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Abstract We present a new theoretical framework to represent the dynamics of struc-
tured populations through time and across geographic space. We show (i) that the
mechanisms by which populations evolve lead to combinatorial structures, and (ii)
that measures of gene flow and geographical structure lead to linear systems. These
characteristics determine two polytope complexes that encodes all feasible migration
scenarios. Analysis of these polytope complexes demonstrates how systems of struc-
tured populations can be classified consistently, and how population histories can be
represented as paths on a concrete mathematical space, which in turn promises to
simplify the search space required for reconstructing past migration processes from
population genetic data.

Keywords Migration · Population structure · Population genetics · Polytope
complex · Circle patterns

Mathematics Subject Classification 92D25 · 52B99 · 52C26

1 Introduction

Many demographic factors, including movements of both individuals and entire pop-
ulations, can alter the nature of linkages between populations over time. Representing
the diverse forms of these temporal dynamics requires a flexible theoretical frame-
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736 A. J. R. Amaris, M. P. Cox

work that is consistent with longer-term goals of reconstructing the history of struc-
tured populations (“metapopulations”) from population genetic data.We show that the
key characteristics of these migration dynamics—the intensity of migration, pathways
of migration and the spatial distribution of populations—give rise to various mathe-
matical structures that allow us to view populations and migration between them as
geometric objects, and their dynamics as pathways on a polytope complex K. Here,
we construct such a framework and propose it as a powerful mathematical foundation
for studying complex metapopulation dynamics.

To illustrate the basic ideas that motivate our work, consider the ‘Out of Africa’
model, in which anatomically modern humans originated in a small region of Africa,
leaving∼50,000 years ago to begin the settlement of Eurasia. On reaching the Middle
East, the population divided, one group moving towards Europe, while the other con-
tinued on to Asia. Subsequent splitting (and joining) events produced the distribution
of human populations observed today.

A model of this type can be stated more formally. If we denote the number of
populations at time t by N (t), then initially N (t0) = 1. At the time of the first split
t2, N (t2) = 2; at t3, N (t3) = 3; and so forth. Note that these three populations
are necessarily all located on the circumference of a hypothetical sphere—here, an
individual can only migrate to its immediate neighbors, although the probability of
migrating to any given neighbor might be large or small. As the number of populations
increases to four, the possible geometric patterns produced are no longer unique. As
shown by geometric-combinatorial arguments, the relative locations of the populations
can instead adopt a range of pattern settings (represented in Fig. 1).

This basic summary raises the question of whether there is a general description
of the space of all possible migration scenarios, within which populations can move,
split and merge through time. This is the first question that we address. Subsequently,
such a pure combinatorial-geometric analysis based solely on the location of popu-
lations is complemented by considering measures of migration between populations.
It is assumed that migration occurs via neighboring demes, which was typical during
much of prehistory when human mobility, constrained by geography and available
technologies, was largely restricted to continuous paths on land or by water.

Considering the theoretical mathematical structures that arise as part of this theory
is beneficial for a number of reasons: (i) it allows the relationships between alternative
migration scenarios to be quantified; (ii) it can be used to test the results of current
models and software that describe migration among populations; and (iii) it could
ultimately be employed in a statistical inference setting to reconstruct likely migration
histories based on genetic information. The theory allows the number of populations to
change through time, and it facilitates comparison between different metapopulation
systems. However, we will begin by considering the simplest state: a fixed number
of populations, each of which is represented by a point, with migration indicated by
edges. Weights assigned to these edges represent a measure of both population and
individual migration. The graph determined by these points and edges is also defined
to capture spatial factors, such as the physical distance between populations and the
possible presence of any intervening geographical barriers, such as mountain ranges
or water crossings.
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Temporal dynamics of structured populations 737

Fig. 1 Each sphere represents the planet Earth, on which a very simple migration progression has been
illustrated. Starting from a single population (far left), mimicking the “Out of Africa” model, the popu-
lation subsequently splits into two, and then three populations, each of which allows only one possible
geometric arrangement. On splitting into four populations, four possible geometrical arrangements are now
possible. The combinatorics of possible geometrical arrangements continues to increase with the number
of populations

The fact that populations interact on a planet—a three-dimensional sphere—might
be obvious, but is worth emphasizing because it implies certain constraints on pop-
ulation structure. For instance, when we consider migration among a fixed number
of populations, the interacting populations can only form a limited number of graph
structures determined by a sphere with n marked points. In addition, if a group of
populations has limited mobility over geographical space (i.e., movement is not arbi-
trarily free), a simple but important observation is that every migration path from a
given location L to a chosen destination D should cross the boundary of a region
containing all points that are closer to L than to any other population. In other words,
points L and D comprise the cells of a Voronoi tessellation. The following paragraph
defines such a Voronoi cell, which forms a fundamental basis of our migration theory.

Definition 1 Given a set of points P on a surface S with metric d, the Voronoi cell
associated with i ∈ S is the set of all points j in S that satisfy d(i, j) ≤ d(i ′, j) for all
i ′ ∈ P . The Voronoi diagram G associated with P is the set of all Voronoi cell bound-
aries. Further, we will say that P and d determine a Voronoi cell decomposition of S.
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738 A. J. R. Amaris, M. P. Cox

Observe that even though the locations of a set of points are needed to compute a
Voronoi diagram, this is not overly restrictive. First, populations are usually restricted
geographically to well defined regions, with these regions typically well separated.
For most biological species, it is sensible to define some form of population grouping,
to which a geographical center can then be assigned. Second, our model only uses the
center of a population as a way to define boundaries between regions. The individuals
themselves could be dispersed within this region. Our model holds as long as the pop-
ulation has some form of geographical center (regardless whether individuals actually
live at that point).

In the case of a geographically static set of populations (i.e., the populations them-
selves do notmove), each population belongs to aVoronoi cell whose shape is invariant
through time. However, even in the special (and biologically unrealistic) case of geo-
graphical stasis, the chosen distance measure (“migration”) linking neighboring cells
may potentially change through the movement of individuals between populations.
In another special case, populations can change their geographical location, while
maintaining the same level of migration between them (e.g., as is the case for seasonal
nomadic populations). In more general settings, population movements and individ-
ual migration are interrelated, and the Voronoi cell tessellation must represent both
characteristics jointly. With this general framework in mind, we define the concept of
a migration pattern in the following section.

Voronoi diagrams and related theory have been applied to a wide range of scientific
problems (see Okabe et al. 2000 for a survey of applications). Their use in biology
has an especially long history. For instance, Voronoi diagrams have been used to
analyze the geometric structure of biological molecules, to cluster biological data,
and to estimate the volume and surface of interphase chromosomes (Lee and Richard
1971; Ban et al. 2004; Kim 2004). However, we are not aware of prior applications to
migration theory or analysis, especially using combinatorics.

1.1 The space of migration patterns

Consider a set P of n populations across a geographical region, where each population
is represented by a point. At any given time, there is a migration pattern associated
with P , which can be represented by a Voronoi diagram determined by P with gene
flow passing across each of its edges. If the position of a population changes with
time, the Voronoi cell decomposition determined by P may also change. However,
fixed locations of populations do not necessarily imply a fixed migration pattern since
migration patterns can also change through variation in levels of individual migration.
Consequently, the graph nature ofmigration—both themovement of entire populations
and the movement of individuals between populations—should ideally be represented
within the same mathematical structure. We define the intensity of migration between
two populations through edge ePi Pj linking populations Pi and Pj as theweightwPi Pj ,
some number that at present we scale to the interval (0, 1) (see Fig. 2). We can also
assign the weight wPi Pj to the corresponding Voronoi boundary, so that it is possible
to pass from a weighted Voronoi diagram to a weighted graph with populations as
vertices (i.e., the dual graph of the Voronoi diagram). Initially, we will assume that the
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Fig. 2 Three polygons representing Voronoi cells containing populations P1, P2 and P3. The boundary
edge between the cells containing P1 and P2 has been assigned a weight w1324, which is determined by
the rate of migration between P1 and P2. Weights are assigned in a similar way to all edges in the Voronoi
diagram

sum of migration into and out of each population is constant, although we will discuss
later how this condition can be removed.

We define migration patterns as being the same if their corresponding graphs are
equivalent under homeomorphism1 and their corresponding edges2 have the same
weights. However, as we specifically consider migration on a sphere, we include a
set of numbers Θ = {θi }i∈I in our definition, where each θi can be considered an
intersection angle between two circles that belong to a family of circles uniquely
associated with the migration pattern graph. Θ captures the geographical dimension
of a migration pattern, while allowing migration patterns to be identified uniquely
among different metapopulations, which may be widely separated geographically, but
possess the same underlying geographical structure. In addition, we also include a
set of weights W in our definition, which represents a measure of gene flow between
populations,3 and a set T , which measures the total flow crossing each population.

Definition 2 The migration pattern of a set P = {P1, P2, . . . , Pn} of n populations is
a 4-tuple M = (G,Θ,W, T ), whereG is the Voronoi diagram on the two dimensional

1 Homeomorphism indicates that a function exists with continuous inverse of the sphere that transforms
the first graph into the second.
2 We allow a graph to be a hypergraph—that is, it can contain multiple edges between two vertices.
3 Here, we specifically have in mind genetic measures such as FST , although alternative metrics, including
estimates of migration, either direct or inferred (Hey 2010), are equally well suited.
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740 A. J. R. Amaris, M. P. Cox

sphere S2 determined by the set of geographical coordinates of P;W = {we}e∈E(G) is
a set of positive numbers such that 0 < we < 1 and the sum of weights we on the face
of G corresponding to Pi is Ti , where T = {T1, T2, . . . , Tn}; and Θ = {θe}e∈E(G) is
a set of positive numbers.

We call T the set of total loads of M (or its vertex weights). For a set of populations
in geographical space, it can be shown that a collection of circles exists that contains,
for all populations in their boundary, the set of weights Θ = {θi }i∈I corresponding to
the set of interior angles associated with this collection of circles. More details follow
on this point in Sect. 2.2.

We declare two migration patterns to be identical if theirW andΘ weighted graphs
are equivalent. Further, we call the collection of all migration patterns, for a system
of n populations with total weight T , the space of migration patterns MS(n, T ). The
migration graph of M will be called G. We assume that the ends of every edge of a
migration graph are different, which implies that a migration graph has at least two
vertices (i.e., we do not consider the theoretical, but biologically unrealistic, case of a
population that is completely enclosed by another population). Finally, the collection
of allmigration graphs ofMS(n, T )will be called the space of combinatorial structures
of MS(n, T ), denoted by CombMS(n).4

Note that our model could bemodified to useΘ as weights on a directed graph, dual
of the Voronoi diagram with centers being the populations under study. We opt not to
do so because, in practice, computing the direction ofmigration is difficult (Hey 2010),
while nondirectional measures like FST are more amenable to calculation (Cox and
Hammer 2010).We prefer tomodel non-directed graphs to provide flexibility of choice
around measures of migration. Nevertheless, implementing a directed graph struc-
ture is a natural extension of this research, and as directional measures of migration
improve, a directed graph structure will become an increasingly worthwhile pursuit.

1.2 Paper outline

In the introduction, we defined the space of migration patterns MS(n, T ) as a natural
setting to study the movement of, and individual gene flow between, a fixed number of
populations that interact across geographical space. In the following sections, we will
explore the rich mathematical nature of MS(n, T ) by studying its combinatorial and
graph structure. In the subsection on linear systems and polytopes, we will show that
two linear systems of equations/inequalities can be associated with each migration
graph, and indicate how our approach leads to two Euclidean polytope complexes
that encode all of the information provided by the migration pattern. We will then
show how the evolution of a metapopulation system through time can be viewed as
a path on a specific polytope complex when the number of populations is fixed, and
later extend this finding to more general cases where populations can split and merge.
We then provide a real world example showing how this mathematical framework
can be applied. The paper concludes with a general discussion of the theory. Finally,
we provide an appendix with mathematical proofs required to support all of the new
mathematical ideas introduced in this work.

4 Note that CombMS(n) does not depend on T .
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Fig. 3 The graph G1 (left) can produce the graph G2 (right) by a contraction move on edge e (red).
Equivalently, the graph G1 can be obtained from the graph G2 by an expansion move on the internal vertex
P7, which is determined by the vertices P6, P1, P3 and P4

2 Methods

2.1 The combinatorics of migration patterns

In this subsection,we consider only the space of combinatorial structuresCombMS(n)

for a fixed number of populations n. Hence, we assume that the number of cells in the
Voronoi cell decomposition of the sphere is also n. The number of edges may vary,
but the degree of the vertex—the number of edges incident to it—cannot be less than
three.

A basic result that relates the number of vertices V , the number of faces F and
the number of edges E of a cell decomposition of the sphere is Euler’s characteristic
formula (Flegg 2001; Richeson 2008):

V + F − E = 2 (1)

Three edge transformations facilitate the description of migration graphs in the
space CombMS(n). The first transformation is called a contraction move, a transfor-
mation that when applied to an edge e of a migration graph, continuously reduces its
length to zero, in such a way that all other edges are topologically preserved (Fig. 3). A
contraction move on an edge produces a new graph whose number of edges is reduced
by one.

The second transformation is called an expansion move. It creates a new edge e′ by
splitting a vertex P , of valence greater than 3, into two vertices P1 and P2 such that e
connects P1 and P2, while all edges formerly incident to P remain incident to either
P1 or P2. Observe that the valences of the vertices P , P1 and P2 are related by:

valence(P1) + valence(P2) = valence(P) + 2 (2)

The third transformation is called a Whitehead move. We illustrate a Whitehead
move on edge e of graph G1 in Fig. 4. It is convenient to imagine edge e as being
continuously contracted until it collapses to a single point, as represented in the central
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e

e

G1 G2

Fig. 4 The graphsG1 (left) andG2 (right) are connected by aWhiteheadmove on edge e (red). Themiddle
graph is an intermediate step where the edge e has been collapsed to a single point

graph. The process continues by expanding that point into a new vertical edge, also
denoted by e, to produce graph G2. In practice, a Whitehead move changes G1 to G2
in a single step. Whitehead moves have been used to describe the combinatorics of
moduli spaces (see Amaris 2007; Kasra and Tao 2013). They have a central role in our
theory becauseWhiteheadmoves connect all cubicmigration patterns inCombMS(n),
as described in Proposition 1 (see below). This in turn simplifies the analysis and
description of general migration patterns since they can be viewed as being imbedded
in a cubic migration pattern.

Proposition 1 If G1 and G2 are two cubic migration graphs in CombMS(n), then a
sequence of Whitehead moves Whe1,Whe2 , . . . ,Whek exists such that

Whek ◦ Whek−1 ◦ . . . ◦ Whe1(G1) = G2

A proof for this proposition is given in the Appendix.
Using the edge transformations listed above, we can now describe CombMS(n) as

follows:

Proposition 2 All migration graphs in CombMS(n) are connected by a sequence of
contraction moves to a cubic graph. More exactly, for every graph G in CombMS(n),
there exists a graph ̂G in CombMS(n)0, a unique number k and a sequence of con-
traction moves c1, c2, . . . , ck such that

G = ck ◦ ck−1 ◦ . . . ◦ c1(̂G)

Proof This argument can be proved by showing that any cubic graph embedded
in a two-dimensional sphere with n > 4 faces can be obtained from the circular
wheel graph CLn (Fig. 5) by Whitehead moves, where CLn is constructed by tak-
ing two concentric copies of a regular polygon of m = n − 2; for instance, with
vertices P1, P2, . . . , Pm and P ′

1, P
′
2, . . . , P

′
m and adding all edges of the form Pi P ′

i ,
i ∈ {1, 2, . . . ,m} (see Fig. 5 for the case of n = 10).

As a consequence of this proposition, we can prove that all graphs in CombMS(n)

are connected by contraction or expansion moves.

Proposition 3 For every pair of graphs (G1,G2) in CombMS(n), a sequence of
contraction or expansion moves m1,m2, . . . ,mk exists such that
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Fig. 5 The upper graph CL10 can generate all cubic graphs of MS10 by Whitehead moves, which in
turn can generate the whole MS10 by contraction moves. The lower graph C10 is a representation of the
migration pattern for ten populations located on a geographical great circle. C10 can generate all the graphs
in MS10 by a combination of expansion or contraction moves

G2 = mk ◦ mk−1 ◦ · · · ◦ m1(̂G1)

Proposition 1 can be viewed as a description of CombMS(n)0, the upper layer of
CombMS(n). This in turn can be considered as a generating set for CombMS(n),
in the sense that all graphs in CombMS(n) can be obtained from CombMS(n)0
by contraction moves. In this proposition, the graph ̂G is not unique. However, the
uniqueness of k allows us to define deeper layers of the structure of CombMS(n).
With this in mind, we define the depth of a migration graph G as the number of
contraction moves needed to obtainG from a cubic graph. Further, we define the layer
or strata of CombMS(n), CombMS(n)k , as the collection of all migration patterns
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at the same depth k. At the deepest level of CombMS(n), there is a single graph Cn

with exactly two vertices and n edges. This graph arises naturally when considering
a set of n populations that lie on a spherical geodesic (with respect to the great circle
metric), but as noted above, this structure also has purely mathematical utility. Figure
5 shows the example C10.

Note that Euler’s characteristic formula (Eq. 1) implies that every migration graph
in CombMS(n)0 has n faces, 2n − 4 vertices and 3n − 6 edges. Hence, k = 2n − 5
contraction moves are needed to reach the deepest layer ofCombMS(n). The number
of vertices and edges at each layer of CombMS(n) can easily be computed, which
implies the following proposition:

Proposition 4

CombMS(n) = ∪2n−5
k=0 CombMS(n)k

The propositions above provide several alternative perspectives of CombMS(n).
An additional perspective is to view CombMS(n) as being generated from the graph
Cn , defined above, via transformations provided by expansion or contraction moves.
The application of single expansion moves to Cn will produce a second generation
of graphs at a higher level, which can in turn be used as seeds for a third genera-
tion of graphs. As new generations are expanded, not all graphs in CombMS(n) are
necessarily obtained (see Amaris 2007, page 62). Indeed, a combination of expan-
sion and contraction moves are required to move through the whole combinatorial
space. In other words, graphs exist in CombMS(n) that cannot be obtained solely
by a sequence of expansion moves from Cn . This third perspective on CombMS(n),
which is a consequence of Proposition 2, is summarized in the following proposition:

Proposition 5 For every graph G in CombMS(n), a sequence of expansion and/or
contraction moves m1,m2, . . . ,mk exists such that

G = mk ◦ mk−1 ◦ · · · ◦ m1(Cn)

Jointly, the perspectives given by the propositions above can be used to obtain
an explicit description of CombMS(n). For example, with just two populations,
CombMS(2) comprises a single migration graph: a simple loop. In the three pop-
ulation case, CombMS(3) contains only one graph with two vertices and three edges.
In the four population case, CombMS(4) has four possible migration graphs: two
cubic graphs, one graph with three vertices, and one graph with two vertices—i.e.,
C4 (see Fig. 1 for a graphical representation). To explicitly enumerate graphs, it is
important to remember that two equivalent graphs in CombMS(n) are considered
identical.

2.2 Graph duality

Any graphs that can be embedded in the two-dimensional sphere can be related by a
graph duality relationship. To explain this concept, consider a graph G. To build the
dual graph G◦ of G, simply mark each face of G (e.g., by drawing a single point in its
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Temporal dynamics of structured populations 745

Fig. 6 The graph C6 (clear)
and its corresponding dual graph
O8 (green), as determined by the
edges of a cube and an
octahedron, respectively

interior), and then for each edge of G, draw a new edge joining the two marked points
on the adjacent faces. For example, in Fig. 6, we mark a point on each of the six faces
of a cube. This produces the vertices of the graph O8 (green), which is the dual graph
of C6 (clear).

Graph duality allows us to move to and from equivalent graph representations
of the same phenomenon—in our case, a migration pattern. Each view emphasizes
different aspects of the system. For instance, we can determine which population is
closest to an individual just by determining the Voronoi cell in which that individual is
located.Byusing its dual graph,we can potentially identifywhether an individual came
from a given population by direct migration simply by considering whether vertices
representing the source and sink populations are connected by an edge, assuming the
sink and source populations are known. This concept of graph duality can easily be
extended to the concept of duality for the entire cell decomposition of the sphere:

Definition 3 Given a graph G, we denote the dual graph by G◦. If G is the Voronoi
diagram determined by a set of points P , then G◦ is the Delaunay graph determined
by P . Similarly, the dual of a cell decomposition of the sphere D is denoted by D◦.

Interestingly, it is possible to associate a set of circles—the collection of circles that
have no vertex in their interior—to the dual graph of a Voronoi cell decomposition
(see Springborn 2003). For example, Fig. 7 shows a partial view of a Delaunay cell
decomposition determined by a set of points P , where V1V2 is one edge of the Voronoi
cell decomposition determined by P , and the Delaunay cells with centers V1 and
V2 are circumscribed by the given circles. More generally, if D is a Voronoi cell
decomposition, with dual cell decomposition D◦, it can be proved that each cell R in
D is circumscribed by a circumference (as occurs in Fig. 7). Further, we can assign
the interior angle θ j to the edge e of G◦, where an instance of an interior angle is
given by the angle V2P8V1 in Fig. 7. In this setting, it can be asked whether a circle
pattern exists whose intersection angles correspond to the given set of values (θ j ).

123



746 A. J. R. Amaris, M. P. Cox
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Fig. 7 Two Delaunay cells with vertices P1, P2, . . . , P8 and P8, P9, . . . , P12, P1, P8 (e.g., possibly rep-
resenting populations). The centers V1 and V2 of these cells are vertices in the Voronoi cell decomposition
determined by these populations. The edge e◦i joining P1 and P8 (red) is assigned the weight θi , which can
be interpreted geometrically as the inner angle between the circles with centers V1 and V2 (the measure of
the angle V2P8V1). The edge joining V1 and V2 (green) is assigned the weight 1 − θi

Rivin (1996) provided a solution to this problem. In our definition of a migration
pattern, the parameter set Θ should be understood as interior intersection angles in
spherical geometry.

Theorem 1 (Rivin’s theorem) Let Σ be a strongly regular cell decomposition of the
sphere and let an angle θe with 0 < θe given for every edge of Σ . Let Σ∗ be the dual
decomposition of Σ , and for each edge e of Σ , denote the dual edge of Σ∗ by e∗.

A Delaunay pattern corresponding to Σ with exterior angles θe exists if and only
if the following conditions are satisfied:

1. If some edges e∗
1, . . . , e

∗
n form a boundary face of Σ∗, then

Σθe j = 2π

2. If some edges e∗
1, . . . , e

∗
n form a closed path of Σ∗, which is not the boundary of

a face, then

Σθe j > 2π

If the circle pattern exists, then it is unique under a Möbius transformation of the
sphere.

Note that Rivin’s theorem gives necessary and sufficient conditions for the exis-
tence of a Delaunay pattern with inner circle intersection angles provided by Θ . If a
migration pattern is known, Θ should satisfy conditions 1 and 2 above. Conversely,
if a graph is drawn on a sphere with well defined cells (‘regions’) and a positive
number is chosen for each of its edges, the corresponding dual graph is a migration
pattern for the chosen weights if the conditions above are satisfied. Then, as we shall
see in the following section, Rivin’s theorem and the combinatorial knowledge of
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Temporal dynamics of structured populations 747

migration patterns allows us to systematically generate all circle patterns. We are only
concerned with Voronoi cell decompositions of the sphere that are strongly regular
(for more details, see Springborn 2003). The conditions on the weights we given in
the definition of migration patterns above are independent of Rivin’s theorem. They
instead arise as a mechanism to let us model migration among populations, but the
specific computation of theseweights and their precise interpretationmust be specified
in any given application. In particular, we favor commonly used indirect measures of
migration (Beerli 1998), among which can be classified: (i) simple estimators based
on allele frequencies (Michalakis and Excoffier 1996); (ii) maximum likelihood esti-
mators based on allele frequencies (Rannala and Hartigan 1996); and (iii) estimators
based on genealogies of the sample (Wakeley 1998). We do not know whether the
different measures we and w′

e should be related, but this seems unlikely at the level of
generality that we are considering here.

2.3 Linear systems for metapopulation analysis

For a system of populations (a ‘metapopulation’), a specific migration pattern can
be determined whenever information is known about the location of populations, as
well as migration between them, at a specific time. While this information can be
obtained for many real populations today, the dynamics of these populations through
time is unlikely to be known.However, an analysis ofmigration is still possible inmany
instances because basic features, such as the number of populations, impose important
mathematical constraints on the evolution of the system. Indeed, the combinatorial
analysis of CombMS(n) has already revealed several such constraints. Moreover,
Rivin’s theorem can be interpreted as a set of equalities and inequalities that, given
necessary and sufficient conditions, determine a system of linear inequalities whose
solutions lie on a polytope that is associated uniquely with the system under study.

Changing our focus to levels of individual migration across the system, further
constraints are considered to provide a better description of migration patterns as
dynamic entities that can change through time. Consider a given migration graph G
with a chosen edge labeling,5 and its dual graph G◦ with edges marked using the
convention that pairs of dual edges have the same label. The intensity of migration
between two populations joined by an edge in G◦ is represented by the variable xi .
Hence, we assign the linear system L◦(G, T ) to G and T as:

1. 0 < xi < 1
2.

∑

j∈E(Pi ) x j = Ti , for each vertex Pi ∈ V (G◦), where E(Pi ) and V (G◦) are the
set of edges incident to Pi and the set of vertices of G◦, respectively.

Note that the first constraint restricts each solution to lie in the interior of the unit
hypercube of dimension m (the number of edges of G), while the second constraint
assigns a facet of a polytope contained in [0, 1]m to each face of G. This allows us
to assign a polytope to the family of all migration patterns associated with the same
graph by relaxing the strict inequalities < to ≤. In many cases, the two polytopes that

5 Edge labeling is a one-to-one assignment of the numbers 1, 2, . . . ,m to the set of edges.
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we have described can be obtained explicitly (e.g., by using the geometry software
package, Convex; Franz 2000).

Although we could associate a non-empty polytope with the genetic system above,
an abstract graph that can be embedded in the sphere is not necessarily realizable
in spherical geometry. Further, spherical realizability for a given abstract graph does
not imply realizability of the genetic linear system associated with the same graph.
Important properties of the families of a polytope associated with migration patterns
will be considered in the next section, which considers the underlying combinatorics
of CombMS(n). Our result links this new theory of migration patterns to polytope
theory, which is a strong branch of pure and appliedmathematics (see Ball 1997; Bayer
and Lee 1993; Bokowski and Sturmfels 1989; Gruber and Wills 1993; Grünbaum et
al. 2003; Ziegler 1994).

2.4 Population histories as paths on K

The migration pattern associated with a metapopulation M(t) = (G(t),Θ(t),W (t),
T (t)) is likely to change through time. However, M(t) should change relatively slowly
for processes that occur over long time scales. This implies that there are periods of
time when the graph G(t) is invariant. Thus, for a period of time I when G(t) is fixed,
the polytope pair K = (K[1](t), K[2](t)) associated with M(t) is also fixed. In this
way, M is a curve in K (t)—a curve in polytope K[1](t) and a curve in polytope K[2](t)
that describes changes in the geographical arrangement of populations and gene flow
between them. However, since the analysis is similar for both polytopes in most cases,
we will describe K as a single polytope when describing common properties.

The evolution of a set of populations can be described as a path in K for some
t ∈ I . Further, most systems will eventually undergo a change in G(t), caused by a
contraction or expansion move, and hence, the polytope K (t) will also change. More
generally still, a collection of polytopes appears in this process, and the structure of
this collection of polytopes mirrors the combinatorial structure CombMS(n).

To describe this new structure, we first consider CombMS(n)0, an arbitrary cubic
graphwith labeling l, and extend its labeling to thewhole stratumCombMS(n)0 while
keeping all labels invariant during any Whitehead moves.6 Since each labeled graph
has an associated polytope, a polytope complex can be constructed that depends only
on the initial labeled graph.

This process is illustrated in Fig. 8. An arbitrary edge labeling l is chosen for graph
A1, which determines a system of equations whose solution set is the polytope K1
(as represented in Fig. 9). The central graph A2 is obtained from A1 by a Whitehead
move on any of its edges. In this example, we randomly select the lower edge (red) to
produce A2, so that the labeling of A2 is inherited from the labeling of A1. As a result,
the polytope K2 can be associated uniquely with A2. Exactly two new graphs, A3 and
A4, can be obtained from A2 by Whitehead moves. By choosing the labeling on these
graphs by Whitehead moves on the blue and green edges, respectively, the polytopes

6 At the intermediate step of a Whitehead move, a label is momentarily lost whenever an edge is deleted.
We define that, in the expanding step, the new edge is given the label of the old lost edge.
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(A1, K1)

(A2, K2)

(A12, K12)

(A12, K12)

(A3, K3)

(A23, K23)

(A4, K4)

Fig. 8 Each pair of graphs Ai and A j (connected by dashed arrows) are related by a single Whitehead
move on the colored edges. If these graphs are given consistent labels, then polytopes K1, K2, K3, K4 can
be associated with A1, A2, A3, A4, respectively. Each of these graphs have common facets corresponding
to their common contracted graphs (smaller intermediate graphs between dashed arrows). The yellow line
represents one possible migration history for a group of six populations whose migration pattern is initially
represented by the graph A1, and which subsequently evolve through A12, A2 and A23 before reaching A3.
This particular migration history can then continue evolving via graphs not represented in this diagram

K3 and K4 can be uniquely associated with A3 and A4.When this process is continued
by performing all possible Whitehead moves, the polytope complex K = K(n, T, l) is
constructed—i.e., the union of all polytopes that arise through the process described
above. Themigration history for a set of populations can be encoded by the coordinates
of the path on this polytope complex, as long as the number of populations in the system
remains fixed. If the number of populations changes, the system jumps to a higher
dimensional polytope complex (as described later). The yellowpath in Fig. 8 represents
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P1 P2

P3

P4

P5

P6

P6

P6

P6

P1

P2P3

P4 P5

P6

x1

x2

x3

x4 x6

x7

x8

x5

x11

x12x9

x10
θ1

θ2

θ3

θ4 θ6

θ7

θ8

θ5

θ11

θ12θ9

θ10

x1 + x2 + x3 + x4 = T1

x2 + x6 + x11 + x12 = T2x3 + x7 + x9 + x12 = T3

x4 + x8 + x9 + x10 = T4 x1 + x5 + x10 + x11 = T5

x5 + x6 + x7 + x8 = T6

Fig. 9 This example shows how a system of equations associated with a labeled Voronoi diagram can be
constructed. The graph G (top, green) represents the Voronoi diagram corresponding to six populations,
which are indicated by the vertices P1, . . . , P6. By definition, the sum of xi on each corner must equal Ni ,
as represented in the dual graph (top and bottom, red) using the variables xi or equivalently θi = 1 − xi .
The variables θi can be interpreted as intersection angles between the family of circles determined by the
vertex of the triangles in red. The lower diagram, an alternative representation of the red graph in the
upper diagram (by linking the four P6 vertices), has an equation associated with each vertex, following the
definition of the migration pattern

the evolving migration pattern of a group of populations. Note, that migration patterns
could reach deeper layers of K that are not represented in this particular figure (e.g., if
the associated graph has more contraction moves than the graph represented by A12).
Nevertheless, K does contain all possible migration scenarios for this system.
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At this point, it seems useful to enumerate some properties ofK that can be deduced
from the propositions proved in the Appendix:

1. Each polytope of K is associated with a unique cubic graph.
2. If G1 and G2 are cubic graphs connected by a Whitehead move on edge e, with

associated polytopes K1 and K2, their shared common subgraphG12
7 corresponds

to a common face of K1 and K2. This is true because any solution for the linear
system of G12 can be viewed as a solution for G1 and G2 with the variable
corresponding to the contracted edge e set to zero.

3. If a graph G associated with a polytope in K is not cubic, its associated polytope
can be viewed as a subset of a polytope associated with a cubic graph.

4. The polytope complex K depends of the original labeled cubic graph. However, as
labeling is related by permutation, corresponding polytopes are related in a similar
way.

5. K has a finite number of polytopes because the number of cubic graphs, as well as
the number of edge labeling possibilities, is finite for a fixed number of vertices.

6. Polytopes in K may have common solutions due to the fact that different cubic
graphs can give rise to the same contracted graph.

7. The labeling of a graph determines the Euclidean coordinates for a givenmigration
pattern. However, these coordinates are not unique in the complex K because a
sequence ofWhiteheadmoves can produce several copies of a graphG with differ-
ent labelings. Nevertheless, considering symmetry of the graphs under translation
and rotation, we can say that those coordinates that are symmetric represent the
same migration pattern for any given graph.

Additionally, in the space K/sym(S2), where sym(S2) is the group of symmetric
transformations of the two-dimensional sphere generated by translations and rotations
(i.e., the Möbius group), every migration pattern is represented uniquely. Note that
K, mathematically a covering space for K/sym(S2), still simplifies the analysis of
migration even when a given migration pattern is not uniquely represented on it.

In our view, knowledge of the properties above is important because it provides
insight into the dynamics of migration patterns and highlights some considerations
that would seem necessary to develop simulation models based on this theory. For
example, if we know the migration pattern of a metapopulation at some time t and the
associated graph is cubic, we can deduce that the associated graph does not change
over short time periods, both future and past, with respect to t . We can also deduce
that the graph experiences a transition only if the path of the system crosses a face of
the associated polytope. An additional application of this theory allows us to simulate
metapopulation dynamics by starting with construction of the complex K. However,
we do not need to construct all possible graphs associated with a migration pattern.
The properties above instead let us compute the cubic building blocks of K, which
greatly simplifies this task.

Additional mathematical development on the theory of migration patterns seems
unnecessary for modeling purposes, and the role of K as a feasible computable space

7 The common subgraph G12 is obtained in the intermediate step of the Whitehead move connecting G1
and G2.
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where migration histories can be represented as paths is now clear. Only one key point
remains: the flexibility to add (or remove) a population from the study system.

2.5 The birth of new populations

We have previously described the evolution of migration patterns using several differ-
ent perspectives, but always assuming that the number of populations is fixed. In amore
realistic setting, the number of populations can vary, andwemust consider the effect of
introducing a new population into the existing set of populations.We assume that when
a new population arises, its location is initially arbitrarily close to the source group (as
would be typical in the case of a real population split). However, this assumption does
not constrain the applications of this theory because the continuous time model we
propose can always be adapted to discrete time periods. Sincewe represent populations
as points, the problem of introducing a new population is equivalent to the problem
of introducing a new point P ′

2 into a set of n points P = {P1, P2, . . . , Pn} at time t0,
where P ′

2 is arbitrarily close to P2 (e.g., limt→t0 P
′
2(t) = P ′

2(t0) = P2(t0)). In other
words, we need to find the main features of P ′ = P

⋃{P ′
2} under the assumption that

P is known. Some relevant observations with respect to the Voronoi decomposition
of the sphere are:

1. The Voronoi cell Fi centered at point Pi is the intersection of the entire half sphere
Ri j determined by the perpendicular bisector bi j of the segment joining the points
Pi and Pj . However, if Fi is surrounded by cells F1, F2, . . . , Fm , then Fi is the
intersection of the half sphere Rik , where k ∈ {1, 2, . . . ,m}.

2. If the point P ′
i is located in a circular neighborhood B(Pi , ε) with center Pi and

radius ε, and P ′ is obtained from P by replacing Pi by P ′
i , then the Voronoi cell

decomposition determined by P ′ would be close8 to the Voronoi cell decomposi-
tion determined by P if ε is sufficiently small.

Now assume P ′
2 = P2r is on the circumference of a very small radius ε and

center P2 = P2l . The Voronoi cell decomposition determined by P ′ contains cells
of two types: those corresponding to points in P (type I), and two additional cells
corresponding to the points P2l and P2r (type II). Since P2l and P2r are very close,
type I cells should introduce little variation to adjacent Voronoi cells with respect to
P . In contrast, the former cell containing P2 has now been divided with one half inside
P2l and the other half inside P2r . These cells are obtained by the partition produced
by the perpendicular bisector of the segment P2l P2r on the former cell containing P2.
This splitting process, here described in terms of Voronoi cell decompositions, can
also be described in terms of its associated Delaunay cell decomposition (see Fig. 10).

Note that the merger of populations is merely the reverse of the process described
above.

8 Close in the sense that the edges of P could be covered by circles of some small radius ε, such that the
edges of P ′ are contained in the union of this cover.
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Fig. 10 The Delaunay diagram
of a set of populations before a
population split (left), where
each node in black represents a
population. Population 2 then
splits into two populations P2l
and P2r (right). This results in a
new Delaunay diagram with
three new edges (green)

P1

P3

P2

P1

P3

P2l P2r

Table 1 Geographical
coordinates for eight Sumba
populations

Population Longitude Latitude

Kodi 118.960 −9.583

Lamboya 119.355 −9.722

Loli 119.398 −9.633

Wanokaka 119.449 −9.725

Mamboro 119.545 −9.401

Anakalang 119.575 −9.588

Wunga 119.958 −9.385

Rindi 120.675 −9.931

3 Empirical example

Toprovide an explicit example of a real-worldmigration pattern,we chose eight human
populations on the eastern Indonesian island of Sumba, for which genetic profiles are
well defined (Lansing et al. 2007). The geographical coordinates given in Table 1
let us compute the metapopulation Voronoi diagram, or its equivalent Delaunay cell
decomposition, for this system of populations. More exactly, this can be performed by
interpreting each population’s latitude and longitude as spherical coordinates of points
in the unit sphere, which are then easily converted to cartesian coordinates. Software is
available to compute the spherical Delaunay cell decomposition (for example, Zheng
2011). However, since the number of populations here is small, we used a simple
R script to enumerate all possible spherical triangles with vertices corresponding to
populations (n = 56), and check whether they can form a cell in the metapopula-
tion’s Delaunay cell decomposition of the sphere. We also computed each triangle’s
circumcenters,9 which allows us to compute the inner angles based in the spherical

9 Each spherical triangle has two circumcenters, which are the antipodes of each other.
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Fig. 11 The spherical Delaunay cell decomposition of the sphere for eight populations on the eastern
Indonesian island of Sumba

Table 2 Values of the inner angles θi (i = 1, 2, . . . , 18) using FST weights

Edge label (i) 1 2 3 4 5 6

θi 0.7624459 1.943735 1.875696 2.187413 1.400967 1.189525

wi 0.01113 0.02481 0.06764 0.01297 0.06614 0.0461

Edge label (i) 7 8 9 10 11 12

θi 1.681032 1.013773 0.1476047 2.743607 1.337191 2.014021

wi 0.0098 0.00572 0.01157 0.02015 0.04181 0.06872

Edge label (i) 13 14 15 16 17 18

θi 1.927833 1.054552 1.286779 0.1883666 2.101859 0.2763413

wi 0.03533 0.04736 0.01528 0.03312 0.00891 0.00536

law of cosines (Gellert et al. 1989). This process leads to the Delaunay cell decompo-
sition of the sphere (Fig. 11), which in our case is a triangulation, and its associated
inner triangles (Table 2). To describe the migration pattern for Sumba completely,
we also included values for the weights wi (i.e., measures of gene flow), which in
this instance we chose to be the FST distance between population-level mitochondrial
DNA diversity (i.e., a measure of relatedness along the maternal line; Lansing et al.
2007).
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Using Rivin’s theorem, the sum of inner angles associated with edges incident to a
population must sum to 2π . This means that:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

θ1 + θ2 + θ15 + θ16 + θ17 = 2π, P1 = Kodi

θ2 + θ3 + θ4 + θ18 = 2π, P2 = Lamboya

θ1 + θ3 + θ5 + θ6 + θ14 = 2π, P3 = Loli

θ4 + θ5 + θ7 + θ8 = 2π, P4 = Wanokaka

θ12 + θ13 + θ14 + θ15 = 2π, P5 = Mamboro

θ6 + θ7 + θ9 + θ11 + θ13 = 2π, P6 = Anakalang

θ10 + θ11 + θ12 + θ16 + θ17 = 2π, P7 = Wunga

θ8 + θ9 + θ10 + θ18 = 2π, P8 = Rindi

which can be verified using data from Table 2.10

The total loads of the migration pattern computed in this example are:
⎧
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⎪

⎪

⎪

⎪
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⎪
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⎪

⎪

⎩

T1 = w1 + w2 + w15 + w16 + w17 = 0.09325, Kodi

T2 = w2 + w3 + w4 + w18 = 0.11078, Lamboya

T3 = w1 + w3 + w5 + w6 + w11 = 0.23837, Loli

T4 = w4 + w5 + w6 + w7 + w8 = 0.09463, Wanokaka

T5 = w12 + w13 + w14 + w15 = 0.16669, Mamboro

T6 = w6 + w7 + w9 + w11 + w13 = 0.14461, Anakalang

T7 = w10 + w11 + w12 + w16 + w17 = 0.17271, Wunga

T8 = w8 + w9 + w10 + w18 = 0.0428, Rindi.

In this instance, we present the migration pattern corresponding only to the present
time. Note that the values wi carry both geographical and biological information, and
can provide considerable insight on subtle population-level dynamics. For instance,
the sequencew8, w9, w10, w17, w18 represents edges connectingRindiwith other pop-
ulations on Sumba. Consistent with their geographical setting, w17 and w18 are less
likely migration paths and consequently exhibit the smallest values. w10, which is
intuitively the most likely migration path (along the relatively short distance of the
northern coast) shows the largest value. As a second example, edges w3 and w5 link
Loli with Lamboya and Wanokaka, respectively. These edges have relatively large
values, reflecting close connections between these populations, both geographically
and genetically. Curiously, edgew4, which links Lamboya andWanokaka, is relatively
small, hinting that this connection would be worth exploring further within an anthro-
pological setting. The interpretation of FST (and indeed all other migration metrics)
is not straightforward; for a complete review, including alternative interpretations of
FST , see Holsinger and Weir (2009).

The question that arises in this context is how to determine the path that popula-
tions on Sumba took in the past to reach their present state. While this is a challenging
problem, the theory presented here provides a natural analytical framework to address

10 Note that our data also fulfills the second condition of Rivin’s theorem.

123



756 A. J. R. Amaris, M. P. Cox

Fig. 12 The Delaunay diagram of a group of populations (left), each represented by the intersection of
three or more edges. The new Delaunay diagram after two transformations in the migration pattern (right).
The red segment on the left is replaced by the rhomboid structure on the right, represent the splitting of a
population. The green structure on the left is replaced by a swap move in the new structure on the right.
This is equivalent to a Whitehead move on an edge in the corresponding Voronoi decomposition

it. However, results must be interpreted in the context of each specific problem. For
instance, if we consider a period of time when all migrations were restricted to Sumba,
then edges w16, w17, w18 would be not considered possible migration pathways, even
though they are necessary to fully describe the migration pattern of Sumba’s popula-
tions today.

4 Discussion and future directions

Population structure has long been known to play a central role in the dynamics of
population genetic variation through time. The role of migration has been particu-
larly emphasized by several authors (Hanski and Gilping 1997; Slatkin 1985, 1987).
Reconstructing the migration history for a set of populations is crucial for fully under-
standing the genetics of modern populations. As a step towards this goal, we have
presented two equivalent perspectives on the movement of populations (as well as
individuals between those populations). These graphs are mirror images of each other,
and are based on the graph duality of Voronoi and Delaunay cell decomposition of a
two-dimensional sphere. The Voronoi perspective of migration illustrates history as a
graph weighted by migration, which suffers continuous deformation through time due
to changes in population and individual mobility. Based on contraction and expansion
moves in the static case (i.e., a fixed number of populations), splitting or merging
populations is also possible. The Delaunay perspective is then represented as dynamic
spheres with evolving cell decompositions driven by the addition or deletion of edges
(dual to expansion/contraction moves), as well as the addition or deletion of rhomboid
structures representing new or merged populations.11

The migration graph associated with a set of populations can change through time.
In Fig. 12, we represent the migration pattern of a large hypothetical set of popula-
tions using its Delaunay representation. Each node represents a population, and the
migration pattern for this set of populations evolves from left to right. Graphically, this

11 A rhomboid structure is represented by the union of blue and green edges in Fig. 10.
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can include two different features, represented by the red and green lines. Changes in
these colored structures could have occurred simultaneously or sequentially. Consid-
ering these two migration patterns as snapshots of a rotating sphere at two different
time points, the observed deformation might result from multiple historical events—
changing gene flow, social processes causing the splitting or merging of populations,
or the appearance of new physical barriers between populations. The challenge of
anthropologists and geneticists is to identify the forces that created the population
genetic patterns observed today. Informally, this can be viewed as a rolling ball that
suffers deformation under population actions, which in turn produces an unknown
path in a known space: K.

Representing the dynamics of population and individual mobility by paths on the
polytope complex K simplifies the analysis of migration. In this setting, migration
histories, represented as paths in K, have several analytical advantages: (i) several
migration scenarios can be compared by examining the matrices encoding their paths,
(ii) different metapopulation systems that are not necessarily related geographically
or temporally can be quantitatively compared; and (iii) knowledge of a particular
migration pattern can constrain future or past paths in K, thus reducing the search
space in an inferential statistics setting.

The analytical framework presented here allows the number of populations to
change as a consequence of splitting and merger events. These splits and mergers
could occur sequentially or simultaneously, both of which can be explained using
the same construction represented in Fig. 10 (or a straightforward generalization of
this construction based on the premise that Voronoi diagrams are largely stable under
minor perturbation of the Voronoi cell centers). This also implies that, under signif-
icant differences in scale (e.g., regional to global scales), parts of the Voronoi cell
decomposition can simply be replaced by a point. This is still a valid representation of
themigration system, although now containing less detailed information. For instance,
if a set of populations includes groups separated by thousands of kilometers as well as
populations separated by only a few kilometers, then close population groups could be
modeled at the global scale as a single point. This simplification could be employed
to study the dynamics of large scale systems, knowing that local population dynamics
could subsequently be re-integrated into the system if required at a later time. This is
an especially useful feature, as it can also be employed to handle missing data (which
is ubiquitous in most biological datasets).

Further research on the evolution of migration patterns based on a polytope com-
plex is also possible. One productive avenue of research will be optimizing measures
of migration to capture the dynamic nature of this process. Although challenging
(see Whitlock 1999 for details), there has been substantial progress towards this end
in recent years (Hey 2010; Kuhner 2006). Further, there is no obvious standard for
how the total weights T assigned to the vertices of a migration graph evolve through
time. Although we have previously fixed T , it is equally reasonable to consider that
T changes through time, thus producing a dynamic polytope complex K. Hence, the
migration history of a set of populations could be viewed as a path in a dynamic K
with moving walls (i.e., facets of K).

Further to this idea, a simulation approach based on K could be an appropriate
starting point to understand changes in population and individual mobility through
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Fig. 13 All points of the same color represent the same population. A marked sphere has been assigned
to a set of six populations (left). By deforming the sphere (middle), we obtain the upper part of the middle
panel, which is the mirror image of the lower part. Finally, a double torus is constructed by gluing the top
and bottom parts together (right)

time. Given known initial and final configurations (as in the ‘Out of Africa’ example
used in Sect. 1), Hidden MarkovModels with migration patterns as their hidden states
might prove a useful way to determine the most likely migration path between two
(or more) graph topologies. Frameworks such as these would be radically different to
traditional gene lineage based simulators, like SPLATCHE (Ray et al. 1991).

Finally, we note that there is an analogy between migration patterns and Riemann
surfaces. This can be recognized by reference to Riemann surfaces of genus 2 (Amaris
2007) (Fig. 13). Whether progression to the level of abstraction needed to employ
Riemann surface theory is directly applicable to population genetics remains unclear,
but this would provide another possible avenue for future research. Certainly, Riemann
surfaces are related to statistical mechanics, which has previously proven useful for
inferring past demographic parameters from modern genetic data (Maruvka et al.
2011). Regardless, studying population dynamics from the perspective of graph theory
seems a potentially rich field to infer the impact of mobility on the genes carried by
humans (and other populations) around the world.
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Appendix

Here, we prove the key propositions that underpin the theory presented in this paper.
Propositions have been divided into two categories: those related to the combinatorics
of CombMS(n), and those related to the polytope complex.

Combinatorics

The following property of CombMS(n) is known, but as we could not find an explicit
reference to it, we provide its proof below.
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Fig. 14 The four boxes A–D represent graphs that connect the top and bottom blue lines and are linked
by Whitehead moves on colored edges. These transformations reduce the number of edges on any path
connecting the top and bottom blue lines. In D, the graphs on the left and right sides of the yellow line are
connected by a Whitehead move on the red edge. This transformation produces a graph that contains at
minimum a path joining the top and bottom lines

Proposition 1 If G1 and G2 are two cubic migration graphs in CombMS(n), then a
sequence of Whitehead moves Whe1,Whe2 , . . . ,Whek exists such that

Whek ◦ Whek−1 ◦ . . . ◦ Whe1(G1) = G2

Proof Since CombMS(i) for i = 1, 2, 3 has a single element, we can assume n ≥
4. To prove our claim for n ≥ 4, it is sufficient to show that a cubic graph G in
CombMS(n) is connected by Whitehead moves to the circular wheel graph CLn , as
described previously.

We can say that a cubic graph G has two disjoint faces T (top face) and B (bottom
face) (Fig. 14) since the only case that does not satisfy this property corresponds to
the edges of tetrahedra, which can be transformed by a single Whitehead move to a
graph with two disjoint faces.

To complete the proof, it is sufficient to prove that every path12 starting at a vertex
̂P of T and ending in a vertex P of B with length greater than one can be shortened
by a Whitehead move, while not increasing the length of any other path.

To show this, observe that any point P on the bottom face can be classified according
to boxes A–D in Fig. 14. In box A, all non-intersecting paths starting at P end in T .
In box B, a non-intersecting path of length two ends in B. In box C, a non-intersecting

12 We need only consider edge paths that do not have edges on the boundary of B and T .
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path of length greater than two ends in B. Figure 14 shows that by applying one or
two Whitehead moves, the paths joining B with T can be made shorter.

By finding all points in B that can be classified using boxes A, B orC , and applying
their corresponding Whitehead moves, we produce a graph that satisfies the require-
ment that every path joining B with T has length one. This graph is not necessarily
CLn , since it could have paths joining B or T with themselves. However, as described
in box D, Whitehead moves can be applied to continue the transformation using sce-
narios A, B orC to eventually produce a graph in which all paths of length one connect
T and B, which is then necessarily CLn .

Voronoi linear systems

This subsection focuses on properties of the two polytope complexes introduced in
the main text. These polytopes are based in two linear systems—geographical and
genetic—associated with a graph G. Geographical linear systems are obtained by
meeting the conditions of Rivin’s theorem (see Theorem 1) for G. They comprise a
set of equalities for each face of G, and one inequality for each loop of G. Genetic
linear systems, as given by our definition of migration patterns, are linear systems
of equations, with one equation for each face of the graph G. Some properties of
geographical and genetic linear systems can be studied simultaneously by using the
more general concept of Voronoi linear systems, which we introduce below. In all of
the following propositions, we assume that the linear systems are either geographical
or genetic.

First we introduce some useful definitions:

1. A labeling of a graph G is a one to one function l : E(G) → {1, 2, . . . , card
(E(G))}, where E(G) and card(E(G)) are the set of edges of G and its cardinal.

2. A non-negative face assignment of a Voronoi cell decompositionD is a one to one
function σ : F(D) → R

+
0 , where F(D) is the set of faces (or 2-cells) of the cell

decomposition D.
3. The linear equation system E = E(D, l, σ ) associatedwith theVoronoi cell decom-

position D with non-negative face assignment σ and labeling l is given by:

E :
∑

e∈F
xl(e) = σ( f )

for all faces f ∈ F(D).
4. A constraint system is a set of inequalities in the variables xl(e) (possibly empty)

denoted by C. The compaction of C, C̄, is by definition obtained by replacing any
strict inequality <,> of C respectively by ≤,≥.

5. By definition, the Voronoi linear system L(D, C) associated with D, C, l, σ is
given by (E, C). Hence a Voronoi linear system has a linear equation system E and
a constraint system C. If we substitute C with C̄, we call the resulting linear system
a compacted Voronoi linear system.

Whiteheadmoves, whichwere introduced as transformations on cubic graphs trans-
forming a graph G into a graph G ′ for a given edge ê, can be viewed as a process
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that changes a Voronoi linear system L to a new Voronoi linear system L′. Indeed,
since a Whitehead move in our study can be considered as a continuous deformation
process of a graph embedded in the sphere,13 the cell decompositionD is transformed
into a new cell decomposition of the sphere D′ having a Voronoi diagram G ′, which
inherits a labeling from the Voronoi diagram G of D, and each face f ′ of D′ corre-
sponds uniquely to a face f of D. This also allows Whitehead moves to be viewed as
transformations acting on a set of faces.

Whitehead moves act on linear equation systems by changing the linear equation
system E to E ′, which is defined by

E ′ :
∑

e′∈ f ′
xl(α−1(e′)) = σ(β−1( f ′))

for all faces f ′ ∈ F(D′), where α : E(D) → E(D′) and β : F(D) → F(D′) are
bijections obtained by a deformation of the cell decomposition D into D′. The linear
equation system E ′ has equations that are identical to the ones in E for faces that were
obtained from faces of D, which were not incident to the edge ê. If the face f ′ comes
from a face that either ‘loses’ or ‘gains’ an edge, the corresponding variable is deleted
or added in the equation associated with f ′.

For further analyze the action of Voronoi linear systems, we next introduce the
notion of an edge-contraction coherent collection of constraint systems, which is nec-
essary to construct a polytope complex associated with a metapopulation system.

Definition 4 (Edge-contraction coherent collection of constraint systems) Let L =
(Ei , Ci )i∈I be a collection of Voronoi linear systems with an associated collection of
Voronoi diagrams (Gi )i∈I . We say that C = (Ci )i∈I is an edge-contraction coherent
collection of constraint systems, if for all of its pairs of constraint systems Ci and Ci ′ ,
such that Gi ′ is obtained by a contraction move from Gi on its edge e, we can get Ci ′
simply by deleting all the variables associated with edge e in Ci . In this case, we will
say that L is a coherent collection of Voronoi linear systems.

Since we need to prove several properties of Voronoi linear systems related to
polytope theory, we provide two known equivalent definitions of polytope below.

Definition 5 By definition, the convex hull of a finite set of points K in R
d is a

polytope. Hence,

K =
{

i=n
∑

1=1

λi x
i |λi ≥ 0,

i=n
∑

i=1

λi = 1

}

for a subset X = {xi |i ∈ I } of Rd .

13 This could be studied formally using ideas from general topology or homotopy theory.
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Definition 6 K is a polytope if K is a bounded solution set of a finite system of linear
inequalities:

K = {x ∈ R
d |aTi x ≤ bi for 1 ≤ i ≤ m}

where A is a real matrix of dimension m × d and b ∈ R
d .

The solution set of the compacted Voronoi linear system L(D, C) = (E, C̄), K =
K (E, C̄), is a polytope, as we prove next.

Proposition 2 If K = K (E, C̄) is the solution set of a compacted Voronoi linear
system, then K is a polytope.

Proof Let E = E(D, l, σ ) and let n be the number of edges in E(D). For every edge
ei , i ∈ {1, 2, . . . , n}, of E(D), choose a face of fi ∈ F(D). If x = (xi )ni=1 is in K ,

xi ≤
∑

e∈ fi

xl(e) = σ( fi ) ≤ Max(σ ( f j )| j ∈ {1, 2, . . . , n})

then |x |2 ≤ n2Max2(σ ( f j )| j ∈ {1, 2, . . . , n}). Therefore, x is bounded, and hence
by definition, K is a polytope.

Definition 7 Given aVoronoi linear system (E, C), we denote the collection of all real-
izable graphs in H ∈ CombMS(n) byΨ (n), the collection of all polytopes associated
with any graph H ∈ Ψ (n) by Ω(n), and define Γ (n) = {(G, θ) : G ∈ Ψ (n), θ ∈
Ψ (n)}. If C = ∅, we denote the above collection by Ψ0(n), Ω0(n) and Γ0(n).

Definition 8 1. A generalized Whitehead move on a graph G is the combination of
a contraction and expansion move on G.

2. A chain of graphs inCombMS(n) is a sequence of graphs H = (H1, H2, . . . , Hm)

in CombMS(n) such that Hi and Hi+1 are connected by a contraction, expansion
or generalized Whitehead move.

3. The depth of a sequence of graphs H = (H1, H2, . . . , Hm) in CombMS(n) is
given by depth(H) = Max(depth(Hi ) : i ∈ 1, . . . ,m).

4. A chain S = (S1, S2, . . . , Sm) is a lifting of H = (H1, H2, . . . , Hk) if
depth(H ′) < depth(H) and for each i = 1, 2, . . . , k, there exists j (i) ∈
{1, 2, . . . ,m} such that Hi = S j (i) or S j (i) can be obtained by an expansion
move from Hi . Observe that in this definition j is not necessarily one to one.

Proposition 3 If G1,G2 ∈ Ψ0(n), then a sequence m1,m2, . . . ,mk exists where mi

is a contraction or expansion move, such that Hi = m1 ◦ m2 ◦ . . . ◦ mi (G1) ∈ Ψ0(n)

for i = 1, 2, . . . , k and Hk(G1) = G2. In other words, Ψ0(n) is connected.

Proof It is sufficient to prove that every connected component of Ψ0(n) includes the
graphCn , as defined previously (represented byC10 on Fig. 5), and that it is a realizable
graph, which admits as a solution the n-dimensional vector with all entries equal to
π , θ [0], which can be proved by contradiction as follows:
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(i) LetG1 be a graph inΨ0(n), andΨ01,Ω01 the connected components ofΨ0(n) and
Ω0(n) corresponding to all realizable graphs that are connected to G1, respec-
tively.

(ii) Define the function h : Ψ01 → R
+
0 by

h(G) = min{i : m1 ◦ m2 ◦ . . . ◦ mi (Ci ) = G, θ ∈ Ω01 corresponding to G}

h iswell defined since the number of sequences that joinGwithCn , by contraction
or expansion moves, is finite.

(iii) LetG2 be such that h(G2) is aminimum and choose k[2] such that h(G[2]) = k[2].
(iv) If G2 has a vertex of even valence P , choose an even closed loop around P ,

in the dual graph of G2, P1, P2, . . . , P2m and assume the labels corresponding
to the edges of G2 that this loop crosses are 1, 2, . . . , 2m. Then, we can define
an ε-modified solution of G2, θ [2,ε] by θ

[2,ε]
i = θ

[2]
i for i �= 1, 2, . . . , 2m and

θ
[2,ε]
i = θ

[2]
i + (−1)iε for i �= 1, 2, . . . , 2m. Without loss of generality, suppose

that θ [2]
1 = min{θ [2]

i : i = 1, 2, . . . , 2m}. Taking ε = θ1, we get a new graphG[3]
that is obtained by a contraction move on edge e1 such that h(G[3]) < h(G[2]),
which is a contradiction. Notice that if G[2] �= Cn , e1 cannot be incident to a
bigon (a polygon with two edges and two vertices) because this would imply
that either the neighboring faces of the bigon are a bigon themselves and have
minimal edges incident to them (from the fact that the sum of θi at each face is
2π ), and repeating this argument, all faces incident to P are bigon. In this case,
we will show that G[2] = Cn , which proves our claim.

(v) If G[2] does not have any vertex of even valence, we can choose any edge joining
vertices P1 and P2 and define an even loop around them. Applying a similar
argument to that above, we can conclude that G[2] = Cn , which proves our
claim.

We believe that Ψ (n) is also connected. However, although everything said in the
argument above is true forΨ (n), we do not prove the constraint inequalities of Rivin’s
theorem, which may fail for a dual graph loop that passes through the edges whose
solutions are effectively being changed. Hence, we leave the connectivity of Ψ (n) as
a conjecture, believing that a modification or extension of the proof above is possible.

Proposition 4 Every chain H in Ψ (n) has a lifting H in Ψ (n).

Proof Let H = (H1, H2, . . . , Hm) be a chain in Ψ (n) with k = depth(H). If
depth(Hi ) < k, define H ′

i = Hi . Otherwise, at least one of the following condi-
tions is satisfied:

(a) Hi has a vertex P with degree(P) ≥ 5.
(b) Hi has an edge e = R̄S where degree(R) = 2 and degree(S) = 3 (or vice

versa).
(c) Hi has an edge e = R̄S where degree(R) = degree(S) = 4.

We choose one of the above, which is satisfied, and apply an expansion move of 3-
type, (2, 0)-type or (2, 2)-type as illustrated in Fig. 15 to obtain H ′

i , which satisfies
depth(H ′

i ) = depth(H) − 1.
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a1 + εa2 − ε

a3

a4 a5

a6 − ε

ε

b1

b2

b3 − εb4

b5

b6 − ε

ε ε

c1 + ε

c2 − εc3

c4

c5 − ε

ε

Fig. 15 From left to right, the upper dashed boxes represent expansion transformations of 3-type, (2, 2)-
type and (2, 0)-type, respectively. The blue paths on the bottom row represent closed paths on the dual of
each graph, which allows the definition of an ε-modified solution for each expanded graph

Two consecutive elements H ′
i and H ′

i+1 of the new sequence H trivially satisfy
the two conditions of the definition of a lifting if H ′

i = Hi and H ′
i+1 = Hi+1.

Otherwise, if H ′
i = Hi or H ′

i+1 = Hi+1, H ′
i and H ′

i+1 are connected by a generalized
Whitehead move, and assuming that H ′

i+1 = Hi+1, we can say that H ′
i is realizable.

This is because we can build an ε-modified solution (a′
i ), (b′

i ) or (c′
i ) defined from

the respective solution (ai ), (bi ) or (ci ) of Hi according to the type of expansion
transformation used, as suggested by the diagram at the bottom of Fig. 15. We define
(a′

i ), (b′
i ) or (c′

i ) by keeping the same values as in (ai ), (bi ) or (ci ), except for the
edges that are crossed by the blue loops, which are modified by a ± ε. This defines
a solution of the Voronoi system of H ′

i for a sufficiently small ε because its equation
system is satisfied as the signs of ε are opposite for each node in the dual graph of H ′

i ,
which has two incident blue edges. Also note that the constraint inequalities of H ′

i are
also satisfied.
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