-argument functions. If every function had only a single argu-
ment, substitution for that argument would happen automatically
via the second argument to apply. For multi-argument functions,
this breaks down, because we are confined to a single arity specifi-
cation of apply. We therefore separate application into two stages.
The first stage dispatches on the function record as described. The
second stage handles substitution of values for variables in the body
of the original function.

The multi-argument version of apply (figure 10) lumps all of the
function arguments into a single list. In the clause corresponding
to a particular function, we use a curried version of the original
function. This curried function is passed as the first argument to
the auxiliary, apply∗. The list of arguments is passed as the second
argument to apply∗. If the list argument to apply∗ is empty, the
function argument should be a thunk, which is thus applied to no
arguments. Otherwise, apply∗ applies the function to the first value
in the list, producing another function, and shorter argument list.

An application of a function to a single arbitrary expression is a
special case. These are the applications that make up the evaluation
context. For all other applications, the arguments are syntactic
variables or values and can thus be collected in a list. For the special
case, we define another apply-like function app.

4. Pragmatics
Translating the theory into practice poses different challenges in
different contexts. Thus far, we have gathered experience in two
different contexts: a language for servlets in the spirit of the PLT
Web server [14] and an implementation of Scheme on Microsoft’s
.Net IL [22]. In this section, we briefly discuss how the translation
works in these contexts and a few obstacles that we encountered.

4.1 Scheme and the Web Server

The PLT Web server [14] acts as an operating system for its
servlets. Most importantly, the server implements I/O primitives
and, when a servlet is loaded, links those primitives into the servlet.
The primary I/O primitive is2

send/suspend ;; ((URL → Response) → Request)

The function consumes a function that maps a URL to a Response;
its result is the next Request from the client (if any). When the
servlet calls send/suspend with a function f , the PLT server grabs

2 With send/suspend, one can implement a variety of multi-dispatch inter-
action functions [17].

(module add "persistent-web-interaction.ss"
(require (lib "url.ss" "net"))

;; add2: → Number
;; obtain two numbers from client and compute the sum
;; (+ (get-number "first") (get-number "second"))
(define (add2)

(let ((one (get-number "first"))
(two (get-number "second")))

(+ one two)))

;; get-number: String → Number
;; ask the user for a number
(define (get-number msg)

(define (generate-html k-url)
‘(hmtl (head (title ,(format "Get ˜a number" msg)))

(body
(form ([action ,(url->string k-url)]

[method "post"]
[enctype "application/x-www-form-urlencoded"])

,(format "Enter the ˜a number to add: " msg)
(input ([type "text"] [name "number"] [value ""]))
(input ([type "submit"]))))))

(let ([req (send/suspend/url generate-html)])
(string->number

(extract-binding/single ’number (request-bindings req)))))

;; run, servlet, run
(let ([initial-request (start-servlet)])

‘(html (head (title "Final Page"))
(body

(h1 "Final Page")
(p ,(format "The answer is ˜a" (add2)))))))

Figure 11. A PLT servlet for adding two numbers

the current continuation k, creates a unique URL, uses it as a key
for indexing k in a hash-table, and then applies f to the URL.
The resulting Response is shipped to the client and the servlet
is suspended. If the client visits the generated URL, the server
resumes the continuation from the hash-table and invokes it on the
client’s data.

The major advantage of this approach is that programmers do
not have to understand the CGI protocol to get interactions with
clients correct. Instead the programmer may act as if she were
implementing an ordinary interactive program. For an example,
consider the add2 [26] function in figure 11. It reads two numbers
from some input medium and adds them. The program is organized
like a naive console-style program, and yet it works properly even
in the face of Web interactions such as back buttons and clone
functions.

An ordinary CGI script or Java servlet could not use this stan-
dard, 1960-ish organization. Because of the nested use of get-
number (and its input action), the program would have to be con-
torted3 to match the Web interaction protocol. More precisely, the
script or servlet would consist of three distinct programs (roughly
callbacks), the first two for the inputs and the last one for the output.

Naturally, the continuation-based approach comes at a price.
Every interaction allocates space for a continuation on the server.
Since the dynamic extent of this interaction is indefinite, it is
impossible to garbage-collect this space in an ordinary manner.
Keeping with the garbage collection analogy, some method must

3 The “contorted” structure roughly corresponds to GUI callbacks. This
analogy is misleading, however, because the control flow actions of ordinary
GUI programs never include capabilities such as going back, cloning the
GUI and exploring actions on the model in parallel, or bookmarking an
interaction step. In contrast, the developer of a Web program must be aware
of these kinds of actions, because they are an ordinary part of any Web
browser. For details see our prior work [12].

be employed to determine the liveness of a URL. One possibility
is to group interactions temporally into some kind of “session”
construct and clean up at the close of the session. This approach
precludes the bookmarking and emailing of URLs. Alternatively,
continuations can be given a timeout so that after a period of time,
the URL expires and can be cleaned up. Once again, bookmarking
and emailing cause problems—in some cases, timeouts would have
to be set to very large values. The timeout model degrades to
the case where continuations are simply not cleaned up at all. In
general, the approach doesn’t scale well because it places client-
oriented space on the server.

Based on our framework of call/cc elimination, we can over-
come this obstacle. Specifically, we have prototyped a new imple-
mentation of our servlet interaction language, dubbed "persistent-
web-interaction.ss". This prototype enables us to use a standard
Web server such as Apache [32] to execute the servlets.4

The servlet language is provided as a PLT module language [10].
To create a program fragment in this language, a programmer cre-
ates a module, specifying the name of the module and the language:
see the first line in figure 11. Our language comprises a subset of
PLT Scheme, plus the send/suspend primitive. Furthermore, it is
possible to import standard libraries and other modules written in
plain PLT Scheme into a servlet. In figure 11, (require (lib "url.ss"
"net")) imports the standard PLT libraries for manipulating URLs.

A module language such as "persistent-web-interaction.ss"
consists of a set of macros and library functions, also known as
a “run-time library.” The macros translate the code in the subject
module. The generated code typically refers to the library functions
from the language module.

PLT Scheme’s macro system suffices to implement the trans-
lation from section 3 in an almost literal manner because PLT
Scheme provides continuation marks. The run-time environment
for "persistent-web-interaction.ss" consists of two functions, one
used by the server and one used when writing servlets:

1. send/suspend, which builds on call/cc. This function collects
the continuation marks and serializes them. Of course, it must
also terminate the servlet so that the server can send the re-
sponse to the client. In short, this new implementation of
send/suspend is completely consistent with the standard CGI
protocol, to ensure compliance with traditional servers.

Since it is not obvious where an interactive Web program
should store the serialized continuation, our prototype actu-
ally provides two send/suspend primitives: send/suspend/url,
which creates a URL from the serialized continuation, and
send/suspend/hidden, which stores it in a hidden field on
the generated page. The URL-based version accommodates
the bookmarking facility of browsers; the Web-based version
overcomes systems limitations, which sometimes restrict the
amount of information that can be stored in URLs. We intend
to experiment with both primitives until we have definitive ex-
perimental data.

2. dispatch, used by the server, which uses a URL to reconstitute
the embedded continuation, thus re-launching a servlet’s com-
putation from the last interruption point. The function is like
resume from section 3, but also deals with the decoding of the
URL and some other book-keeping details.

The rest of the section presents three specific problems and
obstacles, how we have solved them for now, and what a general
solution may look like.

4 To simplify the prototyping effort, we actually implemented our own
standard (continuation-free) Web server; in principle, however, our servlets
could run on any standard server.

1. The first problem is due to the defunctionalization phase of the
translation. Recall that the defunctionalization phase attaches a
label to each λ expression in the program. These labels become
the structure tags for the function values that are published as
part of the continuation. The theoretical treatment of defunc-
tionalization ignores the details of how the labels are generated.
Furthermore, it assumes that the labeling is fixed throughout the
program’s execution.

A Web-server may suspend and resume the same servlet
several times during a single interaction with a particular user.
Thus if a continuation is published during the execution of a
particular translated version of a servlet then the same trans-
lated version must be used at the time when the continuation
is invoked. Otherwise, the labeling chosen during the latter’s
defunctionalization would likely be inconsistent with the labels
that were generated during the earlier defunctionalization and
that are now embedded in the URL.

An obvious but naive solution is to simply compile the
servlet, i.e., translate the servlet once, storing the result in a file,
and then arrange for the server to load the compiled version
for all requests to the servlet’s URL. Consider the case, how-
ever, where the servlet is modified and then recompiled. It is
critical that the set of labels chosen during defunctionalization
of the new version be disjoint from the previous set of labels.
Otherwise, outstanding continuations could be misinterpreted
under the new version. The opposite problem arises when the
program’s compiled code is kept in memory, rather than the file
system. If an identical version of a servlet is compiled then the
same labeling should be used.

Notice that none of these problems arise if when given iden-
tical input, elaboration yields identical output, i.e., if elabora-
tion is a function. This requires generating identical labels each
time the servlet is defunctionalized. To achieve a consistent la-
beling, the translator computes a message digest based on the
syntactic structure of the program. The translator stores the di-
gests in a database and associates a unique small key with each
digest. The key is then used as the prefix for each label in the
program. If the servlet is changed in some non-trivial way (com-
ments and whitespace are trivial), the computed message-digest
changes and a new key is generated. Values published with the
old key become obsolete and the server can fail gracefully. Note
that the digests are associated with program source versions,
not with servlet invocations, so the space costs are negligible.

One of the goals of this research was to allow interoperability
between translated code and existing untranslated libraries. Unlike
CPS, our translation does not change the calling signature of trans-
lated functions, so in theory, it should be possible for translated and
untranslated modules to call each other’s functions. The remaining
two problems illustrate the problems encountered when a servlet
interoperates with untranslated code. Most of these problems arise
when trying to use higher-order functions, so we will use the exam-
ple in figure 12 for illustrative explanations.

The program in figure 12 consists of two modules: one in our
new Web programming language and one in ordinary PLT Scheme.
The purpose of the program is to ask a series of multiple choice
questions. When the servlet is loaded, it uses map to pose each
question and to accumulate the answers in a list. Afterwards, it
tallies the results and presents them to the student. The questions
are represented as instances of the mc-question structure; the quiz
itself is a list of instances of this structure. The function get-answer
retrieves the answer for a single question from the client.

2. The second problem concerns the interoperability between or-
dinary Scheme functions and function application in our new
Web programming language. The most intricate example is the

(module quiz "persistent-web-interaction.ss"
(require "quiz-lib.ss"

(lib "url.ss" "net")
(lib "servlet-helpers.ss" "web-server"))

;; get-answer: MC-Question → Number
;; get an answer for a multiple choice question
(define (get-answer mc-q)

(let∗ ([req (send/suspend/hidden (make-cue-page mc-q))]
[bdgs (request-bindings req)])

(if (exists-binding? ’answs bdgs)
(string->number (extract-binding ’answs bdgs))
−1)))

;; tally: (Listof MC-Question) (Listof Number) → Number
;; count the number of correct answers
(define (tally mc-qs answs) · · ·)

;; run, servlet, run:
(let ([initial-request (start-servlet)])

‘(html (head (title "Final Page"))
(body

(h1 "Quiz Results")
(p ,(format

"You got ˜a correct out of ˜a questions."
(tally quiz (map get-answer quiz))
(length quiz)))

(p "Thank you for taking the quiz")))))

(module quiz-lib mzscheme
(require (lib "serialize.ss")

(lib "url.ss" "net"))

(provide ;; type: MC-Question
;; = (make-mc-question String (Listof String) Number)
(struct mc-question (cue answers correct-answer))
make-cue-page
quiz)

(define-struct mc-question (cue answers correct-answer))

;; make-cue-page: MC-Question → URL HiddenField → HtmlPage
;; generate the page for the question
(define (make-cue-page mc-q)

(λ (ses-url k-hidden)
‘(hmtl (head (title "Question"))

(body
· · · (form ([action ,ses-url]) · · · ,k-hidden · · ·)))))

;; the quiz: (Listof MC-Question)
(define quiz

(list
(make-mc-question "Where do babies come from?"

(list "The cabbage patch"
"The stork"
"A watermelon seed"
"Wal-Mart") 1)

· · ·)))

Figure 12. A multi-module servlet

underlined use of map on get-answer. Since get-answer is de-
fined in the servlet module, it is subject to elaboration. In the
resulting code, get-answer is a structure that send/suspend can
serialize into a URL if it is found on the stack. In contrast, map
is a standard library function and is therefore not translated.

Fortunately, PLT Scheme provides structs that act as func-
tions. If a structure definition specifies its instances as proce-
dural, it must provide an additional slot in which it stores the
function to be used in function applications. Using such struc-
tures, our translation can actually represent the defunctionalized
functions in a way that represent continuations as functions and
serializable structs simultaneously.

The call to map poses another problem due to calling its
arguments in a higher-order context. Recall map’s conventional
definition:

;; map: (α → β) (Listof α) → (Listof β)
(define (map f l)

(cond [(empty? l) empty]
[else (cons (f (first l)) (map f (rest l)))]))

The definition reminds us that the “callback” to f takes place in
a non-trivial evaluation context. Since native map is not subject
to translation, a call to send/suspend during the dynamic extent
of the callback would miss the context fragment (cons [] (map f
(rest l))). The result would be a continuation with parts missing,
resulting in undefined behavior.

Fortunately, we can employ stack-inspection to detect the
special circumstances that would otherwise lead to undefined
behavior and instead signal a runtime error with an informative
error message. To detect the special case, we must use a prop-
erty of PLT Scheme’s continuation marks that is not a part of
the theoretical model from section 3. In particular, PLT Scheme
supports the definition of multiple disjoint sets of continuation
marks by allowing programs to associate marks with a key that
uniquely identifies the set to which the marks belong. Using this
mechanism, we create a set of marks for the sole purpose of an-

notating possibly unsafe calls to higher-order functions; when
a continuation is to be captured and serialized, send/suspend
inspects this set for unsafe marks. If any such marks are en-
countered, the function signals an error.

For clarification, we illustrate the details of using such
“safety” marks via our running example. For use as a key, asso-
ciated with boolean values, we create a unique value and bind
it to the identifier, safe?. The translator marks the body of ev-
ery translated function using true and when it encounters an
application of a possibly untranslated function it uses false. Af-
ter safety annotations are added, the underlined call to map in
figure 12 becomes:

(w-c-m safe? false (map get-answer quiz))

The translated version of get-answer is

(define (get-answer mc-q)
(w-c-m safe? true

(let∗ · · ·)))

And finally, the following fragment of code results from
reducing the now annotated call to map:

(w-c-m safe? false
(cons (w-c-m safe? true

(let∗ ([req (send/suspend/hidden · · ·)])
. . .))

(map get-answer (rest quiz))))

The inner w-c-m is not in tail position with respect to the outer
w-c-m, so both marks appear in the list associated with the safe?
key. The presence of the false value in this list results in an error
when send/suspend/hidden is invoked.

Now our servlet always signals an error at the first interac-
tion with the user. To overcome this error, the servlet writer is
forced to move the definition of map into the servlet module so
that it becomes subject to translation. In the translated version,
the outer mark is canceled by the mark around the body of the

int fact (int x) {
if (x < 2)

return 1;
else

return
x * fact (x - 1);

}

int fact (int x) {
if (x < 2)

return 1;
else {

int temp0
= fact (x - 1);

return x * temp0;
}

}

int fact (int x) {
if (x < 2)

return 1;
else {

int temp0;
try {

temp0 = fact (x - 1);
}

catch (SaveContinuation sce) {
sce.Extend (new fact_frame0 (x));
throw;
}

return x * temp0;
}

}

Figure 13. Continuations and MSIL

programmer-defined map due to the tail-call optimization for
continuation marks.

Despite these complications, our translation is superior to
CPS. In particular, our translated code can always interoperate
with untranslated code whereas CPS breaks down in the pres-
ence of higher-order functions. Furthermore, we have a general
technique that discovers the mismatch and signals an error. Ide-
ally, there would be no such error cases, so in this regard we
claim only a partial solution.

Pragmatically, in the context of Web interactions, the cases
involving unsafe continuation capture are precisely those cases
that require special treatment with regard to managing program
state across interactions. Obtaining finer control over servlet
state requires moving higher order code into the domain of
the translation. This can be problematic, as the next example
illustrates.

3. The third problem becomes visible when we eliminate the
use of map by supplying our own definition (here called get-
answers) and subjecting it to translation:

;; get-answers:
;; (Listof MC-Question) → (Listof Number)
;; get the answers to all the questions in mc-qs
(define (get-answers mc-qs)

(cond
[(empty? mc-qs) empty]
[else (cons (get-answer (first mc-qs))

(get-answers (rest mc-qs)))]))

Thus, in place of (map get-answer mc-qs) we can write (get-
answers quiz).

Since get-answer uses send/suspend, it captures the contin-
uation of (get-answer (first mc-qs)), which is closed over mc-qs,
the list of questions. This information is serialized into the URL
transmitted to the user, which can lead to a significant growth
in the size of this URL. Furthermore, an implementation may
even leak sensitive information in this URL.5

Our partial solution would be complete but for the ques-
tion of what to do when a Web-interaction is encountered from
within the a call to a higher-order function. In a system that pro-
vides native continuations, we can extend the partial solution
to a full solution by falling back to native continuations when
“unsafe” marks are discovered on the stack. This proposal au-
tomatically places program state on the server in the case when

5 The continuation also includes the user’s answers to the questions that
have already been completed; in this instance this is less problematic be-
cause the information is being transmitted to its very author, but in general
this requires a cryptographic solution.

it is not explicitly handled by the Web programmer. The use of
native continuations is still subject to the limitations discussed
previously and thus the Web programmer must still be aware of
the implications of using higher order libraries.

To overcome the limitations of native continuations, the Web
programmer will have to explicitly code certain higher order
functions so that they will be subject to translation. In this case,
continuations are closed over program data which can either be
stored on the server or encoded in the outgoing response. We
are currently considering a memoization mechanism that keeps
immutable data, such as the list of questions in our example, on
the server and then encodes an opaque reference in the URL.
When the servlet is re-launched, the mechanism (re)computes
the necessary value based on the reference.6

4.2 Scheme and MSIL

The use of virtual machine languages as intermediate representa-
tions has become the norm in recent compiler developments. Mi-
crosoft’s Common Language Runtime [22] and Sun’s JVM [34]
are prominent examples. Compiling a language to either of these
VMs almost immediately equips the language with rich run-time
libraries and with access to programming environment tools, in-
cluding debuggers and profilers. Due to various reasons, however,
these machines do not grant programs full access to their stacks.

Compiling Scheme, Smalltalk, Ruby or any other language that
uses first-class continuations to such an architecture thus poses a
dilemma. At least at first glance, the compiler writer must either
forego the implementation of continuations or manage a stack-
away-from-the-VM stack. The first choice limits the programmers
of these languages, and the second gives up on many of the advan-
tages that these machines supposedly offer.

Our discovery that continuation marks can implement first-class
continuations resolves this dilemma. Even though the widely used
VMs don’t implement continuation marking mechanisms in the
spirit of PLT Scheme, they do implement means for installing ex-
ception handlers, and those are suitable for mimicking continuation
marks. It is in this regard that we consider continuation marks as a
generalization of other stack inspection mechanisms.

In this section, we illustrate how generalized stack inspection is
adapted to the restricted virtual machine environment of the Com-
mon Language Runtime [22]. Roughly speaking, marking a con-
tinuation (w-c-m) corresponds to the installation of an exception
handler; the inspection of the continuation marks (c-c-m) can be
accomplished by raising an exception, thus transferring control to
code that writes a representation of the mark to the heap as the

6 The idea of recomputing such values is also present in the WASH/CGI
framework [33].

stack unwinds. To avoid the complexities of the machine language,
we present our discussion in terms of C#. The use of C# makes it
easier to convey the ideas behind the implementation without hid-
ing any of the engineering problems that we encounter.

The chosen example is the fact program, shown on the left of
figure 13. As described, the first step is to convert the program to
ANF. This requires the introduction of local variables to hold the
intermediate results of compound expressions. The normalized pro-
gram has the property that all compound expressions are composed
only of primitive subexpressions and appear either on the right hand
side of a new variable binding or as the expression in a return state-
ment. For fact, this conversion is near-trivial and its result is the
function in the center of figure 13.

Once the program is in ANF, we wrap each function call with an
exception handler: see the right-most code fragment in figure 13.
This use of the try-catch construction is equivalent to w-c-m
in the theoretical model. In the model, the continuation marks
introduced by w-c-m are closures and are eagerly created when
the function is entered. In the C#-implementation, the analogous
closures are only created as the stack is unwound by the special
exception. In effect, the representation is created lazily.

Next consider two scenarios. First, if the program must cap-
ture a continuation during the dynamic extent of the try block,
it throws an exception. Specifically, it throws an exception—
SaveContinuation—that only the newly inserted handlers know
about and catch. Second, the try block returns normally. In this
case, the continuation mark isn’t needed and no extra work is
performed. That is, a program that does not use first-class con-
tinuations pays only for the establishment of exception handlers
around (non-tail) function calls. Fortunately, the implementors of
the virtual machine assume that exception handlers are established
with some frequency and have therefore made this a reasonably
inexpensive operation.

Following our model, a C#-implementation of call/cc must
implement a search of all continuation marks. A targeted throw

of an exception takes control to the handlers around function calls.
The handler then constructs the closure—represented as objects—
that represents the respective mark in the continuation:

...
try {

temp0 = fact (x - 1);
}
catch (SaveContinuation sce) {

sce.Extend (new fact_frame0 (x));
throw;

}
...

Once the current frame has been added to the list of continuation
marks, the program re-raises the exception so that it eventually
stops the program.

Naturally, we can’t let the throw of a SaveContinuation ex-
ception stop the program. Instead, our implementation surrounds
the entire program with a handler that, according to the semantics
of call/cc immediately resumes the program with the current con-
tinuation and hands the continuation to the argument of call/cc.

The implementation of resume poses an additional complica-
tion. The raising of a SaveContinuation exception (and its re-
raising) collects the continuation marks in most-recent to the least-
recent order. Because we reconstruct the context from the least-
recent first, the natural ordering is conveniently correct. If a second
continuation is captured within this restored context, however, we
must ensure that the marks common to both continuations are not
duplicated. Duplicating these marks would duplicate closures, both
causing problems with synchronization and changing the order of

void Resume (Context frame,
ContextList moreRecentFrames) {

object returnValue;

if (moreRecentFrames == null)
returnValue = null;

else
returnValue =
Resume (moreRecentFrames.first,

moreRecentFrames.rest);

try {
return frame.Invoke (returnValue);

}
catch (SaveContinuation sce) {
sce.AppendSharedContext (

frame.OlderContext);
throw;

}
}

Figure 14. The implementation of resume for MS IL

space usage. Obviously the former might affect correctness, and the
latter would significantly hurt the performance of our strategy.

For these reasons, we implement resume such that it avoids du-
plicating the shared parts of the continuation marks that represent
the evaluation context: see figure 14. More precisely, each frame
in the context recursively reloads the more recent frames. Note
that the recursive call returns to a try-catch block like the one
in fact. The recursion terminates when the most recent frame is
reloaded. Pending chains of calls to resume are not protected by
an exception handler so that they aren’t duplicated by the cap-
ture. The exception handler is only established when a frame is
about to continue execution (the remainder of Resume). The excep-
tion handler is different from the one we wrap around the original
code. It uses the already computed representation of the evaluation
context. When the SaveContinuation exception is thrown again,
each newly created evaluation context saves its state, but the top-
most restored frame arranges for these to be linked to the previously
saved context.

5. Related Work
Three pieces of past research bear a strong resemblance to ours:
Cartwright and Felleisen’s work on extensible denotational seman-
tics [3], Sekiguchi, Sakamoto and Yonezawa’s work on checkpoint-
ing and transparent migration [29], and Tao’s work on migrating
Java threads [31].

Cartwright and Felleisen adapt Felleisen’s work [5, 6] on an
imperative extension of the lambda calculus to a denotational set-
ting. In the traditional Scott-Strachey framework for denotational
semantics [30], a language extension deeply affects the structure of
the mapping from syntax to semantics. For example, if a language
designer wishes to add continuations to a functional language, a
revision of the semantic mapping must introduce a parameter that
abstracts over the continuation of an expression (statement, defi-
nition). Worse, the change to the denotational mapping radically
changes the denotation of an expression in the original language.

In the Cartwright-Felleisen framework, the denotation of an
expression may return either a value or an effect. Returning an
effect is analogous to throwing an exception. Each denotation is
equipped with a handler-like function that augments the effect in
an appropriate manner and passes it to the context. Ultimately, an
effect reaches a handler function, dubbed admin, at the root of
the denotational tree. Given this arrangement, a language designer
can easily extend a language by injecting new effects and adding

corresponding clauses in the admin function. A universal theorem
governs such language extensions. Specifically, for each language
extension, there is a projection that can eliminate the relevant parts
of a denotation for any expression in the core language and re-
create its original denotation.

The call/cc-elimination transformation of this paper is to the
Cartwright-Felleisen framework what the CPS transformation is
to the Scott-Strachey framework of denotational semantics. In
other words, it is a syntactic analog of the semantic mapping in
Cartwright-Felleisen. From this perspective, the soundness theo-
rem in this paper finally confirms that the call/cc expressed in
this framework is equivalent to the original call/cc, something that
Cartwright and Felleisen failed to confirm.

Sekiguchi et al. describe a method for implementing partial con-
tinuations in Java and C++, with check-pointing and thread migra-
tion as possible applications. The method uses exception handling
to construct continuation values as the stack unwinds. In lieu of
call/cc, Sekiguchi et al. use Gunter et al.’s partial and delimited
continuations [15]:

cupto p as x in e capturing the functional continuation
set p in e delimiting the effect of cupto

with the following evaluation rule for cupto:

set p in E[cupto p as x in e] → (λx.e)(λy.E[y])

Notice that evaluation of cupto abandons the surrounding context,
which more closely models the semantics of stack unwinding than
other control-flow operations such as call/cc.

Our translation is defined on program source code, while
Sekiguchi et al. define their translation on byte-codes. Their
translation also performs a fragmentation step analogous to A-
Normalization. During resumption an extra parameter carries the
control state and extra logic is added to each function to distinguish
between normal function calls and resumption. This amounts to an
in-lining of resume.

Sekiguchi et al., like us, are concerned with faithfully recon-
structing the stack. More critical to their choice of languages,
Sekiguchi et al. are concerned about “preserving the call-graph”
of the original program. The authors dismiss a potential solution
based on CPS transformation, because CPS transformed code cre-
ates an unbounded sequence of tail calls.

Sekiguchi et al. do not go into much depth with regards to how
to combine translated and untranslated code. For example, they
do not discuss the problems associated with changing the calling
signature of each method. They do recognize the problem where
the call stack contains stack frames of non-transformed methods.
We introduce safety marks as a partial solution to this case, while
they have no solution and identify it as a limitation of their scheme.
Finally, Sekiguchi et al. offer no theoretical treatment of their
technique.

Like Sekiguchi et al., Tao describes a method for thread persis-
tence and migration, leveraging Java’s exception mechanism. Tao
defines the translation for source code and byte-codes.

Tao gives a minimal theoretical treatment of the method based
on a denotational semantics for a small while-loop language. There
is no theorem stating the equivalence of the original and translated
forms of the program, i.e., there is no correctness result. Tao does
attempt to prove that evaluating a program in the presence of any
number of shutdown operations is equivalent to evaluating the
program without interruptions. The proof is skeletal and relies on
an unspecified extension to the denotational semantics.

Tao does not employ any kind of fragmentation before anno-
tating the source code. For example, statement sequences are not
broken. Instead, her work maintains an index and adds extra logic
to the code so that the resumption point can be relocated when a

continuation is reinstated. A further complication is that Tao essen-
tially makes two versions of the program: a “shutdown” version and
a “restart” version. Extra logic needs to be sprinkled throughout the
code to distinguish between normal function calls and resumption.
As with Sekiguchi et al., this is analogous to in-lining of resume.

For the source code version of the transformation, Tao makes
the restriction that continuations cannot be captured during the
evaluation of an expression. This restriction is needed because it
is supposedly difficult to “save temporary variables at the source
file level” [31, section 3.2.7]. This can be seen as a consequence of
not fragmenting the original program. Because there is no explicit
closure identified with the continuation of each expression, it is
difficult to reason about the free variables of that closure.

Finally, Schinz and Odersky [28] use a small portion of our
transformation to implement tail-call optimizations for the JVM.
Specifically, they install a handler (a.k.a., trampoline) at each tran-
sition from a properly nested call to a chain of tail-calls; if the depth
of tail-calls gets too deep, they erase them with a jump to the closest
handler, which then reconstitutes the one stack frame for the prop-
erly nested call. Schinz and Odersky did not recognize that their
transformation could be generalized to deal with first-class contin-
uations.

6. Perspective and Conclusion
We have presented a novel formal transformation for explicating
the continuation of a computation. Our transformation is defined
using continuation marks, which we regard as a generalized form
of stack inspection. We have also demonstrated that the transfor-
mation can be implemented using exceptions—a stack inspection
mechanism—which can be regarded as standard on modern virtual
machines (and in a growing set of languages). By exploiting stack
inspection, we show how to capture and reconstruct the stack with-
out the need for CPS, which depends on tail calls (that many virtual
machines don’t provide) and “hides” the stack (which is necessary
not only for many debugging and program understanding tools, but
also for contemporary security mechanisms).

Our transformation has two immediate applications. First, it is
valuable for continuation-based Web applications that need to run
in a stateless manner for greater scalability. Second, it helps imple-
ment languages with continuations, such as Scheme, on traditional
virtual machines without emasculating the language or making its
code incompatible with the VM’s assumptions (since virtual ma-
chines are not designed to assume the code they run will be in CPS).

We conjecture that there are deeper applications, which we have
not yet explored in detail:

• The transformation could improve the usability of continuation-
based Web applications. Currently, the PLT Web server gener-
ates a nonce for each captured continuation and embeds this
in the URL. These nonces become invalid when the server re-
boots, making it useless to bookmark or distribute these URLs.
In contrast, like the CPS solution, our transformation can gener-
ate more durable URLs by referring to (named) code fragments
and placing the free variable values in an argument list, creating
a form of “Web command line”.

• The transformation makes it possible to employ a variety of
techniques for implementing first-class continuations. For in-
stance, the scheme by Dybvig, et al. [16] enables constant-time
continuation capture and application, by making stack copy and
restoration lazy. Our representation of the stack makes it easy
to similarly reconstitute only a constant number of stack seg-
ments, leaving a pointer to a function closed over the rest of the
stack that reconstitutes more of it on demand. Implementing a
similar scheme atop CPS would require customization of the

function charged with marshalling and unmarshalling closures
to recognize the special case of the continuation argument.

• The transformation has implications for virtual machine design-
ers also. The Parrot virtual machine, which is intended to pro-
vide a common platform for scripting languages such as Perl,
Python and Ruby, has considered using CPS just to support con-
tinuations; its developers have been evaluating the trade-off be-
tween the benefits of continuations and the (user) cost of pro-
gramming the entire system in CPS.7 Our transformation offers
them a potential way out of this quandary.

• Current implementations of Scheme targeted at virtual ma-
chines do not interact with or exploit the underlying security
mechanisms. Indeed, it would be difficult for those that use
CPS to do so, due to the (unfortunate) explicit reliance of these
mechanisms on the stack. Our technique restores the primacy of
the stack, making it possible to provide these security features
as language extensions. Furthermore, even Web applications
running on these virtual machines may be able to use these se-
curity extensions, because our transformation reconstitutes the
stack.

Our immediate goal is to extend this transformation to handle the
full Scheme language, and to apply it to both our compiler and Web
server. In particular, we hope to use this to improve the performance
of our conference management application.

References
[1] Anderson, K., T. Hickey and P. Norvig. JScheme. http:

//www.norvig.com/jscheme.html.
[2] Bres, Y., B. Serpette and M. Serrano. Bigloo .NET: compiling

Scheme to .NET CLR. Journal of Object Technology, 3, October
2004.

[3] Cartwright, R. and M. Felleisen. Extensible denotational language
specifications. In Theoretical Aspects of Computer Software, pages
244–272, 1994.

[4] Clements, J., M. Flatt and M. Felleisen. Modeling an algebraic
stepper. In European Symposium on Programming, pages 22–37,
2001.

[5] Felleisen, M. and D. Friedman. A syntactic theory of sequential state.
In Theoretical Computer Science, pages 243–287, 1989.

[6] Felleisen, M. and R. Hieb. The revised report on the syntactic
theories of sequential control and state. In Theoretical Computer
Science, pages 235–271, 1992.

[7] Findler, R. B., J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi,
P. Steckler and M. Felleisen. DrScheme: A programming environment
for Scheme. Journal of Functional Programming, 12(2):159–182,
March 2002.

[8] Flanagan, C., A. Sabry, B. F. Duba and M. Felleisen. The essence
of compiling with continuations. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 237–247.
1993.

[9] Flatt, M. PLT MzScheme: Language manual. http://www.
plt-scheme.org/software/, 1996–2005.

[10] Flatt, M. Composable and compilable macros: You want it
when? In ACM SIGPLAN International Conference on Functional
Programming, 2002.

[11] Graham, P. Beating the averages. http://www.paulgraham.com/
avg.html, April 2001.

[12] Graunke, P., R. Findler, S. Krishnamurthi and M. Felleisen. Modeling
web interactions. In European Symposium on Programming, pages
238–252, April 2003.

[13] Graunke, P. T., R. B. Findler, S. Krishnamurthi and M. Felleisen.
Automatically restructuring programs for the Web. In IEEE

7 Dan Sugalski, message to the Lightweight Languages mailing list, May 7,
2003.

International Symposium on Automated Software Engineering, pages
211–222, November 2001.

[14] Graunke, P. T., S. Krishnamurthi, S. van der Hoeven and M. Felleisen.
Programming the Web with high-level programming languages. In
European Symposium on Programming, pages 122–136, April 2001.

[15] Gunter, C. A., D. Rémy and J. G. Riecke. A generalization of
exceptions and control in ML. In Proc. ACM Conf. on Functional
Programming and Computer Architecture, June 1995.

[16] Hieb, R., R. K. Dybvig and C. Bruggeman. Representing control
in the presence of first-class continuations. In ACM SIGPLAN
Conference on Programming Language Design and Implementation,
1990.

[17] Hopkins, P. W. Enabling complex UI in Web applications with
send/suspend/dispatch. In Scheme Workshop, 2003.

[18] Hughes, J. Generalising monads to arrows. Science of Computer
Programming, 37(1–3):67–111, May 2000.

[19] Kelsey, R., W. Clinger and J. Rees (Eds.). Revised5 report of the
algorithmic language Scheme. ACM SIGPLAN Notices, 33(9):26–76,
1998.

[20] Krishnamurthi, S. The CONTINUE server. In Symposium on the
Practical Aspects of Declarative Languages, pages 2–16, January
2003.

[21] Matthews, J., R. B. Findler, P. Graunke, S. Krishnamurthi and
M. Felleisen. Automatically restructuring programs for the Web.
Automated Software Engineering, 11(4):337–364, 2004.

[22] Microsoft Corporation. The .NET common language runtime.
http://msdn.microsoft.com/net/.

[23] Miller, S. SISC. http://sisc.sourceforge.net.
[24] Plotkin, G. D. Call-by-name, call-by-value, and the λ-calculus.

Theoretical Computer Science, pages 125–159, 1975.
[25] Pottier, F. and N. Gauthier. Polymorphic typed defunctionalization

and concretization. To appear in Higher-Order and Symbolic
Computation, May 2005.

[26] Queinnec, C. The influence of browsers on evaluators or, contin-
uations to program web servers. In ACM SIGPLAN International
Conference on Functional Programming, pages 23–33, 2000.

[27] Reynolds, J. C. Definitional interpreters for higher-order program-
ming languages. In Proceedings of the ACM Annual Conference,
pages 717–740. ACM Press, 1972.

[28] Schinz, M. and M. Odersky. Tail call elimination on the java
virtual machine. In Proc. ACM SIGPLAN BABEL’01 Workshop
on Multi-Language Infrastructure and Interoperability., volume 59
of Electronic Notes in Theoretical Computer Science, pages 155–
168. Elsevier, 2001. http://www.elsevier.nl/locate/entcs/
volume59.html.

[29] Sekiguchi, T., T. Sakamoto and A. Yonezawa. Portable implementa-
tion of continuation operators in imperative languages by exception
handling, volume Advances in Exception Handling Techniques, pages
217–233. Springer-Verlag, 2001.

[30] Stoy, J. E. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. MIT Press, 1977.

[31] Tao, W. A portable mechanism for thread persistence and migration.
PhD thesis, University of Utah, 2001.

[32] The Apache Software Foundation. Apache HTTP Server Project.
http://httpd.apache.org.

[33] Thiemann, P. WASH/CGI: Server-side web scripting with sessions
and typed, compositional forms. In Practical Applications of
Declarative Languages, 2002.

[34] Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification (Second Edition). Sun Microsystems, 1999.

[35] Wallach, D., E. Felten and A. Appel. The security architecture
formerly known as stack inspection: A security mechanism for
language-based systems. ACM Transactions on Software Engineering
and Methodology, 9(4), October 2000.

