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Abstract 
A new method of structural graph matching is 

introduced and compared against an existing method 

and against the maximum common subgraph. The 

method is approximate with polynomial bounds on both 

memory and on the worst-case compute effort. Methods 

work on arbitrary types of graphs and tests with strongly 

regular graphs are included. No node or edge colors are 

needed in the methods; the common subgraph is 

extracted based in structural comparisons only. Monte 

Carlo trials are benchmarked with 100% additional 

(clutter) nodes. Results are shown to be typically within 

1-2 nodes of the maximum common subgraph. Over 

7500 test trials are reported with graphs up to 100 nodes. 

1. Introduction 
In this paper we address the problem of finding the 

maximum common subgraph via methods suited for 

practical, real-time measurement systems. Our approach 

has polynomial bounds on memory and on worst-case 

compute effort. Graph matching is accomplished solely 

via comparisons of structure. No assumptions on graph 

structure (planar, for example) are made herein. Our 

methods do ensure a one-to-one mapping between nodes 

in the two input graphs, and ensure the resultant common 

subgraph is a proper subgraph. However the method is 

approximate, so no guarantee of a maximum number of 

common nodes is possible. 

The reason for setting these goals is to develop a 

method with broad applicability. Of particular interest are 

real-time applications where an approximation to the 

maximal common subgraph is acceptable, provided it can 

be found deterministically. For example with real-time 

range image registration, having fewer nodes than the 

maximum common subgraph is tolerable, but lengthy 

computations are not [4]. Use of graph matching in this 

application permits the steps of determining 

correspondence and pose to be separated and 

accomplished in a non-iterative fashion. 

Established methods for graph matching may be 

categorized as either exact or approximate. As the 

problem of finding a maximum common subgraph is 

know to be NP-complete, exact methods inevitably have 

an exponential worst-case compute effort. Recently 

published approximate methods include [10] [12] [15] [9] 

[7]. The technique in [10] is optimized for large databases 

of objects that may contain similar subgraph structures. 

The method is efficient during recognition, but does 

require preprocessing time to construct a recognition 

library. It also uses attributed graphs. Most reported 

methods not only rely on graph attributes but are also 

iterative, making them less desirable for real-time 

systems. For example in methods based on relaxation 

labeling comparisons of node and edge colors are needed 

to establish an initial guess for the node mapping, before 

iterations begin [8]. More recent work in this area uses the 

color comparisons initially and during iterations [2]. 

Expectation-maximization is another method that has 

been used recently to iteratively adjust mapping 

probabilities [9]. In these iterative methods no guarantee 

of a globally optimum solution is possible. Hence the 

methods are both approximate and non-deterministic. 

Some methods also have exponential memory 

requirements [15], which may be problematic in 

applications. 

Earlier work in graph matching included methods that 

provided exact results, but that required exponential 

worst-case execution times [14]. Other methods matched 

whole graphs, but not subgraphs, such as [11].  

2. Comparing Graph Structure Dynamically 
Two approximate methods are compared in this paper, 

one using ‘Basis Graphs’ (‘BG’, a new approach) and one 

using the ‘LeRP’ algorithm, which is based on length-r 

paths [5].  

A B 23 

0 1 2 4 5 0 1 3 

D 5 3C 53 

0 1 2 40 1 2 4 

Figure 1. Basis graphs A-D. Root nodes are darker. 

The order of nodes used during placement is indicated. 

Basis E is a series of end-to-end links, 4 nodes total. 

A feature that distinguishes the BG and LeRP methods 

from other techniques has to do with the size of the 

neighborhood used to compare local graph structure. In 

our techniques the size of the neighborhood varies 

dynamically – the more similar the structure, the larger 
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the neighborhood. We refer to the size of the 

neighborhood as the ‘horizon’. Hence our techniques have 

a dynamic horizon. 

Wilson and Hancock describe using a ‘superclique’ 

neighborhood in [15]. This is a good counter example of a 

method that uses a static horizon. The local neighborhood 

always consists of a central node and its adjacent nodes. 

Methods that employ a limited horizon for an initial 

comparison of structure must somehow expand or 

combine the local measures in order to then approximate 

the maximum common subgraph. This is accomplished in 

various ways, for example by making soft assignments 

and then iterating [7], via MAP probabilities and hill 

climbing [3], or via MAP & EM [9].  

Using a dynamic horizon that can extend to potentially 

include all nodes in the graph is advantageous compared 

to a static horizon. As is benchmarked herein, the use of a 

dynamic horizon enables matching techniques which are 

non-iterative and that do not require any graph coloring or 

other attributes. 

3. Approach Using Basis Graphs 
Local structural comparisons are computed using basis 

graphs. Specifically, the basis graphs are employed to 

form an invariant ordering of nodes within a local 

neighborhood. 

The basis graphs used herein were relatively small (4 

to 6 nodes) compared to the graphs being matched that 

had up to 100 nodes. Basis graphs have a designated root 

node and do not contain any structural symmetry 

(automorphism). The root node has a special designation, 

making it non-symmetric to any other node. See Figure 1. 

To compare the structural similarity of a pair of nodes 

(n1, n2) in graphs G1 and G2, first local neighborhoods 

L1 and L2 are established. L1 and L2 contain the nodes 

n1 and n2, respectively. The nodes within each L-

neighborhood are ordered. Comparisons of L1 and L2 are 

made by counting the number of identical entries in the 

adjacency matrices (A1 and A2) of L1 and L2. This is 

similar to the complement of the edit distance. Because 

the nodes are ordered within L1 and L2, cyclic 

representations of the L-neighborhood are not necessary, 

as with [12]. When two neighborhoods contain a different 

number of nodes, the adjacency matrix for the smaller one 

is padded with zeros. 

The invariant ordering of nodes within an L-

neighborhood is accomplished using basis graphs. In this 

process a basis graph, B, is rooted at node n1 and all 

possible placements within G1 are enumerated from this 

root position. A histogram H1[n1][nx][i] is incremented if 

node i of B coincides with node nx in G1 during the 

placement operation. After histogramming, non-

overlapping instances, bk, of the basis graph are laid on 

top of G1, rooted at n1, by selecting nodes with the 

largest corresponding H1 value. The local ordering for L1 

is then given by the order of nodes encountered during the 

bk placement operation. See Figure 2. 

Using the above histogramming method, basis graphs 

bk are located in the ‘most common’ location within G1. 

The local ordering for L1 is then given by the order of 

nodes encountered during the bk placement operation. The 

L2 neighborhoods in G2 are setup in a similar fashion. 

(See Figure 2). Instances of bk in G1 may be partial 

versions. This can occur due to constraints of the G1 

graph structure. 

8 7 

25 

6 

0 

1 
4 

3 

Figure 2. Three basis graphs are located relative to a 

common root node (in black). The order of placement of 

the basis graphs is indicated by bolder and lighter edges. 

Resulting node order for the neighborhood is indicated. 

Note the last basis graph placed was only partially 

complete. Additional edges present in the graph, not 

coincident with any instance of the basis, are dashed. 

The ordered L-neighborhoods are formed and the edit 

distance (complement) is then computed for each pair of 

nodes in G1-G2. The degree of structural similarity for 

n1-n2 is given by the edit distance complement C(n1,n2). 

At this point a candidate mapping between the nodes in 

G1 and G2 may be identified. This is done in a greedy 

fashion, by selecting the nodes n1 and n2 with the largest 

C(n1,n2). The next largest C() value is then chosen and so 

on. The process continues provided all adjacencies are 

preserved for mapped nodes between G1 and G2. This 

greedy selection process yields a candidate mapping, M1. 

The greedy selection process is repeated, P times, using 

each of the P-highest C(nx,ny) values to start the greedy 

process. The final mapping is based on the node-to-node 

correspondences that appear most often across all the 

candidate pairs in M1-MK and that yield the largest 

mapping. 

This later step of finding the node-to-node mapping 

enforces global constraints associated with the overall 

graph structure. In a final step of the algorithm, nodes 

with zero degree were dropped from the final mapping 

that was computed. 

In the test trials reported, multiple basis graphs were 

used. Each basis graph is placed in turn and the C(n1,n2) 

values summed. Various basis graphs and combinations 

of bases have been used in our experiments. Two 

quantitative measures to rank the basis graphs are 

presented below, involving 1) size of the matched graph 

and 2) the uniformity of inclusion of nodes of varying 

degree in the common subgraph. 
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The matching algorithm may readily be expanded to 

include comparisons of graph color or other attributes. 

These restrict potential matches, improving performance 

in terms of both speed and the size of the common 

subgraph, however benchmarks were not included herein. 

4. Compute Effort & Memory Requirements 

The compute effort and memory requirements for each 

stage of the algorithm are given in Table 1. This assumes 

an N-node input, and a V-node basis. Basis graphs used in 

this study were limited to 4 to 6 nodes (4<=V<=6). 

 Processing Step Effort Memory 

1a Histogramming O(N
V 

) VN
2 

1b Placement O(N
2
) VN

2 

2 Neighborhood 

Comparisons 

O(N
2
) N

2 

3 Mapping O(PN
2
) N

2 

Table 1. Order of computational effort and memory. 

5. Testing Method 

A Monte Carlo-style analysis was performed to 

benchmark the BG and LeRP methods [5]. Benchmarks 

of processing time and of the final size of the common 

subgraph are reported for both BG and LeRP methods. 

Statisics on the better of the two methods is also reported. 

The better result was selected on a trial-by-trial fashion 

depending on the technique yielding the larger common 

subgraph. 

Comparisons of BG and LeRP versus the maximum 

common subgraph are also reported. (Here the maximality 

refers to the number of nodes). These tests were more 

limited as the maximum common subgraph was found via 

exhaustive means. For these tests, the absolute difference 

in the number of nodes and the edit distance are both 

reported. The edit distance is given by the absolute sum of 

differences in the adjacency matrices of the maximum 

common subgraph and the approximate common 

subgraph. All permutations were enumerated to find the 

proper (lowest) edit distance. 

Two different types of random graphs were used for 

inputs: Model A and strongly regular. Using Model A 

[13] is analogous to flipping a weighted coin to determine 

the existence of an edge. The strongly regular graphs were 

generated iteratively by randomly choosing pairs of nodes 

that each had a degree below a given target value. The 

strongly regular graphs were used because these are 

notoriously difficult [16] particularly for techniques that 

partition nodes by degree [11]. A test trial began by 

generating graphs G1 and G2 identically, randomizing 

node order, and then randomly adding nodes (100% 

increase in number). 

6. Testing Results 

Table 2 gives the size of the common subgraph computed, 

for 5000 total trials. Tests included Model A graphs (A 

ranging 0.15 to 0.3) and strongly regular graphs (degree 

ranging 3-7). The number of nodes in the initial graph 

varied. In each case 100% additional clutter nodes were 

added to each graph. Sizes of the common subgraph 

appear as a percentage of the number of nominal nodes 

(mean +/- one standard deviation). 

Nominal Better Basis-G LeRP 

10 103 ± 8 % 101 ± 10 % 100 ± 12 % 

50 105 ± 4 % 105 ± 6 % 105 ± 4 % 

75 106 ± 3 % 99 ± 8 % 106 ± 3 % 

100 106 ± 3 % 91 ± 10 % 106 ± 3 % 

Table 2. Benchmarks of the number of nodes in the 

common subgraph. Data is given for 5000 trials, total. 

100% additional clutter nodes, for each graph. Selecting 

the ‘Better’ result – based on size of match – yields good 

results over a wide range of tests. Note results from BG 

taper off for larger graphs – larger bases are needed in 

these cases. Common subgraphs over 100% of the initial 

number of nodes are possible due to the additive noise. 

In the above tests, the mean compute time for basis 

graphs with inputs having 50, 75 and 100 nodes was 1.0, 

4.2, and 14 seconds, respectively. When using LeRP, 

these times were 0.8, 4.6 and 18.4 seconds, respectively. 

Standard deviations were typically under 10%. Timing 

was benchmarked on a 1.6GHz PC. 

Better Basis-G LeRP 

Edit Distance 0.5 ± 0.7 0.8 ± 1.4 1.4 ± 3.0 

|Node Difference| 0.2 ± 0.2 0.3 ± 0.5 0.4 ± 0.8 

Table 3. Edit distance between computed subgraphs 

versus the maximum common subgraph. The mean 

absolute difference in the number of nodes of the 

maximum common subgraph is also shown. Results are 

given for 125 trials, input graphs had 10 nodes, with 

100% clutter added to one graph only. Table values are 

the means of tests that included Model A (0.15-0.25) and 

strongly regular graphs (degree 5-7). 

These tests demonstrate the ability to find a common 

subgraph within 1-2 nodes of the maximum, rapidly, and 

while not requiring no node or edge colors. This is 

advantageous compared to methods such as [7] and [10] 

which have performance that decrease with reduced 

dynamic range of coloring. Results also appear to have 

higher accuracy while in the presence of greater noise 

(100% rather than 50%) than in [18]. 

Note the BG algorithm failed to report a result once 

out of 7625 trials. This case is under study… 
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1.2 

1 

0.8 

0.6 

0.4 

0.2 

0 

C 

D 
A 

E 
B 

3 4 5 6 7 8 9 

Table 4. Probability estimate of a node being included in 

a common subgraph, as a function of degree. Pairs of 

input graphs had 50 nodes, each with 100% clutter. 

Each basis graph (A-E) was used individually for Table 

4. Tests with basis C in combination with others had 

nearly identical performance to C alone, 2500 tests total. 

Based on the above probability estimates and on testing of 

the size of common subgraphs, bases A-D were selected 

to form a set for the BG algorithm. The A-D set was used 

in the tests reported in Tables 2 and 3. 

7. Dissemination of Software 
See the author’s web page [6] to download. The software 

is free, for non-commercial, non-profit purposes.  

8. Conclusion & On-Going Studies 
The basis graph technique incorporates a dynamic 

comparison horizon, as does LeRP. This mitigates some 

of the problems associated with localized structural 

comparisons in approaches with a limited horizon. As 

benchmarked here, BG and LeRP yield results near the 

maximum common subgraph. 

We characterize a good basis graph (or set) as one that 

yields matched graphs near the maximum common 

subgraph and one with uniform probabilities of 

appearance for nodes of varying degrees. 

Comparisons against the maximum common subgraph 

indicate the BG method may be somewhat better than 

LeRP. If time permits in an application, then running each 

and selecting the larger result would be preferred. 

In the BG approach, larger graphs will require larger 

bases. While larger bases may certainly be provided, 

LeRP may be preferable in applications where the input 

graph size varies widely or cannot be predicted. 

We have interest in pattern matching with graphs that 

include a probabilistic description of structure. These 

probabilities describe how likely a given node and edge is 

present. Matching the probabilistic graphs could be quite 

helpful in a clustering analysis used with graph-valued 

measurements. This is currently under investigation for 

speech recognition. 

As suggested by a conference reviewer, it may be 

possible to improve efficiency by using a method similar 

to Tarjan [17] to reduce effort while histogramming. 

The author would like to acknowledge reviews and 

consultations with John K. Carlin and Leonard D. Myers. 
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