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Abstract 

This paper describes some experiments based on  the 
use of neural networks for  assistence an the quality 
assessment of programs, especially in connection with 
the reengineering of legacy systems. W e  use Koho- 
nen  networks, or self-organizing maps, for  the cat- 
egorization of programs: Programs with similar fea- 
tures are grouped together in atwo-dimensional neigh- 
bourhood, whereas dissimilar programs are located far 
apart. Backpropagation networks are used for  general- 
ization purposes: Based on  a set of example programs 
whose relevant aspects have already been assessed, we 
would like to  obtain an  extrapolation of these assess- 
ments  t o  new programs. The basis f o r  these investiga- 
tion is a n  intermediate representation of programs in 
the f o r m  of various dependency graphs, capturing the 
essentials of the programs. Previously, a set of met- 
r i c ~  has been developed to  perform an assessment of 
programs on  the basis of this intermediate representa- 
tion. I t  lis not always clear, however, which param- 
eters of the intermediate representation are relevant 
for  a particular metric. The categorization and gener- 
alization capabilities of neural networks are employed 
to  improve OT verify the selection of parameters, and 
might even initiate the development of additional met- 
rics. 

1 Introduction 

The development of large software systems does not 
end with the installation of the executables on the tar- 
get system: Apart from bug fixes, changes will have 
to be made to accomodate new functionalities, to in- 
tegrate modifications in business practices, or to port 
the system to a new operating system or hardware 
platform. Whereas nowadays efforts are often made 
to consider these aspects in the development of new 
systems, existing systems - which might have been 
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developed decades ago - are not necessarily amenable 
to major modifications. On the other hand, a com- 
plete redevelopment often is economically infeasible 
and unnecessary as long as the major parts of the sys- 
tem work satisfactorily. In a situation which requires 
major modifications, e.g. the transition &om a main- 
frame to a client-server environment, a decision has to 
be made which parts of the software system should be 
kept, which ones should be modified, and which ones 
have to be completely rewritten. The basis for such 
a decision relies to some degree on strategic factors, 
e.g. the trustworthiness of a program, but should also 
consider aspects reflecting the quality of the system 
with respect to current software engineering practices. 
Whereas it is not really clear what exactly determines 
the quality of a program, a number of metrics have 
been developed which express certain properties of a 
program in a numerical way based on quantifiable fea- 
tures of the program. A well-known example of such 
a metric is the McCabe complexity [SI;others will be 
outlined below, and are described in more detail in 
other publications [13]. 

Organization ofthe Paper The rest of this paper 
describes our approach in more detail. Section 2 con-
centrates on the two types of neural networks used, 
and their properties relevant for our purposes. The 
third section gives a brief recollection of the intermedi- 
ate representation which serves as the basis for the as- 
sessment of programs. Some assessment aspects have 
already been formalized asmetrics, providing quantifi- 
able statements about certain properties of programs; 
these metrics are outlined in Section 4. Sections 5 
concentrates on the use of Kohonen maps for the cat- 
egorization of programs, while Section 6 discusses the 
use of backpropagation nets for learning and general- 
ization in connection with metrics. The final section 
provides a summary and conclusions. 
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2 Neural Networks Used 

In this paper, we investigate the usage of neural 
networks to assist with the quality assessment of soft-
ware systems. We use two different types of networks: 
self-organizing feature maps (also known as Kohonen 
maps), and multilayer feedforward nets with the back- 
propagation learning algorithm. In this paper we will 
only resume the fundamental concepts of the neural 
networks used; for details, refer to any textbook on 
neural networks, e.g. [2, 41. 
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Figure 1: Kohonen Network 

Kohonen Maps The Kohonen maps are used to 
categorize programs according to quality-relevant fea- 
tures; the goal is to group together programs which 
have similar properties. 

The input for the network consists of a feature vec- 
tor for each program out of the set of programs to 
be categorized. The feature vectors are derived from 
an intermediate representation of the programs, and 
utilize the same or similar features as used for the 
computation of the metrics. The output is a visual 
representation of the categorization result, where the 
items categorized (here: the vectors representing the 

programs) are arranged in a two-dimensional array; 
items with similar properties are in proximity to each 
other, whereas distinctly different items are further 
apart. Note that for this approach we do not need a 
set of example or test items which have been catego- 
rized before; the network only utilizes the set of items 
at hand. 

t t t 
ouput
Layer 

Hidden 
Layer 

Input
Layer 

Figure 2: Backpropagation Network 

Backpropagation Networks The second ap-
proach based on backpropagation networks, however, 
requires a set of examples together with their assess- 
ment. It uses these examples to derive a mapping from 
the inputs to the corresponding desired output. Once 
such a mapping has been found, it can be used to 
provide an assessment of new items for which the de- 
sired output is unknown. Obviously the quality of the 
assessment for unfamiliar items depends to a large de- 
gree on a suitable choice of example data: if we choose 
items which are not representative for the overall set 
of items, we cannot expect the network to come up 
with a good assessment for the unfamiliar items. 

This second approach can be used to reproduce 
the assessment resulting fi-om the metrics calculation, 
e.g by using the calculated value of a metric as desired 
result in the example set. On the other hand, it can 
be based on assessments performed by experts, and 
then provides a way to check the formal definition of 
a metric against the intuitive judgement of an expert. 

421 



3 Intermediate Representation of Pro-
grams 

Comparing the quality of programs written in dif-
ferent languages based on their source codes is unprac- 
tical at  the best; this should be done on the basis of 
a representation which is as independent as possible 
of the particular language used. We use an interme- 
diate representation (IR.) which captures the essential 
statical and dynamical aspects of a program or large 
software system, and represents them in an appropri- 
ate way, independent from a particular programming 
language. Figure 3 gives an overview of the genera- 
tion process for the intermediate representation and 
indicates some of the particular dependency relations 
together with their usage; detailed information can be 
found elsewhere [14, 131. 
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Figure 3: Intermediate R.epresentation 

Although this intermediate representation provides 
an equal basis for the comparison of programs, some 
quality aspects certainly will reflect particular aspects 
of the programming language used, as well as program 
design aspects and programming style. From a reengi- 
neering perspective, however, it is largely irrelevant if 

the poor quality of a program stems from the use of 
a restricted or unsuitable language, or if it reflects in- 
adequate design or programming practices. 

A formal definition of the internal representation 
described here has been developed in previous papers, 
e.g. [14, 131. It is based on the view of software sys- 
tems as composed of several layers, or tiers. At  the 
highest level considered here, tier 1, are the modules, 
which may be instances of ADTs that export types 
and operations (e.g., Ada packages or Modula-2 mod- 
ules) and/or instances of classes that encapsulate ob- 
jects and export operations (as in C++, Eiffel and 
Smalltalk). The modules at tier 1 are composed of 
tier 2 elements, operations (subprograms or methods). 
Each operation is composed of a sequence of state- 
ments, the elements found at tier 3. At this level of 
granularity, several important features are captured in 
the IR.. The symbol table (SymTab) and the statement 
table (StmtTab) 191 are extracted and used for depen- 
dence and flow analyses. Dependence analysis involves 
processing of the StmtTab to extract graphs that rep- 
resent statement-level precedence relations due to con- 
trol dependences, data dependences, and code depen- 
dences (see Figure 3). 

Figure 4:Dependence Graphs 

Dependence graphs represent program statements 
as nodes and use directed edges to denote statement 
ordering implied by the dependences in a source pro- 
gr””.

Different kinds of ordering requirements are repre- 
sented in different dependence graphs. In the data de- 
pendence graph (DDG) a directed edge denotes a data 
dependence (which means that destination and source 
nodes need the same variable). The instance depen- 
dence graph (IDG) uses undirected edges to denote in- 
stance dependences (which occur when two nodes use 
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4 

Figure 5: Dependence Graphs and Distribution of 
Program Components 

operations exported by the same instance [ll]).The 
subprogram dependence graph (SDG) uses an undi- 
rected edge to denote when two statements use the 
same subprogram. A directed edge in the control de- 
pendence graph (CDG) denotes that execution of the 
destination statement depends on a decision made by 
the source statement. In addition to the dependence 
graphs, the control flow graph (CFG) is extracted at 
the statement level, indicating the sequential flow of 
control dictated by the order of the statements in the 
source code. The analysis of dependencies between 
system components is also used as the basis for dis- 
tributing the components of a system among different 
processing elements. 

Metrics for Programs 

The separation of components describing distinct 
elements of the real world is an important aspect 
of object-oriented software design, aiming at systems 
which are easy to design, understand, implement and 
maintain. A closer look into properties of such systems 
reveals the following important aspects: 

information hiding (IH) 
implementation details and design decisions are 
hidden within modules 

cohesion (CH) each module provides a single ab- 
straction 

encapsulation (E) related types and operations are 
grouped within the same module 

loosely coupling (CU) there is little or no inter- 
dependence among implementations of modules; 
a change in the implementation of one module 
should not require changes in the others 

Object-orientedness then is computed as a combina- 
tion the above factors. 

Information Hiding This metric measures how 
well implementation details are hidden from users. 
data structures should be accessed only via calls to 
subprograms exported by the module. Thus, a conse- 
quence of information hiding are frequent subprogram 
calls and a deep call graph. Layering is therefore a 
property observable in the call graph of an applica- 
tion. Average layering is the sum of lengths/depths of 
all paths from the root to a leaf in the graph, divided 
by the total number of paths. 

Cohesion Cohesion measures the amount 
of “functional-relatedness” of concepts exported by a 
module. If an ADT module exports only one type, it is 
inferred that the module exports a single abstraction 
and is highly cohesive. If a module exports more than 
one type, then it is likely to export several concepts; 
hence, the parts of the module are not highly cohesive. 
As a consequence, understandability and usability of 
the module may decrease. 

Encapsulation Encapsulation gives a measure for 
the containment of implementation details within the 
internal/hidden portions of the modules. It is ex- 
pressed as a ratio of the number of types and subpro- 
grams whose implementation details are encapsulated 
within modules, to the number of types and subpro- 
grams whose implementation details are visible out- 
side of modules. 

Coupling Coupling is a numerical measure of the 
amount of interconnection between software compo- 
nents. This metric should reflect the influence of mod- 
ifications to one software entity on the correctness of 
other entities. Thus, the coupling metric is a measure 
of the amount of interconnection between an appli- 
cation’s globally defined data (including module ex- 
ported data) and its subprograms (including module 
primitive operations). A high metric value indicates a 
high amount of interconnection. 
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Object-orientedness (00)then can be expressed as 
a combination of the above metrics. It should be pro- 
portional to information hiding, encapsulation and co-
hesion and inversely proportional to coupling. The 
formula is: 

The addition of 1 is a correction required by the def- 
inition of CU; the range for object-orientedness is be-
tween 0 and 4 since each of the terms of the formula 
has values between 0 and 1. 

The maintainability metric is a function of the 
object-orientedness metric (00) and the Halstead 
length metric (HL) (defined in [3]: 

00M E -
HL 

It decreases ascomponent coupling increases, and as 
component cohesion, information hiding and encapsu- 
lation decrease. Additionally, maintainability of soft- 
ware is inversely proportional to its size. 

Exact definitions and techniques to compute met- 
rics for information hiding, cohesion, encapsulation, 
coupling, object-orientedness and maintainability are 
described in previous publications [13]. The first 
four of these metrics correspond to properties found 
in systems designed in an object-oriented way. The 
other two, object-orientedness and maintainability, 
are based on the previous ones, and indicate a combi- 
nation of desirable properties. 

When assessing properties of programs like infor- 
mation hiding, cohesion or object-orientedness, hu- 
mans frequently - in addition to the particular fea- 
tures relevant for the property -take into account the 
similarity of the program under investigation to other 
programs assessed before. Such an approach can be 
especially useful in cases where there is no obvious 
formal definition of a property, or when such a formal 
definition is under development and has to be checked 
against the intuitive meaning of the property. 

We are investigating the use of neural networks 
for a similarity-based assessment of such properties of 
programs. In one approach, self-organizingtopology-
preserving maps [5] are used to categorize the pro- 
grams under investigation. In another variation, we 
employ networks capable of generalization, such as 
backpropagation networks, in order to assess new pro-
grams based on previously learned examples. These 
two approaches and the corresponding experiments 
are described below. 

5 Categorization of Programs 

The purpose of this set of experiments is to catego- 
rize programs with respect to particular properties or 
metrics such as object-orientedness, information hid- 
ing, cohesion, etc. We use self-organizing networks 
known as Kohonen networks, self-organizing maps, or 
topology-preserving maps. Such a network assumes a 
topolocigal structure among its units, and tries to map 
similar input patterns onto neighboring units. This 
type of network consists of a set of n input units to-
gether with a set of m cluster units, wich also are used 
to display the output of the network. The cluster units 
are usually arranged in a one- or two-dimensional ar- 
ray; frequent neighborhoods in the two-dimensional 
case are the rectangular grid (eight neighbors) or the 
hexagonal grid (six neighbors). Each input unit is 
connected to all cluster units, and there are no con- 
nections among the input units or cluster units them- 
selves. When an input vector is presented to the input 
units, the cluster unit whose weight vector matches the 
input pattern best is selected as the winner. During 
the self-organizing process, the weights of the winning 
unit and those of its neighbors are then updated in or-
der to provide a better match for that particular input 
pat tern. 

In our application, we use a separate Kohonen map 
for each of the properties or metrics to be investigated. 
The inputs are a set of features which we consider rele- 
vant for that property. The network is presented with 
all the input vectors of the programs we want to ana- 
lyze. During the self-organization process, the weight 
of the cluster units are modified in such a way that 
similar input patterns are represented by cluster units 
in the same neighborhood; programs with dissimilar 
input patterns correspond to distant cluster units. 

Experiments In our current series of experiments, 
we are encountering problems with the clustering of 
vectors which should be rather similar. Although we 
cannot say so for sure, we assume that the problem 
lies with the tool used, the Stuttgart Neural Network 
Simulator (SNNS) [15]; problems with its usage for 
Kohonen maps have also been reported on the SNNS 
mailing list, and seem to be caused by a faulty ini- 
tialization routine. We are waiting to perform these 
experiments with a new version of the tool, and are 
also investigating the use of other tool sets. 
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6 	 Learning and Generalization of Met-
rics 

The goal of these experiments is to learn the rela- 
tionship between the values of a set of features rele- 
vant for a particular metric, and the assessment of the 
program according to either a formula computing the 
metric, or a human expert. Backpropagation networks 
are frequently employed for such tasks; they usually 
consist of an input layer, one or more hidden layers, 
and an output layer. Connections are present from 
each unit of the input layer to all units of the hidden 
layer, and from each unit of the hidden to all units of 
the output layer; there are no connections within the 
layers. The network is trained based on a set of exam- 
ple inputs together with the desired output values; in 
our case we are mainly interested in the generalization 
capability of such a network: when presented with a 
new pattern, we would like to get a reasonable output 
based on the most similar cases learned by the net. 
A backpropagation net is trained by presenting an in- 
put pattern, computing the activations for the units in 
the network and comparing the activation values for 
the output units to the desired output values for that 
pattern. The deviation of the output units’ activation 
values from the target values (also known as error) is 
then used to modify the weights of the connections in 
the network. 

Experiments In a first step, we use a network with 
one hidden layer in combination with the backprop- 
agation learning algorithm to generalize the object- 
orientedness metric from a number of examples. The 
network has eight input units, five nodes in the hidden 
layer, and 9 output units. The inputs are used to in- 
dicate the factors relevant for the object-orientedness 
of an Ada program:’ 

0 	number of modules 

0 	 number of types defined outside of modules 

0 	number of subprograms defined outside of mod-
ules 

0 	 average layering of the call graph of the program 

0 	 total number of types exported by the modules in 
a program 

’Note that this set of parameters is not very sophisticated, 
and is intended as a starting point to validate the methodology 
used. One of its main purposes was to expose weaknesses of the 
approach, which it did. 

0 	 total number of subprograms exported by the 
modules in a program 

0 	 coupling 

0 	sum of the reciprocal of the number of types ex- 
ported per module 

The number of output units is determined by the gran- 
ularity of our “object-orientedness scale” : the range is 
from 0 to 4, in steps of 0.5. We used a set of 100 
examples, 70 for training purposes and 30 for testing. 
Here we encountered two problems: First, it was not 
so easy to find 100 Ada programs suitable for our pur- 
poses. Second, even if we have enough example pro- 
grams, we need an expert to evaluate the programs 
with respect to their object-orientedness in order to 
provide the backpropagation network with a target 
value. Considering the restrictions in our resources, 
it turned out to be impractical to use real programs, 
and we decided to generate our test data automat- 
ically. This must be done carefully, however, since 
the input parameters are not mutually independent; 
a simple generation of random values is not adequate. 
We developed an algorithm for the generation of these 
values which on one hand takes into account the de- 
pendencies between the input parameters, and on the 
other hand allows the selection of reasonable values 
for the independent variable [l]. Learning of the 70 
test vectors was typically achieved within a few hun- 
dred epochs by vanilla backpropagation algorithm and 
random initial weights. When applied to our 30 test 
vectors, we achieved 100% generalization. 

7 	 Summary and Conclusions 

The goal of this paper has been to outline some 
experiments using neural networks for the quality as- 
sessment of large software systems, in particular with 
respect to reengineering purposes. One set of experi-
ments uses self-organizing feature maps, or Kohonen 
maps, to identify and group together programs with 
similar properties. On one hand, it can help the vali- 
dation of existing metrics by checking if programs with 
similar properties also have similar values in their nu- 
merical metrics calculations. On the other hand, it 
can be used to identify novel properties or qualities 
which have not been captured by the existing metrics 
yet. The other experiments, using backpropagation 
networks which learn to map certain input features 
with outputs reflecting quality assessments, again help 
with the validation of metrics; one way to do this is 
to check the assessments based on calculated metrics 
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against those performed by the network on the ba- 
sis of a set of examples which has been provided by 
experts. Another way is to utilize the generalization 
capability of these networks: the assessments given by 
the network for new programs which were not in the 
example set is compared with the assessment based on 
the calculated metrics. Should there be any difference 
in the two assessments, it could mean that the set of 
examples chosen is not really representative, or that 
the formula used to calculate the metrics might have 
to be modified. A third possibility is to analyze the 
internal representation of the network in order to de- 
termine the relevance of the particular features used 
as input; some features might be irrelevant, whereas 
others might be interdependent. 
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