
Categorization of Programs Using Neural Networks

Franx J. Kurfess Lonnie R. Welch

Computer and Information Science Department

New Jersey Institute of Technology

Newark, NJ 07102

Abstract

This paper describes some experiments based on the
use of neural networks for assistence an the quality
assessment of programs, especially in connection with
the reengineering of legacy systems. W e use Koho-
nen networks, or self-organizing maps, for the cat-
egorization of programs: Programs with similar fea-
tures are grouped together in atwo-dimensional neigh-
bourhood, whereas dissimilar programs are located far
apart. Backpropagation networks are used for general-
ization purposes: Based on a set of example programs
whose relevant aspects have already been assessed, we
would like to obtain an extrapolation of these assess-
ments t o new programs. The basis f o r these investiga-
tion is a n intermediate representation of programs in
the f o r m of various dependency graphs, capturing the
essentials of the programs. Previously, a set of met-
r i c ~ has been developed to perform an assessment of
programs on the basis of this intermediate representa-
tion. I t lis not always clear, however, which param-
eters of the intermediate representation are relevant
for a particular metric. The categorization and gener-
alization capabilities of neural networks are employed
to improve OT verify the selection of parameters, and
might even initiate the development of additional met-
rics.

1 Introduction

The development of large software systems does not
end with the installation of the executables on the tar-
get system: Apart from bug fixes, changes will have
to be made to accomodate new functionalities, to in-
tegrate modifications in business practices, or to port
the system to a new operating system or hardware
platform. Whereas nowadays efforts are often made
to consider these aspects in the development of new
systems, existing systems - which might have been

0-8186-7355-9/96
$05.0001996 IEEE

developed decades ago - are not necessarily amenable
to major modifications. On the other hand, a com-
plete redevelopment often is economically infeasible
and unnecessary as long as the major parts of the sys-
tem work satisfactorily. In a situation which requires
major modifications, e.g. the transition &om a main-
frame to a client-server environment, a decision has to
be made which parts of the software system should be
kept, which ones should be modified, and which ones
have to be completely rewritten. The basis for such
a decision relies to some degree on strategic factors,
e.g. the trustworthiness of a program, but should also
consider aspects reflecting the quality of the system
with respect to current software engineering practices.
Whereas it is not really clear what exactly determines
the quality of a program, a number of metrics have
been developed which express certain properties of a
program in a numerical way based on quantifiable fea-
tures of the program. A well-known example of such
a metric is the McCabe complexity [SI;others will be
outlined below, and are described in more detail in
other publications [13].

Organization ofthe Paper The rest of this paper
describes our approach in more detail. Section 2 con-
centrates on the two types of neural networks used,
and their properties relevant for our purposes. The
third section gives a brief recollection of the intermedi-
ate representation which serves as the basis for the as-
sessment of programs. Some assessment aspects have
already been formalized asmetrics, providing quantifi-
able statements about certain properties of programs;
these metrics are outlined in Section 4. Sections 5
concentrates on the use of Kohonen maps for the cat-
egorization of programs, while Section 6 discusses the
use of backpropagation nets for learning and general-
ization in connection with metrics. The final section
provides a summary and conclusions.

420

2 Neural Networks Used

In this paper, we investigate the usage of neural
networks to assist with the quality assessment of soft-
ware systems. We use two different types of networks:
self-organizing feature maps (also known as Kohonen
maps), and multilayer feedforward nets with the back-
propagation learning algorithm. In this paper we will
only resume the fundamental concepts of the neural
networks used; for details, refer to any textbook on
neural networks, e.g. [2, 41.

Array of
Neurons

Input Vector

Figure 1: Kohonen Network

Kohonen Maps The Kohonen maps are used to
categorize programs according to quality-relevant fea-
tures; the goal is to group together programs which
have similar properties.

The input for the network consists of a feature vec-
tor for each program out of the set of programs to
be categorized. The feature vectors are derived from
an intermediate representation of the programs, and
utilize the same or similar features as used for the
computation of the metrics. The output is a visual
representation of the categorization result, where the
items categorized (here: the vectors representing the

programs) are arranged in a two-dimensional array;
items with similar properties are in proximity to each
other, whereas distinctly different items are further
apart. Note that for this approach we do not need a
set of example or test items which have been catego-
rized before; the network only utilizes the set of items
at hand.

t t t
ouput
Layer

Hidden
Layer

Input
Layer

Figure 2: Backpropagation Network

Backpropagation Networks The second ap-
proach based on backpropagation networks, however,
requires a set of examples together with their assess-
ment. It uses these examples to derive a mapping from
the inputs to the corresponding desired output. Once
such a mapping has been found, it can be used to
provide an assessment of new items for which the de-
sired output is unknown. Obviously the quality of the
assessment for unfamiliar items depends to a large de-
gree on a suitable choice of example data: if we choose
items which are not representative for the overall set
of items, we cannot expect the network to come up
with a good assessment for the unfamiliar items.

This second approach can be used to reproduce
the assessment resulting fi-om the metrics calculation,
e.g by using the calculated value of a metric as desired
result in the example set. On the other hand, it can
be based on assessments performed by experts, and
then provides a way to check the formal definition of
a metric against the intuitive judgement of an expert.

421

3 Intermediate Representation of Pro-
grams

Comparing the quality of programs written in dif-
ferent languages based on their source codes is unprac-
tical at the best; this should be done on the basis of
a representation which is as independent as possible
of the particular language used. We use an interme-
diate representation (IR.) which captures the essential
statical and dynamical aspects of a program or large
software system, and represents them in an appropri-
ate way, independent from a particular programming
language. Figure 3 gives an overview of the genera-
tion process for the intermediate representation and
indicates some of the particular dependency relations
together with their usage; detailed information can be
found elsewhere [14, 131.

v
Ad4C-H

ParsingQ.
Metrics

00,conc.

Concurrency
Metrics

Figure 3: Intermediate R.epresentation

Although this intermediate representation provides
an equal basis for the comparison of programs, some
quality aspects certainly will reflect particular aspects
of the programming language used, as well as program
design aspects and programming style. From a reengi-
neering perspective, however, it is largely irrelevant if

the poor quality of a program stems from the use of
a restricted or unsuitable language, or if it reflects in-
adequate design or programming practices.

A formal definition of the internal representation
described here has been developed in previous papers,
e.g. [14, 131. It is based on the view of software sys-
tems as composed of several layers, or tiers. At the
highest level considered here, tier 1, are the modules,
which may be instances of ADTs that export types
and operations (e.g., Ada packages or Modula-2 mod-
ules) and/or instances of classes that encapsulate ob-
jects and export operations (as in C++, Eiffel and
Smalltalk). The modules at tier 1 are composed of
tier 2 elements, operations (subprograms or methods).
Each operation is composed of a sequence of state-
ments, the elements found at tier 3. At this level of
granularity, several important features are captured in
the IR.. The symbol table (SymTab) and the statement
table (StmtTab) 191 are extracted and used for depen-
dence and flow analyses. Dependence analysis involves
processing of the StmtTab to extract graphs that rep-
resent statement-level precedence relations due to con-
trol dependences, data dependences, and code depen-
dences (see Figure 3).

Figure 4:Dependence Graphs

Dependence graphs represent program statements
as nodes and use directed edges to denote statement
ordering implied by the dependences in a source pro-
gr””.

Different kinds of ordering requirements are repre-
sented in different dependence graphs. In the data de-
pendence graph (DDG) a directed edge denotes a data
dependence (which means that destination and source
nodes need the same variable). The instance depen-
dence graph (IDG) uses undirected edges to denote in-
stance dependences (which occur when two nodes use

422

4

Figure 5: Dependence Graphs and Distribution of
Program Components

operations exported by the same instance [ll]).The
subprogram dependence graph (SDG) uses an undi-
rected edge to denote when two statements use the
same subprogram. A directed edge in the control de-
pendence graph (CDG) denotes that execution of the
destination statement depends on a decision made by
the source statement. In addition to the dependence
graphs, the control flow graph (CFG) is extracted at
the statement level, indicating the sequential flow of
control dictated by the order of the statements in the
source code. The analysis of dependencies between
system components is also used as the basis for dis-
tributing the components of a system among different
processing elements.

Metrics for Programs

The separation of components describing distinct
elements of the real world is an important aspect
of object-oriented software design, aiming at systems
which are easy to design, understand, implement and
maintain. A closer look into properties of such systems
reveals the following important aspects:

information hiding (IH)
implementation details and design decisions are
hidden within modules

cohesion (CH) each module provides a single ab-
straction

encapsulation (E) related types and operations are
grouped within the same module

loosely coupling (CU) there is little or no inter-
dependence among implementations of modules;
a change in the implementation of one module
should not require changes in the others

Object-orientedness then is computed as a combina-
tion the above factors.

Information Hiding This metric measures how
well implementation details are hidden from users.
data structures should be accessed only via calls to
subprograms exported by the module. Thus, a conse-
quence of information hiding are frequent subprogram
calls and a deep call graph. Layering is therefore a
property observable in the call graph of an applica-
tion. Average layering is the sum of lengths/depths of
all paths from the root to a leaf in the graph, divided
by the total number of paths.

Cohesion Cohesion measures the amount
of “functional-relatedness” of concepts exported by a
module. If an ADT module exports only one type, it is
inferred that the module exports a single abstraction
and is highly cohesive. If a module exports more than
one type, then it is likely to export several concepts;
hence, the parts of the module are not highly cohesive.
As a consequence, understandability and usability of
the module may decrease.

Encapsulation Encapsulation gives a measure for
the containment of implementation details within the
internal/hidden portions of the modules. It is ex-
pressed as a ratio of the number of types and subpro-
grams whose implementation details are encapsulated
within modules, to the number of types and subpro-
grams whose implementation details are visible out-
side of modules.

Coupling Coupling is a numerical measure of the
amount of interconnection between software compo-
nents. This metric should reflect the influence of mod-
ifications to one software entity on the correctness of
other entities. Thus, the coupling metric is a measure
of the amount of interconnection between an appli-
cation’s globally defined data (including module ex-
ported data) and its subprograms (including module
primitive operations). A high metric value indicates a
high amount of interconnection.

423

Object-orientedness (00)then can be expressed as
a combination of the above metrics. It should be pro-
portional to information hiding, encapsulation and co-
hesion and inversely proportional to coupling. The
formula is:

The addition of 1 is a correction required by the def-
inition of CU; the range for object-orientedness is be-
tween 0 and 4 since each of the terms of the formula
has values between 0 and 1.

The maintainability metric is a function of the
object-orientedness metric (00) and the Halstead
length metric (HL) (defined in [3]:

00M E -
HL

It decreases ascomponent coupling increases, and as
component cohesion, information hiding and encapsu-
lation decrease. Additionally, maintainability of soft-
ware is inversely proportional to its size.

Exact definitions and techniques to compute met-
rics for information hiding, cohesion, encapsulation,
coupling, object-orientedness and maintainability are
described in previous publications [13]. The first
four of these metrics correspond to properties found
in systems designed in an object-oriented way. The
other two, object-orientedness and maintainability,
are based on the previous ones, and indicate a combi-
nation of desirable properties.

When assessing properties of programs like infor-
mation hiding, cohesion or object-orientedness, hu-
mans frequently - in addition to the particular fea-
tures relevant for the property -take into account the
similarity of the program under investigation to other
programs assessed before. Such an approach can be
especially useful in cases where there is no obvious
formal definition of a property, or when such a formal
definition is under development and has to be checked
against the intuitive meaning of the property.

We are investigating the use of neural networks
for a similarity-based assessment of such properties of
programs. In one approach, self-organizingtopology-
preserving maps [5] are used to categorize the pro-
grams under investigation. In another variation, we
employ networks capable of generalization, such as
backpropagation networks, in order to assess new pro-
grams based on previously learned examples. These
two approaches and the corresponding experiments
are described below.

5 Categorization of Programs

The purpose of this set of experiments is to catego-
rize programs with respect to particular properties or
metrics such as object-orientedness, information hid-
ing, cohesion, etc. We use self-organizing networks
known as Kohonen networks, self-organizing maps, or
topology-preserving maps. Such a network assumes a
topolocigal structure among its units, and tries to map
similar input patterns onto neighboring units. This
type of network consists of a set of n input units to-
gether with a set of m cluster units, wich also are used
to display the output of the network. The cluster units
are usually arranged in a one- or two-dimensional ar-
ray; frequent neighborhoods in the two-dimensional
case are the rectangular grid (eight neighbors) or the
hexagonal grid (six neighbors). Each input unit is
connected to all cluster units, and there are no con-
nections among the input units or cluster units them-
selves. When an input vector is presented to the input
units, the cluster unit whose weight vector matches the
input pattern best is selected as the winner. During
the self-organizing process, the weights of the winning
unit and those of its neighbors are then updated in or-
der to provide a better match for that particular input
pat tern.

In our application, we use a separate Kohonen map
for each of the properties or metrics to be investigated.
The inputs are a set of features which we consider rele-
vant for that property. The network is presented with
all the input vectors of the programs we want to ana-
lyze. During the self-organization process, the weight
of the cluster units are modified in such a way that
similar input patterns are represented by cluster units
in the same neighborhood; programs with dissimilar
input patterns correspond to distant cluster units.

Experiments In our current series of experiments,
we are encountering problems with the clustering of
vectors which should be rather similar. Although we
cannot say so for sure, we assume that the problem
lies with the tool used, the Stuttgart Neural Network
Simulator (SNNS) [15]; problems with its usage for
Kohonen maps have also been reported on the SNNS
mailing list, and seem to be caused by a faulty ini-
tialization routine. We are waiting to perform these
experiments with a new version of the tool, and are
also investigating the use of other tool sets.

424

6 	 Learning and Generalization of Met-
rics

The goal of these experiments is to learn the rela-
tionship between the values of a set of features rele-
vant for a particular metric, and the assessment of the
program according to either a formula computing the
metric, or a human expert. Backpropagation networks
are frequently employed for such tasks; they usually
consist of an input layer, one or more hidden layers,
and an output layer. Connections are present from
each unit of the input layer to all units of the hidden
layer, and from each unit of the hidden to all units of
the output layer; there are no connections within the
layers. The network is trained based on a set of exam-
ple inputs together with the desired output values; in
our case we are mainly interested in the generalization
capability of such a network: when presented with a
new pattern, we would like to get a reasonable output
based on the most similar cases learned by the net.
A backpropagation net is trained by presenting an in-
put pattern, computing the activations for the units in
the network and comparing the activation values for
the output units to the desired output values for that
pattern. The deviation of the output units’ activation
values from the target values (also known as error) is
then used to modify the weights of the connections in
the network.

Experiments In a first step, we use a network with
one hidden layer in combination with the backprop-
agation learning algorithm to generalize the object-
orientedness metric from a number of examples. The
network has eight input units, five nodes in the hidden
layer, and 9 output units. The inputs are used to in-
dicate the factors relevant for the object-orientedness
of an Ada program:’

0 	number of modules

0 	 number of types defined outside of modules

0 	number of subprograms defined outside of mod-
ules

0 	 average layering of the call graph of the program

0 	 total number of types exported by the modules in
a program

’Note that this set of parameters is not very sophisticated,
and is intended as a starting point to validate the methodology
used. One of its main purposes was to expose weaknesses of the
approach, which it did.

0 	 total number of subprograms exported by the
modules in a program

0 	 coupling

0 	sum of the reciprocal of the number of types ex-
ported per module

The number of output units is determined by the gran-
ularity of our “object-orientedness scale” : the range is
from 0 to 4, in steps of 0.5. We used a set of 100
examples, 70 for training purposes and 30 for testing.
Here we encountered two problems: First, it was not
so easy to find 100 Ada programs suitable for our pur-
poses. Second, even if we have enough example pro-
grams, we need an expert to evaluate the programs
with respect to their object-orientedness in order to
provide the backpropagation network with a target
value. Considering the restrictions in our resources,
it turned out to be impractical to use real programs,
and we decided to generate our test data automat-
ically. This must be done carefully, however, since
the input parameters are not mutually independent;
a simple generation of random values is not adequate.
We developed an algorithm for the generation of these
values which on one hand takes into account the de-
pendencies between the input parameters, and on the
other hand allows the selection of reasonable values
for the independent variable [l]. Learning of the 70
test vectors was typically achieved within a few hun-
dred epochs by vanilla backpropagation algorithm and
random initial weights. When applied to our 30 test
vectors, we achieved 100% generalization.

7 	 Summary and Conclusions

The goal of this paper has been to outline some
experiments using neural networks for the quality as-
sessment of large software systems, in particular with
respect to reengineering purposes. One set of experi-
ments uses self-organizing feature maps, or Kohonen
maps, to identify and group together programs with
similar properties. On one hand, it can help the vali-
dation of existing metrics by checking if programs with
similar properties also have similar values in their nu-
merical metrics calculations. On the other hand, it
can be used to identify novel properties or qualities
which have not been captured by the existing metrics
yet. The other experiments, using backpropagation
networks which learn to map certain input features
with outputs reflecting quality assessments, again help
with the validation of metrics; one way to do this is
to check the assessments based on calculated metrics

425

against those performed by the network on the ba-
sis of a set of examples which has been provided by
experts. Another way is to utilize the generalization
capability of these networks: the assessments given by
the network for new programs which were not in the
example set is compared with the assessment based on
the calculated metrics. Should there be any difference
in the two assessments, it could mean that the set of
examples chosen is not really representative, or that
the formula used to calculate the metrics might have
to be modified. A third possibility is to analyze the
internal representation of the network in order to de-
termine the relevance of the particular features used
as input; some features might be irrelevant, whereas
others might be interdependent.

Acknowledgements

This work has been partially supported by the U.S.
NSWC (under contracts N60921-93-M-1912, N60921-
94-M-2555, N6092 1-94-M- 1960, N6092 1-94-M-G096,
N00178-95-R.-2007, and N60921-95-M-0311), by the
U.S. ONR. (under contract N00014-92-.J-1367), and
by the State of New Jersey (SBR,-421290 and SBR.-
421330).

References

[l] G. Dheenadhayalan, Learning of Software Metria
with Neural Networks, Masters Thesis New Jersey In-
stitute of Technology, CIS Department, 1995.

[2] L. V .Fausett, Fundamentals of Neural Networks: Ar-
chitectures, Algorithms, and Applicntions, Prentice
Hall, 1994.

[3] 	M . Halstead, Elements of Software Science, North
Holland, 1977.

[4] J. A. Hertz and A. S. Krogh and R.. G . Palmer,
Introduction to the Theory of Neural Computation,
Addison- Wesley, 1991.

[5] 	T. Kohonen Self-Oryanization and Associative Mem-
ory, Springer 1988.

[6] F. KurfeO. Parallelism in Logic - Its Poten-
tial for Performance and Program Development.
Artificial Intelligence. Vieweg Verlag, Wiesbaden,
1991.

[7] F. KurfeO. WINA - Knowledge Processing with
Symbolic and Sub-Symbolic Mechanisms. Tech-
nical report, University of Ulm, Department of
Neural Information Processing, D-89069 Ulm,

1993. German version in: KI 93 Workshop
on “Wissensverarbeitung mit neuronalen Netzen
(Knowledge Processing with neural networks)”.

[8] T. J . McCabe, “A Software Complexity Mea-
sure,’’ IEEE Transactions on Software Engineer-
ing, 2(6), Dec. 1976, pages 308-320.

[9] B. 	 Ravindran, “Extracting parallelism
at compile-time through dependence analysis and
cloning techniques in an object-based paradigm,”
M.S. Thesis, New Jersey Institute of Technology,
May 1994.

[lo] M. Sitaraman, L. R.. Welch and D. E. Harms,
“On Specification of R.eusable Software Compo-
nents,” International .Journal of Software Engi-
neering and Knowledge Engineering, World Sci-
entific, 3(2), .June 1993, pages 207-229.

[ll]	L. R.. Welch, “Cloning ADT Modules to Increase
Parallelism: R.ationale and Techniques,” Fifih
IEEE Symposium on Parallel and Distributed
Computing,pages 430-437, December 1993.

[12] L. R.. Welch, A. L. Samuel, M. Masters, R . Har-
rison, M. Wilson and J . Caruso, “Reengineering
Complex Computer Systems for Enhanced Con-
currency and Layering,” Journal of Systems and
Software, 30(2), pages 45-70, 3uly 1995.

[13] L. R.. Welch, M. Lankala, W. Farr and D. Ham-
mer, “Metrics for Quality and Concurrency in
Object-Based Systems.”

[14] L. R. Welch, G. Yu, B. Ravindran, F. Kurfess
and J . Henriques and M. Wilson, “R.everse Engi-
neering of Complex Navy Systems,” International
Journal of Software Engineering and Knowledge
Engineering, (to appear).

[15] A. Zell, Simulation Neuronaler Netze, Addison-
Wesley, 1994.

426

