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Abstract Cerebral blood flow is regulated over a range of

systemic blood pressures through the cerebral autoregulation

(CA) control mechanism. The COx measure based on near

infrared spectroscopy (NIRS) has been proposed as a suitable

technique for the analysis of CA as it is non-invasive and pro-

vides a simpler acquisition methodology than other methods.

The COx method relies on data binning and thresholding to

determine the change between intact and impaired autoregula-

tion zones. In thework reported herewehavedeveloped a novel

method of differentiating the intact and impaired CA blood

pressure regimes using clustering methods on unbinned data.

K-means and Gaussian mixture model algorithms were used to

analyse a porcine data set. The determination of the lower limit

of autoregulation (LLA) was compared to a traditional binned

data approach. Good agreement was found between the meth-

ods. The work highlights the potential application of using data

clustering tools in the monitoring of CA function.

Keywords Cerebral autoregulation � NIRS � Clustering �
k-means � Gaussian mixture models � COx

1 Introduction

1.1 Cerebral autoregulation

Cerebral blood flow (CBF) is regulated over a range of

systemic blood pressures by the cerebral autoregulation

(CA) control mechanism which acts through complex

myogenic, neurogenic, and metabolic mechanisms [1].

This range spans a zone of ‘intact’ autoregulation from the

lower limit of autoregulation (LLA) to the upper limit of

autoregulation (ULA). Unregulated flow, and therefore

‘impaired’ CA, exists at the extremes of blood pressure (i.e.

below the LLA and above the ULA) where cerebral

vasocontrol is no longer able to adequately change vascular

resistance in response to further blood pressure changes.

A number of measures have been developed to deter-

mine the patient’s autoregulation status as it is important

for the clinician to know whether the patient is operating in

an intact or impaired zone and, if the latter, to take

appropriate action as required. The correlation between

cerebral perfusion pressure (CPP) and transcranial Doppler

(TCD)-measured cerebral blood flow (CBF) may be

quantified using linear regression to assess autoregulation

in patients with neurological conditions. The mean velocity

index, Mx, quantifies the degree of correlation between

blood pressure (BP) [usually taken as mean arterial pres-

sure (MAP)] and cerebral flow, with positive values asso-

ciated with an uncontrolled pressure-driven flow regime

and hence compromised cerebral haemodynamic function

[2]. However, although non-invasive, limitations of TCD

include the need for frequency transponder repositioning

and the inability to obtain a transcranial window in some

patients [3].

1.2 The COx measure

The COx index has been developed over recent years in an

attempt to derive a non-invasive, near infrared spec-

troscopy (NIRS)-based parameter for autoregulation [4, 5]

that is a proxy for Mx. In addition to being non-invasive,

NIRS is continuous, does not require the same level of
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caregiver manipulation associated with cerebral blood flow

(CBF) measurement and the signal is more artefact-free

than trans-cranial Doppler (TCD) waveforms [6]. Figure 1

illustrates the method for computing COx. The rSO2 signal

and a blood pressure signal (mean arterial pressure) are

acquired over time (top plot). An analysis window of

period, T, runs across the signals and the rSO2 and BP data

within the window are plotted against each other (middle

left plot). The window must be of sufficient length to

capture the characteristic periodicity of the physiological

slow waves present in the blood pressure signal [7]. The

linear regression line for this data is computed and the

Pearson correlation coefficient obtained: this is the COx

measure. The process repeats as the analysis window scans

over the signals in incremental steps, resulting in a con-

tinuous COx measurement. The expectation is that a strong

correlation exists between the two signals for regions of

autoregulatory impairment, hence the COx values will be

around unity. Regions of intact autoregulation, however,

should produce no correlation between rSO2 and changes

in blood pressure and hence we expect the mean correlation

coefficient (COx) to be near zero. The COx signal is then

binned in 5 mmHg increments according to the BP at the

same time point. This is shown schematically in the lowest

plot in the figure where the step change in the binned COx

values indicates the LLA point. Note that there is an

associated step up at the ULA at higher BPs (not shown in

the figure for reasons of clarity). In practice, the binned

data is generally noisy and a COx threshold between 0 and

1 is used to differentiate the correlating and non-correlating

portions of the plot.

An example COx plot from an animal study is shown in

Fig. 2. The data is shown in its traditional binned format

where the COx values are collected in 5 mmHg bins

showing the median value and interquartile ranges. In this

example the data only spans the LLA. The impaired and

intact regions may be clearly identified by eye. In practice

the LLA point is identified through an algorithm which

contains specific rules. For example, an LLA may be

defined as the first median point below the threshold from

left to right, where at least the previous two binned median

values are above the threshold. More sophisticated criteria

may also be used, for example a requirement that the

determined LLA is a point belonging to a group of at least

three consecutive values all below the threshold.

The binned format, is traditional for viewing COx data

[4, 6, 8, 9]. We have found that binning makes it difficult to

produce a robust automated algorithm to determine LLAs

due to the granular nature imposed on the bin-aggregated

data. This issue is exacerbated early in a procedure when

the complete picture of the COx plot has not yet built up or

when blood pressure is relatively stable, and only a very

few bins contain data points. However, we have noticed

that by viewing the data in its raw format (i.e. unbinned),

clear zones may be observed that correspond to the intact

and impaired regions. This is shown in Fig. 3, where the

individual data points of Fig. 2 are shown. Here we can

clearly see a structure corresponding to the impaired and

intact regions: the data in the impaired region is tightly

clustered around a value of unity (horizontal arrow in the

plot), whereas the intact region is distinctly spread out

across a range from -1 to 1 (vertical arrow in the plot).

This observation led us to study the potential of automated

data clustering techniques for the determination of these

regions and the boundary between them.

In the study reported here we sought to investigate the

robustness of data clustering methods for the determination

of the LLA using a historical data set from a porcine model

which contained a number of interventions: hyper and

hypo-ventilation, lung recruitment manoeuvres, acute

hypoxia and haemorrhagic shock. The original purpose of

this study was to determine NIRS-based saturation mea-

surement performance over a series of different clinical
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Fig. 1 Schematic of the different methods for determining the LLA
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scenarios. (Note that we do not determine the ULA in the

work described here as the data set contained very few

points at the higher values of BP required for such analy-

sis.) In the work described herein, data clustering was

performed using both the k-means and a Gaussian mixture

model approaches [10].

2 Methods

2.1 Clinical study

Ahealthy porcine animal model was used of both sexes (four

female/three male) with a mean weight of 16.4 kg (max/

min = 22.2/13.4) and all approximately 12 weeks of age.

The protocol was reviewed and approved by the PCRS

Animal Care and Use Committee. The study was conducted

in GLP like fashion in accordance with 21 CFR Part 58 at an

Association for Assessment andAccreditation of Laboratory

Animal Care (AAALAC) accredited site. The following

standards in terms of appropriate use of animals for

biomedical research and/or training were adhered to: The

U.S. AnimalWelfare Act amendment of 1976 (Title 9, Code

of Federal Regulations, Chapter 1, Sub-chapter A, parts 1, 2

and 3) and the current U.S. National Institute of Health’s

Guide for the Care andUse of LaboratoryAnimals published

by the National Research Council. Isoflurane was used as the

volatile anesthetic agent. Seven animals (N = 7) were

studied. The porcinemodel is preferred since the thickness of

the skull is similar to that of an adult human forehead.

Additionally, the skin tone is similar to human skin and has

similar light dispersion characteristics. NIRS sensors

(INVOS SAFB-SM) were placed on the animals head

between the ears. These were attached to the monitor

[INVOS 5100C oximeter, 5100C-PA preamp unit. (INVOS,

Boulder, CO)]. NIRS cerebral signals (both raw signals and

Fig. 2 Binned COx Data against MAP. Binned COx data with a LLA (red line) determined by the crossing of a 0.5 threshold (blue line)

Fig. 3 Unbinned COx Data. The colours of the points correspond to the different sections of the experimental protocol. See Fig. 4
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the output rSO2 signal) and a blood pressure signal were

collected. The animal was ventilated with a tidal volume of

6–8 ml/kg, FiO2 was adjusted to maintain 95 % arterial

saturation and PEEP was 5 cm H2O. Respiratory rate was

adjusted to maintain end-tidal CO2 between 38 and

45 mmHg. The study comprised a series of baseline periods

followed by four discrete interventions as described below.

2.1.1 Baseline data

This was collected after all catheters were placed and the

animal was in a steady state with stable haemodynamics

(approximately 15 min post catheterisation) and between

interventions.

2.1.2 Intervention 1: hyper and hypo-ventilation

a. The animal was hyperventilated to an end-tidal CO2

level of approximately 30 mmHg by increasing the

minute volume. Hyperventilation was confirmed from

the arterial blood gas measurement. After 5 min of

stable hyperventilation, arterial and venous blood

gases were measured. Minute ventilation was then

decreased back to pre-hyperventilation level and end-

tidal CO2 was monitored to assess when the animal

returned to baseline.

b. The animal was then hypoventilated to an end-tidal CO2

level of approximately 55 mmHg by decreasing the

minute ventilation. Hypoventilation was confirmed from

arterial blood gas measurement. After 5 min of stable

hypoventilation, arterial and venous blood gases were

measured. Minute ventilation was then increased back to

pre-hypoventilation level and end-tidal CO2monitored to

assess when the animal returned to baseline.

2.1.3 Intervention 2: lung recruitment maneuver

The animal was ventilated with baseline ventilator settings,

and FiO2 was increased to 1.0. The ventilator was then

changed to CPAP mode (or inspiratory hold) and the air-

way pressure was increased to 25 cm H2O for 40 s. Ven-

tilation was again started at baseline settings for 5 min.

After this the ventilator was changed to CPAP (or inspi-

ratory hold) and the airway pressure increased to 35 cm

H2O for 40 s. Ventilation was then started and the animal

allowed to recover to baseline physiological values (car-

diac output, SpO2 and end-tidal CO2).

2.1.4 Intervention 3: acute hypoxia

The animal was ventilated with baseline settings, and FiO2

was increased to 1.0. The FiO2 was changed rapidly to 0.08

to create acute hypoxia. When the animal reached the

lowest level of SpO2, maintained for 2 min, blood samples

were obtained from arterial and venous catheters, the FiO2

was rapidly increased to 1.0. When SpO2 returned to a

100 % plateau for 2 min blood samples were collected

from arterial and venous catheters. This hypoxia procedure

was then repeated before all settings were returned to

baseline and the animal allowed to recover for 10 min.

2.1.5 Intervention 4: haemorrhagic shock

a. The animal was ventilated with baseline settings and

FiO2 of 1.0. Blood was removed through the central

venous catheter until 60 % of the animal’s blood

volume (blood volume in ml = 65*weight in kg) was

removed in steps of 20 %.

b. The animal was resuscitated with a combination of half

of the shed blood and a balanced electrolyte solution in

the same stepwise fashion until the mean arterial blood

pressure returned to pre-haemorrhage levels.

The behaviour of mean arterial pressure (MAP) during the

study for one of the pigs is shown in Fig. 4, where the

rapidly varying nature of the signal can be seen—note that

the large spikes were due to blood draws and were ignored

in the analysis. Although the pig blood pressures did reach

substantially high values during the study procedure there

was not enough time spent at the higher blood pressures to

collect sufficient data for ULA determination. Hence this

study focuses only on the LLA for each animal.

2.2 Analysis

The COx autoregulation correlation metric was computed

as described in Sect. 1 using a 300 s moving analysis

window [11–13]. The window was run along the signals

(MAP and rSO2) in a series of 10 s steps. The calculated

metric values were binned in 5 mmHg blood pressure

increments and the LLA point detected as the first point

below a threshold of 0.5 using an automated algorithm

which scans from left to right and setting a flag when two

valid median binned points have been seen above the

threshold. The next bin below the threshold is then marked

as the LLA. Bins with fewer than five data points are

marked as invalid. (Requiring at least two bins above the

LLA prevents false positive LLA detection due to binned

data outliers.) Note that in practice the threshold should be

set somewhere between 0 and 1. This is because the

expectation is for a value of unity for correlating regions

(impaired CA) and a randomly spread out values of COx,

with a mean of zero, for non-correlating regions (intact

CA). In this work we use a threshold of 0.5. This is at the

higher end of the values generally found in the literature
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which are 0.3 [14, 15], 0.4 [3, 16] and 0.5 [9, 17]. We argue

that the value should be set high so as to distance the

threshold from the noisy values tending to zero mean in the

intact region and closer to the relatively tightly spread

values at unity for the impaired region, hence we choose

0.5 for this work. The optimal value is a matter of debate

and in practice would require a detailed parametric study

employing a large data set to determine accurately. It is

expected that different threshold values may be optimal for

different demographic groups or for different areas of care.

The k-means and Gaussian mixture model methods were

applied to the unbinned COx data for each animal. The

algorithms used in the work here are described as follows.

2.2.1 The k-means algorithm

1. Choose k initial points as centroids (for example, here

we used two random observations).

2. Calculate the distance from each point to each cluster

centroid.

3. Individually assign each point to the centroid that

decreases the sum of the within-cluster, sum-of-

squares point-to-cluster-centroid distances.

4. Calculate the new centroids from the updated clusters.

5. Repeat 3–4 until convergence or max number of

iterations reached.

The algorithm was run ten times to reduce the risk of being

caught in local minima. The square of the Euclidean dis-

tance (for computational reasons the square root is not

used) is employed as the distance metric and the COx and

MAP were not rescaled prior to clustering.

2.2.2 The Gaussian mixture model algorithm

A number (N) of Gaussian distributions are fit to the data

using an expectation maximization algorithm. This results

in N Gaussian distributions for which the posterior prob-

ability of membership for each point can be calculated. A

point is then said to be a member of the cluster for which it

has the highest posterior probability. The whole algorithm

is repeated in a similar manner to the k-means method in

order to mitigate the effect of falling into local minima

during the optimisation process.

Note that once the two clusters are found, the LLA is

initially determined to be the minimum MAP value in the

right hand cluster (the right hand cluster usually repre-

senting the region with a large spread in COx over a rel-

atively narrow BP). An additional step to remove outliers

from clusters was also applied before the final LLA

determination. This required that all points in the right

hand cluster that are further than two standard deviations

away from the mean MAP for that cluster are discarded.

This limits the LLA to the mean MAP of the cluster minus

two standard deviations which we found has the effect of

mitigating against obvious noise on the cluster plots.

3 Results

Figure 5a contains the traditional COx plots for the seven

animals in the study. The calculated LLAs are shown on

the plots as red vertical lines. These were determined using

the binned data algorithm described above. Bins with too

few samples (\5) were excluded from the analysis. These

are denoted by red error bars in the plots. The LLAs

determined for this binned COx method are given in

Table 1. Figure 5b contains the raw, unbinned data corre-

sponding to the plots of Fig. 5a. From visual inspection of

these plots, it can be seen that the data all exhibit a ten-

dency towards a COx of unity at low blood pressure

indicating impaired autoregulation and a wider distribution

across COx values at higher blood pressures corresponding

to intact autoregulation.

Figure 5c shows the k-means clustering of the COx data

with the associated LLA’s superimposed (values given in

Table 1). The centroids of the k-means clusters are also

Fig. 4 The blood pressure trace over the whole study for pig p0001. The colour of the line changes with each manoeuvre carried out during the

experimental protocol. These colours also correspond to the colours of the points in Fig. 3
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displayed. The LLAs determined using the algorithm

described above are superimposed on the plots as vertical

boundaries. Figure 5d shows the Gaussian mixture model

clusters of the COx values. The contours of the Gaussian

mixtures are superimposed and, again the corresponding

LLA’s are overlaid (values also given in Table 1).

Figure 5e plots the histograms of the blood pressures vis-

ited during each run.

Table 1 contains the LLAs determined by each of the

three methods (original binned, k-means, Gaussian mixture

model). The mean differences between the original binned

data and the k-means and GMM methods are 8.3 and

5.5 mmHg respectively.

Note that a separate data run was performed with the

hypo and hyperventilation (which are known to have an

effect on autoregulation) portions of the signal removed,

however this did not significantly change the COx plots

and so all the data was left in the results reported here for

completeness.

4 Discussion

In practice, the accurate identification of the intact and

impaired regions, and hence the LLA point is non-trivial

due to the variability of the data both on an inter- and intra-

patient basis. Noise may affect the signal in a clinical

environment which may be device specific (e.g. amplifier

noise, poor sensor positioning, arterial line flushing) or

Table 1 LLA’s determined by each method (mmHg)

Data Algorithm

Original binned k-means GMM

p0001 90 79 83

p0003 65 64 60

p0005 80 72 79

p0007 75 70 70

p0009 90 68 71

p0011 75 67 73

p0012 75 72 76

Mean 78.6 70.3 73.1

S.D. 8.3 4.4 6.7

Fig. 5 COx results. a binned COx plots with the LLA and threshold

marked by the red vertical line and the blue horizontal line

respectively. b raw COx values. c k-means clustering results with

the clusters coloured magenta and cyan (black points have been

marked as outliers), the centroids are marked with a black ‘x’ and the

LLA with the black vertical line. d GMM clustering results.

e Histogram of the number of samples collected at each MAP
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physiological in nature (e.g. caused by the administration

of drugs, hypo- or hyper-volemia, hypo- or hyper-ventila-

tion, haemodynamic shifts cause by positional changes,

haemorrhage, localised movement). The traditional COx

measure using binned data makes the task more difficult

due to the associated granularity imposed on the data prior

to assessment of the LLA point. It is interesting to note that

14 of the 15 studies referenced in this paper use the ICM?

(Cambridge Enterprise, Cambridge, UK) software [2–9,

11–13, 15–18] which provides the binned autoregulation

plots found in much of the scientific literature. The authors,

however, advocate the use of new schemes such as the

clustering methods described here which may, in fact,

provide useful alternatives to autoregulation data analysis

and interpretation. The clustering methods employed in the

work described here, do not suffer from the imposed

granularity of the binned data, and have been shown in this

work to identify distinct regions that may be associated

with impaired and intact autoregulation zones. The work

has obvious wider applicability to other correlation-based

metrics for CA, both those derived from NIRS-based

technologies (e.g. HVx) and other modalities (e.g. LDx [7],

Mx [2], PRx, Fix [18], etc.).

One disadvantage of the study was that the results could

not be compared directly to an independent reference sig-

nal as historical data was used where no reference signal

existed for blood flow or intracranial pressure (as the

original study was not set up to investigate autoregulation).

However, the cluster-calculated LLA’s could be compared

with a standard binned algorithm for determining the LLA

from a COx measure. Although this may appear less than

ideal, it is worth noting that many of the reference signals

that are used in other studies suffer from their own issues.

For example TCD, which is required to calculate the Mx

measure, requires manual intervention and can be very

noisy [6]. In the current study the LLA’s determined

through the clustering methods were compared to a stan-

dard binned algorithm. Relatively good agreement between

the methods was found.

Further tuning is possible for each method, such as

changing the COx threshold for the original binned

algorithm or modifying the distance metric for the

k-means. However, this was not carried out here as it

would effectively be an exercise in over-tuning the

methods on a small number of subjects. We argued in

Sect. 2.2 that a high threshold value should be chosen so

that it is distanced from the relatively noisy values around

zero corresponding to intact CA and is moved closer to

the relatively tightly spread values around unity for

impaired CA. For example, increasing the detection

threshold to 0.65 results in an even closer relationship

between the methods. Specifically, this reduced the LLAs

for p0001, p0007 and p0012, resulting in a mean differ-

ence between the original binned data and the k-means

and GMM methods of 4.0 and 1.5 mmHg respectively (cf.

8.3 and 5.5 mmHg for a threshold of 0.5). However, a full

parametric study of the effect of this and other algorithmic

modifications would be required in practice to fully hone

the technique. This would require a much larger data set

for use in a rigorous training and testing framework to

prevent over-fitting.

Note that we have focused on the determination of the

LLA in this work as the blood pressures associated with the

study did not transit the ULAs in any of the animal data.

However, in practice in order to find both the LLA and

ULA it is trivial to modify this approach to fit three clus-

ters. Additionally, silhouettes [19] could be used as a

quality metric—the silhouette measure quantifies how well

the data fits the number of clusters—this could be used to

provide an indication of confidence in the LLA found or,

could be used to switch the algorithm between 2 clusters

and 3 clusters in order to automatically switch from LLA

only detection to LLA and ULA detection.

The inspection of the cluster plots of Fig. 5 has led the

authors to believe that this kind of display may prove

advantageous in a clinical setting as it is more intuitive as

the standard binned data COx format. In addition, the

centroids of the intact regions (also plotted in Fig. 5 as

‘X’s) for all the animals appears to be within a reasonable

range for organ autoregulation and could perhaps be used

for blood pressure management (e.g. as a target blood

pressure). It should also be noted that this clustering

technique is not specific to the COx measure, but could be

used for other standard correlation measures, e.g. Mx, PRx,

HVx, etc.

5 Conclusions

We have proposed data clustering methods as a novel

strategy for determining and delineating the regions of

interest in CA data. Both k-means and Gaussian mixture

models were employed to successfully partition COx data

into the lower impaired region and intact region, with the

boundary at the LLA. These new methods may be con-

sidered an alternative possible path towards a NIRS-based

continuous autoregulation monitoring algorithm for use in

noisy environments such as those encountered in clinical

practice. Future work will focus on improving the methods

by examining larger data sets where the COx results can be

compared to reference Mx data obtained from cerebral

blood flow measurements.
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