

Structural Graph Matching With Polynomial Bounds

On Memory and on Worst-Case Effort

Fred W. DePiero

CalPoly State University, San Luis Obispo, CA, USA, fdepiero@calpoly.edu

Abstract
A new method of structural graph matching is

introduced and compared against an existing method

and against the maximum common subgraph. The

method is approximate with polynomial bounds on both

memory and on the worst-case compute effort. Methods

work on arbitrary types of graphs and tests with strongly

regular graphs are included. No node or edge colors are

needed in the methods; the common subgraph is

extracted based in structural comparisons only. Monte

Carlo trials are benchmarked with 100% additional

(clutter) nodes. Results are shown to be typically within

1-2 nodes of the maximum common subgraph. Over

7500 test trials are reported with graphs up to 100 nodes.

1. Introduction
In this paper we address the problem of finding the

maximum common subgraph via methods suited for

practical, real-time measurement systems. Our approach

has polynomial bounds on memory and on worst-case

compute effort. Graph matching is accomplished solely

via comparisons of structure. No assumptions on graph

structure (planar, for example) are made herein. Our

methods do ensure a one-to-one mapping between nodes

in the two input graphs, and ensure the resultant common

subgraph is a proper subgraph. However the method is

approximate, so no guarantee of a maximum number of

common nodes is possible.

The reason for setting these goals is to develop a

method with broad applicability. Of particular interest are

real-time applications where an approximation to the

maximal common subgraph is acceptable, provided it can

be found deterministically. For example with real-time

range image registration, having fewer nodes than the

maximum common subgraph is tolerable, but lengthy

computations are not [4]. Use of graph matching in this

application permits the steps of determining

correspondence and pose to be separated and

accomplished in a non-iterative fashion.

Established methods for graph matching may be

categorized as either exact or approximate. As the

problem of finding a maximum common subgraph is

know to be NP-complete, exact methods inevitably have

an exponential worst-case compute effort. Recently

published approximate methods include [10] [12] [15] [9]

[7]. The technique in [10] is optimized for large databases

of objects that may contain similar subgraph structures.

The method is efficient during recognition, but does

require preprocessing time to construct a recognition

library. It also uses attributed graphs. Most reported

methods not only rely on graph attributes but are also

iterative, making them less desirable for real-time

systems. For example in methods based on relaxation

labeling comparisons of node and edge colors are needed

to establish an initial guess for the node mapping, before

iterations begin [8]. More recent work in this area uses the

color comparisons initially and during iterations [2].

Expectation-maximization is another method that has

been used recently to iteratively adjust mapping

probabilities [9]. In these iterative methods no guarantee

of a globally optimum solution is possible. Hence the

methods are both approximate and non-deterministic.

Some methods also have exponential memory

requirements [15], which may be problematic in

applications.

Earlier work in graph matching included methods that

provided exact results, but that required exponential

worst-case execution times [14]. Other methods matched

whole graphs, but not subgraphs, such as [11].

2. Comparing Graph Structure Dynamically
Two approximate methods are compared in this paper,

one using ‘Basis Graphs’ (‘BG’, a new approach) and one

using the ‘LeRP’ algorithm, which is based on length-r

paths [5].

A B 23

0 1 2 4 5 0 1 3

D 5 3C 53

0 1 2 40 1 2 4

Figure 1. Basis graphs A-D. Root nodes are darker.

The order of nodes used during placement is indicated.

Basis E is a series of end-to-end links, 4 nodes total.

A feature that distinguishes the BG and LeRP methods

from other techniques has to do with the size of the

neighborhood used to compare local graph structure. In

our techniques the size of the neighborhood varies

dynamically – the more similar the structure, the larger

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

the neighborhood. We refer to the size of the

neighborhood as the ‘horizon’. Hence our techniques have

a dynamic horizon.

Wilson and Hancock describe using a ‘superclique’

neighborhood in [15]. This is a good counter example of a

method that uses a static horizon. The local neighborhood

always consists of a central node and its adjacent nodes.

Methods that employ a limited horizon for an initial

comparison of structure must somehow expand or

combine the local measures in order to then approximate

the maximum common subgraph. This is accomplished in

various ways, for example by making soft assignments

and then iterating [7], via MAP probabilities and hill

climbing [3], or via MAP & EM [9].

Using a dynamic horizon that can extend to potentially

include all nodes in the graph is advantageous compared

to a static horizon. As is benchmarked herein, the use of a

dynamic horizon enables matching techniques which are

non-iterative and that do not require any graph coloring or

other attributes.

3. Approach Using Basis Graphs
Local structural comparisons are computed using basis

graphs. Specifically, the basis graphs are employed to

form an invariant ordering of nodes within a local

neighborhood.

The basis graphs used herein were relatively small (4

to 6 nodes) compared to the graphs being matched that

had up to 100 nodes. Basis graphs have a designated root

node and do not contain any structural symmetry

(automorphism). The root node has a special designation,

making it non-symmetric to any other node. See Figure 1.

To compare the structural similarity of a pair of nodes

(n1, n2) in graphs G1 and G2, first local neighborhoods

L1 and L2 are established. L1 and L2 contain the nodes

n1 and n2, respectively. The nodes within each L-

neighborhood are ordered. Comparisons of L1 and L2 are

made by counting the number of identical entries in the

adjacency matrices (A1 and A2) of L1 and L2. This is

similar to the complement of the edit distance. Because

the nodes are ordered within L1 and L2, cyclic

representations of the L-neighborhood are not necessary,

as with [12]. When two neighborhoods contain a different

number of nodes, the adjacency matrix for the smaller one

is padded with zeros.

The invariant ordering of nodes within an L-

neighborhood is accomplished using basis graphs. In this

process a basis graph, B, is rooted at node n1 and all

possible placements within G1 are enumerated from this

root position. A histogram H1[n1][nx][i] is incremented if

node i of B coincides with node nx in G1 during the

placement operation. After histogramming, non-

overlapping instances, bk, of the basis graph are laid on

top of G1, rooted at n1, by selecting nodes with the

largest corresponding H1 value. The local ordering for L1

is then given by the order of nodes encountered during the

bk placement operation. See Figure 2.

Using the above histogramming method, basis graphs

bk are located in the ‘most common’ location within G1.

The local ordering for L1 is then given by the order of

nodes encountered during the bk placement operation. The

L2 neighborhoods in G2 are setup in a similar fashion.

(See Figure 2). Instances of bk in G1 may be partial

versions. This can occur due to constraints of the G1

graph structure.

8 7

25

6

0

1
4

3

Figure 2. Three basis graphs are located relative to a

common root node (in black). The order of placement of

the basis graphs is indicated by bolder and lighter edges.

Resulting node order for the neighborhood is indicated.

Note the last basis graph placed was only partially

complete. Additional edges present in the graph, not

coincident with any instance of the basis, are dashed.

The ordered L-neighborhoods are formed and the edit

distance (complement) is then computed for each pair of

nodes in G1-G2. The degree of structural similarity for

n1-n2 is given by the edit distance complement C(n1,n2).

At this point a candidate mapping between the nodes in

G1 and G2 may be identified. This is done in a greedy

fashion, by selecting the nodes n1 and n2 with the largest

C(n1,n2). The next largest C() value is then chosen and so

on. The process continues provided all adjacencies are

preserved for mapped nodes between G1 and G2. This

greedy selection process yields a candidate mapping, M1.

The greedy selection process is repeated, P times, using

each of the P-highest C(nx,ny) values to start the greedy

process. The final mapping is based on the node-to-node

correspondences that appear most often across all the

candidate pairs in M1-MK and that yield the largest

mapping.

This later step of finding the node-to-node mapping

enforces global constraints associated with the overall

graph structure. In a final step of the algorithm, nodes

with zero degree were dropped from the final mapping

that was computed.

In the test trials reported, multiple basis graphs were

used. Each basis graph is placed in turn and the C(n1,n2)

values summed. Various basis graphs and combinations

of bases have been used in our experiments. Two

quantitative measures to rank the basis graphs are

presented below, involving 1) size of the matched graph

and 2) the uniformity of inclusion of nodes of varying

degree in the common subgraph.

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

The matching algorithm may readily be expanded to

include comparisons of graph color or other attributes.

These restrict potential matches, improving performance

in terms of both speed and the size of the common

subgraph, however benchmarks were not included herein.

4. Compute Effort & Memory Requirements

The compute effort and memory requirements for each

stage of the algorithm are given in Table 1. This assumes

an N-node input, and a V-node basis. Basis graphs used in

this study were limited to 4 to 6 nodes (4<=V<=6).

 Processing Step Effort Memory

1a Histogramming O(N
V

) VN
2

1b Placement O(N
2
) VN

2

2 Neighborhood

Comparisons

O(N
2
) N

2

3 Mapping O(PN
2
) N

2

Table 1. Order of computational effort and memory.

5. Testing Method

A Monte Carlo-style analysis was performed to

benchmark the BG and LeRP methods [5]. Benchmarks

of processing time and of the final size of the common

subgraph are reported for both BG and LeRP methods.

Statisics on the better of the two methods is also reported.

The better result was selected on a trial-by-trial fashion

depending on the technique yielding the larger common

subgraph.

Comparisons of BG and LeRP versus the maximum

common subgraph are also reported. (Here the maximality

refers to the number of nodes). These tests were more

limited as the maximum common subgraph was found via

exhaustive means. For these tests, the absolute difference

in the number of nodes and the edit distance are both

reported. The edit distance is given by the absolute sum of

differences in the adjacency matrices of the maximum

common subgraph and the approximate common

subgraph. All permutations were enumerated to find the

proper (lowest) edit distance.

Two different types of random graphs were used for

inputs: Model A and strongly regular. Using Model A

[13] is analogous to flipping a weighted coin to determine

the existence of an edge. The strongly regular graphs were

generated iteratively by randomly choosing pairs of nodes

that each had a degree below a given target value. The

strongly regular graphs were used because these are

notoriously difficult [16] particularly for techniques that

partition nodes by degree [11]. A test trial began by

generating graphs G1 and G2 identically, randomizing

node order, and then randomly adding nodes (100%

increase in number).

6. Testing Results

Table 2 gives the size of the common subgraph computed,

for 5000 total trials. Tests included Model A graphs (A

ranging 0.15 to 0.3) and strongly regular graphs (degree

ranging 3-7). The number of nodes in the initial graph

varied. In each case 100% additional clutter nodes were

added to each graph. Sizes of the common subgraph

appear as a percentage of the number of nominal nodes

(mean +/- one standard deviation).

Nominal Better Basis-G LeRP

10 103 ± 8 % 101 ± 10 % 100 ± 12 %

50 105 ± 4 % 105 ± 6 % 105 ± 4 %

75 106 ± 3 % 99 ± 8 % 106 ± 3 %

100 106 ± 3 % 91 ± 10 % 106 ± 3 %

Table 2. Benchmarks of the number of nodes in the

common subgraph. Data is given for 5000 trials, total.

100% additional clutter nodes, for each graph. Selecting

the ‘Better’ result – based on size of match – yields good

results over a wide range of tests. Note results from BG

taper off for larger graphs – larger bases are needed in

these cases. Common subgraphs over 100% of the initial

number of nodes are possible due to the additive noise.

In the above tests, the mean compute time for basis

graphs with inputs having 50, 75 and 100 nodes was 1.0,

4.2, and 14 seconds, respectively. When using LeRP,

these times were 0.8, 4.6 and 18.4 seconds, respectively.

Standard deviations were typically under 10%. Timing

was benchmarked on a 1.6GHz PC.

Better Basis-G LeRP

Edit Distance 0.5 ± 0.7 0.8 ± 1.4 1.4 ± 3.0

|Node Difference| 0.2 ± 0.2 0.3 ± 0.5 0.4 ± 0.8

Table 3. Edit distance between computed subgraphs

versus the maximum common subgraph. The mean

absolute difference in the number of nodes of the

maximum common subgraph is also shown. Results are

given for 125 trials, input graphs had 10 nodes, with

100% clutter added to one graph only. Table values are

the means of tests that included Model A (0.15-0.25) and

strongly regular graphs (degree 5-7).

These tests demonstrate the ability to find a common

subgraph within 1-2 nodes of the maximum, rapidly, and

while not requiring no node or edge colors. This is

advantageous compared to methods such as [7] and [10]

which have performance that decrease with reduced

dynamic range of coloring. Results also appear to have

higher accuracy while in the presence of greater noise

(100% rather than 50%) than in [18].

Note the BG algorithm failed to report a result once

out of 7625 trials. This case is under study…

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

1.2

1

0.8

0.6

0.4

0.2

0

C

D
A

E
B

3 4 5 6 7 8 9

Table 4. Probability estimate of a node being included in

a common subgraph, as a function of degree. Pairs of

input graphs had 50 nodes, each with 100% clutter.

Each basis graph (A-E) was used individually for Table

4. Tests with basis C in combination with others had

nearly identical performance to C alone, 2500 tests total.

Based on the above probability estimates and on testing of

the size of common subgraphs, bases A-D were selected

to form a set for the BG algorithm. The A-D set was used

in the tests reported in Tables 2 and 3.

7. Dissemination of Software
See the author’s web page [6] to download. The software

is free, for non-commercial, non-profit purposes.

8. Conclusion & On-Going Studies
The basis graph technique incorporates a dynamic

comparison horizon, as does LeRP. This mitigates some

of the problems associated with localized structural

comparisons in approaches with a limited horizon. As

benchmarked here, BG and LeRP yield results near the

maximum common subgraph.

We characterize a good basis graph (or set) as one that

yields matched graphs near the maximum common

subgraph and one with uniform probabilities of

appearance for nodes of varying degrees.

Comparisons against the maximum common subgraph

indicate the BG method may be somewhat better than

LeRP. If time permits in an application, then running each

and selecting the larger result would be preferred.

In the BG approach, larger graphs will require larger

bases. While larger bases may certainly be provided,

LeRP may be preferable in applications where the input

graph size varies widely or cannot be predicted.

We have interest in pattern matching with graphs that

include a probabilistic description of structure. These

probabilities describe how likely a given node and edge is

present. Matching the probabilistic graphs could be quite

helpful in a clustering analysis used with graph-valued

measurements. This is currently under investigation for

speech recognition.

As suggested by a conference reviewer, it may be

possible to improve efficiency by using a method similar

to Tarjan [17] to reduce effort while histogramming.

The author would like to acknowledge reviews and

consultations with John K. Carlin and Leonard D. Myers.

9. References
[1] M. Carcassoni and E.R. Hancock, Correspondence

Matching with Modal Clusters, IEEE Trans. PAMI, 25 (12)

(2003) 1609-1614.

[2] W J Christmas, J Kittler and M Petrou, Probabilistic

feature-labelling schemes: modelling compatibility coefficient

distributions. Image and Vision Comp, 14 (1996) 617-625.

[3] A.D.J. Cross, E.R. Hancock, Graph matching with a dual-

step EM algorithm, IEEE Trans. PAMI, 20 (11) (1998) 1236.

[4] F. W. DePiero, "Deterministic Surface Registration at

10Hz Based on Landmark Graphs With Prediction," 14th British

Machine Vision Conf. (BMVC2003), Norwich, UK, Sept, 2003.

[5] F. W. DePiero and D.W. Krout, LeRP: An algorithm using

length-r paths to determine subgraph isomorphism, Pattern Rec

Journal, 24 (1) (2003) 33-46.

[6] F. W. DePiero., “Home Page”, Software for Graph

Matching, www.ee.calpoly.edu/~fdepiero/ (June, 2004).

[7] S. Gold, A Rangarajan, A graduated assignment algorithm

for graph matching, IEEE Trans. PAMI, 18 (4) (1996) 377-388.

[8] J. Kittler, E. R. Hancock, Combining Evidence in

Probabilistic Relaxation, Intl. Journal of Pattern Recognition

and Artificial Intelligence, 3 (1989) 29-51.

[9] B. Luo and E.R. Hancock, Structural graph matching

using the EM algorithm and singular value decomposition, IEEE

Trans. PAMI, 23 (10) (2001) 1106-1119.

[10] B.T.Messmer, H. Bunke, A new algorithm for error-

tolerant subgraph isomorphism detection, IEEE Trans. PAMI, 20

(5) (1998) 493-504.

[11] B. McKay. Practical Graph Isomorphism, Congressus

Numerantium, 30 (1981) 45-87.

[12] R. Myers, R.C. Wilson, E.R. Hancock, Bayesian graph

edit distance, IEEE Trans. PAMI, 22 (6) (1997) 628-635.

[13] E. M. Palmer, Graphical Evolution – An Introduction to

the Theory of Random Graphs, Wiley-Interscience, 1985.

[14] A. Sanfeliu, K.S. Fu, A distance measure between

attributed relational graphs for pattern recognition, IEEE Trans.

Systems, Man and Cybernetics, 13 (1983) 353-363.

[15] R.C. Wilson, E.R. Hancock, Structural matching by

discrete relaxation, IEEE Trans. PAMI, 19 (6) (1997) 634-648.

[16] R. C. Read and D. G. Corneil, The graph isomorphism

disease, Journal of Graph Theory, 1 (1) 339-363 (1977).

[17] R. Tarjan, et.al., Time Bounds for Selection, CS Dept.,

Stanford, Tech. Report STAN-CS-73-349 (1973).

[18] T. Caelli and S. Kosinov, An eigenspace projection

clustering method for inexact graph matching, IEEE Trans.

PAMI, 26 (4) (2004) 515-519.

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

	footer1:

