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Abstract Let A be an artin algebra of finite CM-type. In this paper, we show that
if A is virtually Gorenstein, then the homotopy category of Gorenstein projective
A-modules, denote K(A-GP), is always compactly generated. Based on this result, it
will be proved that the homotopy category of projective A-modules, denote K(A-P),
is a smashing subcategory of K(A-GP) and the corresponding Verdier quotient
is also compactly generated. Furthermore, it turns out that the inclusion functor
i : K(A-P) → K(A-GP) induces a recollement of K(A-GP).

Keywords Gorenstein projective modules · Compactly generated homotopy
categories · Smashing subcategory · Recollements

1 Introduction

Let X be a class of left modules over an associative ring R which is closed under
set-indexed coproducts and direct summands. Holm and Jørgensen [13] study the
general question of when the homotopy category K(X ) of X is compactly generated.
They give a number of sufficient conditions on R and X which ensure that K(X ) is
compactly generated.

Let A be an artin algebra and A-Mod the category of A-modules. Denote by
A-P the full subcategory of projective A-modules, A-GP the full subcategory of
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Gorenstein projective A-modules, and A-G proj the full subcategory of all finitely-
generated Gorenstein projective modules. As is well known, the homotopy category
K(A-P) is compactly generated [15, Theorem 2.4].

Gorenstein projective modules and algebras of finite Cohen–Macaulay type re-
ceive a lot of attention (See e.g. [1, 4–6, 8–10, 12, 14, 16, 17, 19]). Recall from [4, 6]
that an artin algebra A is of finite Cohen–Macaulay type (simply, CM-type) if there
are only finitely many isomorphism classes of finitely-generated indecomposable
Gorenstein projective A-modules. We are interested in the compact generatedness
of the homotopy category K(A-GP) of an artin algebra A of finite CM-type.

In Section 2, we first show that if A is virtually Gorenstein of finite CM-type, then
K(A-GP) is compactly generated. Next, based on this result, we show that K(A-P)

is a smashing subcategory of K(A-GP) and the Verdier quotient K(A-GP)/K(A-P)

is also compactly generated.
The concept of recollement goes back to the work of Beilinson et al. [2]. In Sec-

tion 3, we show the existence of recollements of the homotopy category K(A-GP).

2 Conditions for Compact Generatedness

Our aim in this section is to show that K(A-GP) is compactly generated provided
A is virtually Gorenstein of finite CM-type. So based on the result of Bruns
and Herzog [6, Proposition 2.11], and the result of Jørgensen [16], K(A-P) is a
smashing subcategory of K(A-GP) and the Verdier quotient K(A-GP)/K(A-P) is
also compactly generated.

Our strategy for the compact generatedness of K(A-GP) is to give sufficient
conditions on A. We will use the following lemma.

Lemma 2.1 [4, Theorem 4.10] Let A be an artin algebra. Then A is virtually
Gorenstein of f inite CM-type if and only if any Gorenstein projective A-module is
a direct sum of f initely-generated modules.

Now we are ready to state and prove our first main theorem in this section.

Theorem 2.2 Let A be a virtually Gorenstein artin algebra of f inite CM-type. Then
K(A-GP) is a compactly generated triangulated category.

Proof Since A is virtually Gorenstein of finite CM-type, we get from Lemma 2.1 that
A-GP = Add(A-G proj) which means that A-GP is contravariantly finite in A-Mod,
and also each Gorenstein projective module is pure projective which means that
every pure exact sequence of modules from A-GP is split exact. This implies that
K(A-GP) is a compactly generated triangulated category by [13, Theorem 3.1]. ��

Recall from [11] that a complex X• is A-GP-acyclic if the induced complex
HomA(G, X•) is acyclic for each module in A-GP , and the Gorenstein derived cate-
gory Dgp(A-Mod) of an artin algebra A is defined to be the Verdier quotient of the
homotopy category K(A-mod) with respect to the thick subcategory Kgpac(A-Mod)

which consists of all A-GP-acyclic complexes.
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Corollary 2.3 Let A be a Gorenstein artin algebra of f inite CM-type. Then
Dgp(A-Mod) is compactly generated.

Proof By the assumption on A, we see from [3, Corollary 8.3 and Corollary 8.5]
that A satisfies the conditions on Theorem 2.2. Hence we get that K(A-GP) is a
compactly generated triangulated category. By [7, Proposition 3.5] there is a triangle-
equivalence Dgp(A-Mod) ∼= K(A-GP). This implies that Dgp(A-Mod) is compactly
generated. ��

For our second main theorem we need a definition and some lemmas.
Recall from [18] that a full subcategory B of a compactly generated triangulated

category T is smashing if the inclusion B → T has a right adjoint which preserves
coproducts.

Lemma 2.4 [18, Lemma 4.1] Let B be a smashing subcategory of a compactly
generated triangulated category T . Then T /B is a compactly generated triangulated
category.

Lemma 2.5 [5, Proposition 2.11] Let T and T ′
be compactly generated triangulated

categories, and let F : T → T ′
be a fully faithful triangle functor which preserves

coproducts and compact objects. Then F admits a right adjoint G : T ′ → T which
preserves coproducts.

So in view of the above lemmas, we have the following theorem.

Theorem 2.6 Let A be a virtually Gorenstein artin algebra of f inite CM-type. Then
K(A-P) is a smashing subcategory of K(A-GP). Moreover, K(A-GP)/K(A-P) is a
compactly generated triangulated category.

Proof By the assumpotion on A, we get from Theorem 2.2 that K(A-GP) is com-
pactly generated, and from [15, Theorem 2.4] that K(A-P) is compactly generated
and each compact object P• is exactly the upper bounded complex of finitely-
generated projective modules. Let i : K(A-P) → K(A-GP) be the inclusion functor.
Note that i naturally preserves coproducts. Let {G•

i }i∈I be any family objects in
K(A-GP). Then we have HomK(A-GP)(iP•,

∐
i∈I G•

i ) = HomK(A-GP)(P•,
∐

i∈I G•
i )

∼=∐
i∈I HomK(A-GP)(P•, G•

i ) = ∐
i∈I HomK(A-GP)(iP•, G•

i ). This implies that i pre-
serves compact objects. Hence by Lemma 2.5 we get that i admits a right adjoint R :
K(A-GP) → K(A-P) which preserves coproducts. This means K(A-P) is a smash-
ing subcategory of K(A-GP). This implies by Lemma 2.4 that K(A-GP)/K(A-P) is
a compactly generated triangulated category. ��

3 Recollements for the Homotopy Category K(A-GP)

In this section, let A be an artin algebra. Based on the compact generatedness of the
full subcategory K(A-P) of K(A-GP), we will apply the arguments of Neeman to
prove the existence of a recollement of K(A-GP).
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Lemma 3.1 [21, Theorem 4.1], [22, Theorem 8.6.1] Let F : T → T ′
be a triangle

functor between triangulated categories T and T ′
, where T is compactly generated.

(1) F admits a right adjoint if and only if it preserves all coproducts.
(2) F admits a left adjoint if and only if it preserves all products.

Theorem 3.2 Let A be an artin algebra. Then the inclusion functor i : K(A-P) →
K(A-GP) induces a recollement of the form

K(A-P)
←−−−

i−−−→←−−−−
R

K(A-GP)
←−−−−→←−− KerR

such that KerR ∼= K(A-GP)/K(A-P) as triangulated categories.

Proof Since A is an artin algebra, it follows from [15, Theorem 2.4] that K(A-P)

is compactly generated. Note that the inclusion functor i naturally preserves all
coproducts and products. Then i admits a right adjoint R, also a left adjoint. Hence
by [20, Theorem 2.2] we have a recollement of the form

K(A-P)
←−−−

i−−−→←−−−−
R

K(A-GP)
←−−−−→←−− KerR

such that KerR ∼= K(A-GP)/K(A-P) as triangulated categories. ��

So in view of the above theorem, we have the following result. Let us begin by
recalling some definitions.

Let T be a triangulated category with the suspension functor �. Recall from [5,
Section 2] that a torsion pair in T is a pair of strict full subcategories (X .Y) of T
satisfying the following conditions: (1) T (X ,Y) = 0 ; (2) �(X ) ⊆ X and �−1(Y) ⊆
Y ; (3) For any T ∈ T there exists a triangle XT

fT−→ T
gT

−→ YT hT−→ �(XT). Then X is
called a torsion class and Y is called a torsion-free class. A torsion, torsion-free triple,
TTF-triple for short, in T is a triple (X ,Y,Z) of full subcategories of T such that the
pairs (X ,Y) and (Y,Z) are torsion pairs.

Now we give a TTF-triple in K(A-GP).

Corollary 3.3 Let A be an artin algebra. Then there exists a TT F-triple (K(A-P),
KerR, (KerR)⊥) in K(A-GP).

Proof By Theorem 3.2 we have the recollement of the form

K(A-P)
←−−−

i−−−→←−−−−
R

K(A-GP)
←−−−−→←−− KerR.

Hence by [20, Theorem 2.2] we get that (K(A-P), KerR) and (KerR, (KerR)⊥) are
two torsion pairs in K(A-GP). This means K(A-GP) has a TT F-triple (K(A-P),
KerR, (KerR)⊥). ��
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