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ABSTRACT

Introduction: This study aimed to determine if

data mining methodologies could identify

reproducible predictors of dapagliflozin-specific

treatment response in the phase 3 clinical

program dataset.

Methods: Baseline and early treatment

response variables were selected and data

mining used to identify/rank all variables

associated with reduction in glycated

hemoglobin (HbA1c) at week 26. Generalized

linear modeling was then employed using an

independent dataset to identify which (if any)

variables were predictive of dapagliflozin-

specific treatment response as compared with

treatment response in the study’s control arm.

The most parsimonious (i.e., simplest) model

was validated by meta-analysis of nine other

trials. This staged approach was used to

minimize risk of type I errors.

Results: From the large dataset, 22 variables

were selected for model generation as

potentially predictive for dapagliflozin-specific

reduction in HbA1c. Although baseline HbA1c

was the variable most strongly associated with

reduction in HbA1c at study end (i.e., the best

prognostic variable), baseline fasting plasma

glucose (FPG) was the only predictive

dapagliflozin-specific variable in the model.

Placebo-adjusted treatment effect of

dapagliflozin plus metformin vs. metformin

alone for change in HbA1c from baseline was

-0.65% at the average baseline FPG of
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192.3 mg/dL (10.7 mmol/L). This response

changed by -0.32% for every SD [57.2 mg/dL

(3.2 mmol/L)] increase in baseline FPG. Effect of

baseline FPG was confirmed in the meta-analysis

ofninestudies,but themagnitudewas smaller.No

other variable was independently predictive of a

dapagliflozin-specific reduction in HbA1c.

Conclusions: This methodology successfully

identified a reproducible baseline predictor of

differential response to dapagliflozin. Although

baseline FPG was shown to be a predictor, the

effect size was not of sufficient magnitude to

suggest clinical usefulness in identifying

patients who would uniquely benefit from

dapagliflozin treatment. The findings do

support potential benefit for dapagliflozin

treatment that is consistent with current

recommended use.

Keywords: Dapagliflozin; Data mining; Fasting

plasma glucose; Machine learning; Meta-

analysis; Predictor; Prognostic factors;

Response profiling; Type 2 diabetes mellitus

INTRODUCTION

Choosing among the many antihyperglycemic

treatment options now available for patients

with type 2 diabetes mellitus (T2DM) involves

matching the clinical profile of each drug,

which has been assessed using aggregate data

in clinical trials, to the characteristics of the

individual patient [1]. In practice, the relevant

parameters involve tolerability and safety; for

example, whether the treatment exposes the

patient to hypoglycemia or if the patient has

renal impairment. Relatively little is known

about the differential efficacy of a drug on a

patient-by-patient basis, and the factors that

might underlie differential responses are not

well understood [2, 3].

Dapagliflozin, a sodium-glucose co-

transporter 2 inhibitor (SGLT2) approved for

use in the EU, US, and numerous other

countries, has been shown to reduce

hyperglycemia consistently by increasing

urinary glucose excretion [4]. Additionally,

dapagliflozin has been associated with

reductions in body weight and blood pressure,

and an incidence of adverse events comparable

with those seen in control arms in a diverse

patient population from an extensive clinical

trial program [5–10]. The dapagliflozin

development program, which included a large

number of patients from independent clinical

trials, provided the opportunity to explore the

possibility that baseline characteristics or early

treatment responses might predict which

patients would most benefit from dapagliflozin

therapy.

We used data mining—a computational

process used to identify patterns in complex

datasets—to extract clinically useful

information from dapagliflozin phase 3 trials

that might otherwise have remained unknown.

Data mining algorithms are used to interrogate

data to develop a classification rule that can be

predictive for outcomes of interest [11]. They

feature extensively in handling very large

datasets, where such a hypothesis-independent

approach has delivered particularly innovative

insights. To date, there are limited examples of

the use of such applications to identify

predictive variables within conventional

clinical datasets, as generated during late-stage

clinical trials [12]. A comprehensive analysis of

the dapagliflozin phase 3 program was

undertaken to determine whether there are

baseline characteristics or early responses to

treatment that could be used to predict which

patients would benefit the most from receiving

dapagliflozin treatment in conjunction with

other treatments administered in the program.
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METHODS

The overall analysis comprised three stages: (1)

variable selection, (2) model generation, and (3)

clinical validation (Fig. 1). Each stage used data

from independent clinical trials within the phase

3 program. Studies were selected for analysis if

they had a dapagliflozin arm and had been

completed by the time this analysis was

initiated; all studies fulfilling these criteria were

used in these analyses (Table 1) [5, 9, 13–19].

The study was designed with expert clinical,

personalized healthcare, statistical, and

informatics input. All analysis methods and

variable selection criteria were agreed a priori

and were captured inanexploratoryanalysis plan.

This article does not contain any new studies

with human or animal subjects performed by

any of the authors.

VARIABLE SELECTION

The variable selection stage was performed on

data from the metformin plus dapagliflozin arm

of a randomized, 52-week, double-blind, active-

controlled non-inferiority study of dapagliflozin

vs. glipizide as add-on to metformin therapy in

patients with T2DM with inadequate glycemic

control on metformin alone [8]. The primary

endpoint of this study was change in glycated

hemoglobin (HbA1c) from baseline to week 26.

In the studies used in the later stages, the

primary endpoint was measured at week 24

instead of week 26. Missing 26-week data were

imputed using the last observation carried

forward technique. Similarly, the early post-

treatment time point was week 3, but because

studies used in subsequent stages of the analysis

collected data at week 4, week 4 data were used

in both the model generation and validation

stages. The goal at this stage was to identify

those baseline and early treatment response

variables with the largest influence on change

in HbA1c level. These variables were then ranked

based on the strength of their association with

the endpoint. Due to a lack of a control arm

(metformin alone) in this specific dataset, it was

not possible to assess which variables would be

specific predictors of dapagliflozin treatment

response per se as opposed to more general

prognostic factors. The term prognostic as used

here has virtually the same meaning as in

routine clinical medicine; namely, baseline or

early response characteristics that influence

Fig. 1 Basic plan of the analysis: a staged approach. HbA1c glycated hemoglobin
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Table 1 Dapagliflozin studies used in the analyses

Study Details No. of patients
included in analyses;
dapagliflozin dose

Patient population

Variable selection phase

Randomized, multicenter,

52-week, double-blind,

active-controlled non-

inferiority [8]

Dapagliflozin vs. glipizide as

add-on to metformin

400; dapagliflozin

2.5–10 mg (titration)

Men, women C18 years,

HbA1c[6.5 to B10%,

inadequately controlled with

metformin and oral

hypoglycemic drugs

Model generation phase

Randomized, multicenter,

24-week, double-blind

active-controlled (two

studies) [10]

Study 1, dapagliflozin

5 mg ? metformin XR,

dapagliflozin 5 mg ?

placebo, metformin

XR ? placebo

Study 2, dapagliflozin

10 mg ? metformin XR,

dapagliflozin 10 mg ?

placebo, metformin

XR ? placebo

Both studies combined:

814. 405;

dapagliflozin 5 or

10 mg. 409;

metformin plus

placebo

Men, women 18–77 years,

HbA1c 7.5–12%, treatment

naı̈ve, exclusion NYHA class

III, IV

Validation phase

Randomized, multicenter,

24-week, double-blind,

parallel-group, placebo-

controlled and 78-week

extension [5, 13]

Dapagliflozin 2.5, 5, or

10 mg vs. placebo

399; dapagliflozin 5 or

10 mg (N = 265)

Men, women 18–77 years,

HbA1c 7–10%, inadequately

controlled with metformin,

exclusion NYHA Class III, IV

Randomized, multicenter,

24-week, double-blind,

parallel-group, placebo-

controlled [26]

Dapagliflozin 1, 2.5 or 5 mg

vs. placebo

334; dapagliflozin 5 or

10 mg (N = 262)

Men, women 18–77 years,

HbA1c C7 to B10%,

treatment naı̈ve, exclusion

CVD or event in previous

6 months

Randomized, multicenter,

24-week, double-blind,

parallel-group, placebo-

controlled [14]

Dapagliflozin 10 mg vs.

placebo

179; dapagliflozin

10 mg (N = 88)

Men, women 30–75 years,

HbA1c 6.5–8.5%, inadequately

controlled with metformin,

23.6% had previous CVD

Randomized, multicenter,

24-week, double-blind,

placebo-controlled [15]

Dapagliflozin 10 mg vs.

placebo added to usual care

899; dapagliflozin

10 mg (N = 448)

Men, women C45 years,

HbA1c C7 to B10%,

previously treated,

documented CVD
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outcome, independent of treatment. In

contrast, a predictor is a baseline or early

response characteristic that has an impact on

response to a particular treatment.

The variables selected for model generation

were determined by combining the variable lists

from two different data mining methods,

gradient boosting [20, 21] and elastic net [22],

using a set of data-driven guidelines. These two

methods were selected to complement each

other. (For elastic net, the most influential

variables were identified as the variables

selected when the regularization parameter

lambda was increased to the highest level

achieving a cross-validated mean squared error

(CV MSE) within 1 standard error of the lowest

CV MSE, and for gradient boosting it was the

top ranked variables with the cutoff determined

by a noticeable drop in relative influence score).

Two variable lists were defined: clinically

relevant data available at baseline, and

clinically relevant data available at baseline

Table 1 continued

Study Details No. of patients
included in analyses;
dapagliflozin dose

Patient population

Randomized, multicenter,

24-week, double-blind,

placebo-controlled [16]

Dapagliflozin 10 mg ?

sitagliptin vs.

placebo ? sitagliptin

± metformin

446; dapagliflozin

10 mg (N = 223)

Men, women mean age

52.6–56.8 years, mean HbA1c

7.8–7.99%, previously treated

Randomized, multicenter,

24-week double-blind,

placebo-controlled [17]

Dapagliflozin 10 mg vs.

placebo added to usual care

945; dapagliflozin

10 mg (N = 474)

Men, women mean age

63.9 years, mean HbA1c 8%,

previously treated,

documented CVD

Randomized, multicenter,

24-week (and 24-week

extension), double-blind,

placebo-controlled [18]

Dapagliflozin 5 or

10 mg ? pioglitazone

418; dapagliflozin 5 or

10 mg (N = 280)

Men, women C18 years,

HbA1c C7 to B11%, either

treatment naı̈ve or previously

treated, exclusion NYA class

III, IV

Randomized, multicenter,

24-week, double-blind,

placebo-controlled, parallel-

group international [9]

Dapagliflozin 2.5, 5 or 10 mg

vs. placebo ? open-label

glimepiride

435; dapagliflozin 5 or

10 mg (N = 292)

Men, women C18 years,

HbA1c C7 to B10%,

inadequately controlled with

sulfonylurea, 30.5–38.7% had

previous CVD

Randomized, multicenter,

24-week (and 24-week

extension), double-blind,

placebo-controlled [19]

Dapagliflozin 2.5, 5 or 10 mg

vs. placebo ? open-label

existing insulin ± B2 oral

hypoglycemic drugs

568; dapagliflozin 5 or

10 mg (N = 389)

Men, women 18–80 years,

HbA1c C7.5 to B10.5%,

inadequately controlled with

insulin ± oral hypoglycemic

drugs 47.4–52.1% had

previous CVD (hypertension)

CVD cardiovascular disease, HbA1c glycated hemoglobin, NYHA New York Heart Association; XR extended release
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plus data available at the early post-treatment

time point.

MODEL GENERATION

The purpose of model building was to refine the

selected variables by eliminating prognostic

variables (i.e., those that are associated with

response independent of treatment) and false

positives (i.e., those that were positive in the

variable selection phase only) to build a model

predictive of dapagliflozin-specific HbA1c

reduction at 24 weeks. The lists of variables

identified in the variable selection stage

(Table 2) were used for model generation in an

independent dataset. During this stage, the

purpose was to build a robust predictive model

that would include variables with estimated

effect sizes large enough to be clinically

meaningful. Model generation was carried out

in a placebo-controlled dataset, allowing

variables predictive of response to

dapagliflozin treatment specifically to be

distinguished from those variables that were

predictive of response to any treatment.

The dataset comprised two randomized,

24-week, double-blind, active-controlled

studies comparing the combinations of

dapagliflozin (5 or 10 mg) plus metformin

with dapagliflozin plus placebo or metformin

plus placebo [10]. The modeling comprised

further variable selection, model refinement,

and assessment of model performance for

patient segmentation. Both univariate and

multivariate stepwise linear regression

techniques were used to model the main

effects of treatment, each clinical variable, and

each treatment by clinical variable interaction

term. The SAS (SAS institute, SAS Foundation

v9. 2, Cary NC, USA) software package was used

for these analyses.

The most parsimonious model (i.e., the

simplest model which best described the

predictive relationship with dapagliflozin

Table 2 Variables selected for model generation

Variables selected

A. Baseline only

Glycated hemoglobin

HOMA2 insulin sensitivitya

Fasting plasma glucose

Duration T2DM (years)

Proinsulin, fastinga

Glucose, urine concentration

HOMA2 beta cell functiona

Creatinine

LDL cholesterol (calculated), fasting

Sex

Cystatin C

Race

Ethnicitya

Glomerular filtration rate, calculated (MDRD

equation)

B. Baseline 1 week 3 change from baseline (LOCF)

Change from baseline in hemoglobin A1C (LOCF)

Change from baseline in sitting heart rate (LOCF)

Change from baseline in fasting plasma glucose (LOCF)

Change from baseline in weight (LOCF)

Baseline weight

Baseline sitting heart rate

Baseline CRP, high sensitivity fastinga

Baseline fatty acids, fasting free

CRP C-reactive protein, HOMA Homeostasis model
assessment, LDL low-density lipoprotein, LOCF Last
observation carried forward, MDRD Modification of diet
in renal disease, T2DM type 2 diabetes mellitus
a Not available in the studies used for the model-building
phase
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treatment response) was put forward for

validation.

CLINICAL VALIDATION

The selected model was validated using a

meta-analysis of nine phase 3 placebo-

controlled trials in patients receiving various

treatments, such as insulin, glimepiride,

pioglitazone, metformin, or sitagliptin

(Table 1). Because we were trying to identify

predictors of dapagliflozin response that

would be valid for virtually any patient with

T2DM, it was important to include trials that

were heterogeneous with respect to

concomitant treatments as well as to the

demographic and disease characteristics of

the trial participants. The primary aim was

to use a robust method to estimate the

predictive effect of fasting plasma glucose

(FPG) in the remaining individual studies,

from which we derived an overall estimate

using a meta-analytic approach.

The meta-analysis was conducted using

Bayesian hierarchical modeling, which

accounts for any heterogeneity between trials

by adaptively fitting the data from different

trials based on their similarity. This

methodology allows inferences to be drawn at

the level of individual trials and for the entire

set of trials [23].

RESULTS

Variable Selection Phase

Data from 400 patients with a value for their

change in HbA1c at week 26, including 46

variables of clinical relevance at baseline, were

used in the variable selection stage. An

additional 11 explanatory variables

representing change at week 3 from baseline

were used in the baseline plus early follow-up

dataset. Variables included patient

demographics, baseline lipids, kidney

function, HbA1c, FPG, and insulin resistance

and sensitivity. A total of 14 baseline variables

and 8 additional baseline plus week 3 variables

were selected for model generation based on the

strength of their association with reduction in

HbA1c at week 26 (Table 2). Of these, only 17

variables were carried forward to the model

generation phase because 5 of the variables

chosen were not included in the dataset of the 2

studies used for model generation. Prominent

among the baseline variables put forward for

validation were HbA1c and FPG, and among the

early response variables were change from

baseline to week 3 in HbA1c and in FPG.

Model Generation Phase

Modeling identified two variables that could

have independent predictive value. For change

from baseline in HbA1c at week 24, baseline FPG

and race were found to significantly influence

the effect of dapagliflozin treatment in the two

studies. Other baseline and early post-treatment

time point variables were either found to be

covariates, rather than predictors of

dapagliflozin-specific treatment response (e.g.,

HbA1c), or did not replicate in the independent

dataset and were probably false positives (e.g.,

urinary glucose concentration).

A linear relationship between baseline FPG

and outcome was modeled, which suggested

that the placebo-adjusted response to

dapagliflozin treatment was greater in patients

with high FPG at baseline compared with those

with lower levels. This effect remained after

Diabetes Ther (2014) 5:471–482 477



adjustment for a number of prognostic

covariates (main effects) including baseline

HbA1c, which was the strongest prognostic

factor. Further analysis of patients in the

highest tertile of baseline FPG [C220 mg/dL

(12.2 mmol/L)] indicated that there was no

difference in demographics or adverse event

profile in these patients compared with patients

with lower baseline FPG, for whom the model

predicts lower efficacy.

An independent predictive effect of race was

identified, which suggested that African

American patients may benefit more from

dapagliflozin treatment than white and Asian

patients. No other predictive effect of race was

found. However, the subgroup of African

American patients (with an HbA1c

measurement on treatment) was small (n = 29,

4%), resulting in imprecise estimates of

treatment response. This limitation precluded

consideration of race as a predictive variable

and it was not advanced to the validation phase

of the analysis. Moreover, the number of

African Americans in the nine studies included

in the meta-analysis was too small (ranging

from 2.1 to 5.9% of the study populations) to be

able to validate a proposed model.

The linear model, limited to the single

variable FPG, was used to predict the effect of

metformin plus dapagliflozin compared with

metformin alone for all white (n = 628, 81%)

and Asian patients (n = 119, 15%) in the study

with HbA1c measurement on treatment. The

placebo-adjusted treatment effect (i.e., change

in HbA1c from baseline to week 24 of

dapagliflozin plus metformin vs. metformin

alone) in this model was estimated to be

–0.65% (95% CI -0.84 to –0.47), with average

baseline FPG of 192.3 mg/dL (10.7 mmol/L)

(Fig. 2). The predicted placebo-adjusted HbA1c

response varied according to the level of

baseline FPG, from a treatment benefit of

–0.25% (95% CI –0.55 to –0.05) for 120 mg/dL

(6.7 mmol/L) baseline FPG to –1.36% (95% CI

–1.82 to –0.90) for 320 mg/dL (17.8 mmol/L)

baseline FPG (Fig. 2). These estimates of the

effect sizes of dapagliflozin treatment based on

baseline FPG were not affected by the omission

of the prognostic factors from the model.

Clinical Validation Phase

A meta-analysis technique used to assess the

interaction between baseline FPG and

treatment in nine dapagliflozin studies

(Table 1) indicated that patients with higher

levels of baseline FPG were repeatedly found to

have a greater response to dapagliflozin

treatment, on average, compared with patients

with lower baseline FPG levels. The observed

effects were consistent with the initial

hypothesis derived from the first two stages of

the project, but the overall estimate from the

Bayesian hierarchical model was smaller and

was not statistically significant (a median

Fig. 2 Model of fasting plasma glucose (FPG) as predictor
(In White and Asian patients n = 747). bDapagliflozin
treatment effect increases by 32% for every one unit
standard deviation [57.2 mg/dL (3.2 mmol/L)] increase in
baseline FPG; dotted lines represent the 95% confidence
interval. HbA1c glycated hemoglobin
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additional effect of dapagliflozin of -0.12%

change in HbA1c at 24 weeks for every

additional 50 mg/dL of baseline FPG; 95%

credible interval crossed 0, Fig. 3). In addition,

there was variability in the effect size estimates

across the nine different studies (Fig. 3) that led

to wide confidence limits around the overall

estimate derived from the meta-analysis.

DISCUSSION

A comprehensive analysis of the dapagliflozin

phase 3 program was undertaken with the goal

of identifying and validating baseline

characteristics (or early responses to treatment)

that could be used to predict which patients

would respond best to dapagliflozin treatment.

We used a novel, customized approach of

response profiling to identify predictors of

dapagliflozin efficacy of clinical value in the

treatment of patients with T2DM. From an

initial group of 48 variables, of which 28 were

selected for modeling, only one variable, FPG,

was found to significantly predict response to

dapagliflozin. Although the results of the meta-

analysis indicate that baseline FPG was

reproducibly predictive of the effect of

dapagliflozin on HbA1c change from baseline

to 24 weeks, the magnitude and wide

confidence interval of the effect size observed

was neither clinically nor statistically

significant, giving little potential scope for use

as a clinical predictor of efficacy. Baseline

HbA1c, which was found to be the strongest

prognostic variable in our analyses (i.e.,

associated independently of treatment with

the largest change in HbA1c from baseline to

week 24/26), was not an independent predictor

of dapagliflozin-specific treatment effect.

Our results support the findings of

conventional, hypothesis-driven analyses,

which have shown that dapagliflozin offers

significant clinical benefit across all groups of

patients in a broad-based clinical trial program,

including patients across the continuum of

T2DM, from treatment naı̈ve to those

requiring high doses of insulin [24, 25]. It is

also consistent with previously published

evidence showing that the beneficial effect of

dapagliflozin therapy in terms of reduction

from baseline in HbA1c is greatest in those

with the highest baseline HbA1c [6]. The

methodology applied was sufficiently sensitive

to detect a signal of a predictive marker for

differential response to dapagliflozin that was

below a threshold of clinical significance,

suggesting that the model would have been

able to detect a clinically relevant predictor if

one were included in the original set of

variables evaluated in this analysis. Given the

breadth of the clinically available data captured

in the clinical trials databases and the

thoroughness of this analysis, however, it is

unlikely that we would have failed to include a

Fig. 3 Effect of baseline FPG on change in HbA1c from
baseline to week 24. cThese studies are shown for reference
only and were not included in the overall analysis. CVD
cardiovascular disease, DPP4 dipeptidyl peptidase-4, FPG
fasting plasma glucose, HbA1c glycated hemoglobin, Met
metformin, SU sulfonylurea, T2DM type 2 diabetes
mellitus, TZD thiazolidinediones
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potentially relevant clinically available variable

in this large set of variables. Our preliminary

conclusion, therefore, is that there are no

subgroups identifiable from baseline or from

baseline plus early on-treatment data in

dapagliflozin studies that are associated with

clinically relevant differential response to

dapagliflozin treatment.

We attempted to combine complementary

statistical methods for data mining to cast a

wide net for potential signals. Elastic nets [22]

allow an efficient handling of correlated

variables, while decision tree algorithms, such

as gradient boosting [20, 21], are most suitable

for the analysis of complex interactions and

heterogeneity. Combined, these two methods

complement each other and give a good chance

of finding predictive variables. Such an

approach, which poses a risk of type I error,

was controlled for by using a staged approach

(i.e., hypothesis generation, testing, and

validation) and multiple independent datasets.

The study described by Maeda et al. [12]

evaluating whether baseline HbA1c, post-

prandial glucose, body mass index, and

duration of diabetes may be predictors of

HbA1c reduction when using sitagliptin in

Japanese patients with T2DM, for example,

was less informative. This was because it only

involved one stage and could not distinguish

between prognostic and predictive effects

specific to sitagliptin, as no control arm was

included. In addition, control over type I error

was limited and there was no indication of

clinical relevance [12].

The strengths of the approach described

herein are its hypothesis-independent basis

and consequent ability to generate truly

innovative insights. This approach was

deliberately chosen to allow all studies to be

analyzed together and to identify any variables

that would be predictive of response across

studies and across the entire spectrum of

patients with T2DM. Because the full range of

baseline and early on-treatment data were

considered as variables that could potentially

affect treatment response, the analysis was not

limited to those that have a plausible rationale;

therefore, the potential to discover a completely

novel predictor was increased.

The weaknesses of the method are predicated

on the same basis and are exemplified by the

high false discovery rates requiring independent

validation to deliver sufficient confidence. One

way of partially overcoming this problem would

be to use a dapagliflozin add-on study that has a

placebo-control group for the variable selection

phase, which would facilitate identification of

possible dapagliflozin-specific effects and reduce

the false discovery rate. A second limitation is a

consequence of the fact that our approach

necessitated the measurement of factors across

the complete program of studies. Because the

studies that comprised the phase 3 clinical

development program for dapagliflozin were

relatively heterogeneous by design, the results

of meta-analysis of nine of the 12 studies is not

meaningful in its own right and should

therefore be interpreted with caution. In fact,

as shown in Fig. 3, the estimated effect size of

FPG as a predictor was quite large

(approximately 1 standard deviation) in

treatment-naı̈ve patients in the monotherapy

study [26], whereas it was estimated to be

essentially nil in the two studies of older

patients with cardiovascular disease [15, 17].

Although pooling of studies that were all similar

in design would have mitigated the problems

associated with study heterogeneity, the

realities of clinical development programs

make this an unavoidable limitation of dealing

with these data sets.

In conclusion, our findings are consistent

with those of conventional, hypothesis-driven
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analyses that dapagliflozin offers significant and

predictable clinical benefit across all groups of

patients, from treatment naı̈ve to those

requiring high doses of insulin [24, 25].

Furthermore, we suggest that this hypothesis-

independent approach may be applied to other

drugs for which substantial clinical data are

available.
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