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ABSTRACT

The loss of or decreased functional pancreatic β-cell is a
major cause of type 1 and type 2 diabetes. Previous
studies have shown that adult β-cells can maintain their
ability for a low level of turnover through replication and
neogenesis. Thus, a strategy to prevent and treat dia-
betes would be to enhance the ability of β-cells to
increase the mass of functional β-cells. Consequently,
much effort has been devoted to identify factors that can
effectively induce β-cell expansion. This review focuses
on recent reports on small molecules and protein fac-
tors that have been shown to promote β-cell expansion.

KEYWORDS pancreatic islet, β-cell, cell proliferation/
replication/expansion, cell signaling

INTRODUCTION

The prevalence of the diabetic population in the United States
is 29.1 million or 9.3% of the total population as shown in a
recent National Diabetes Statistics Report (CDC, 2014). In
China, the overall prevalence of diabetes is 11.6% in the adult
population (Xu et al., 2013). Clearly diabetes is becoming a
serious worldwide health problem as currently 350 million
individuals in the world suffer from diabetes (Vetere et al.,
2014). The lack of functional pancreatic β-cells leads to dia-
betes. Therefore, a better understanding of how an appropri-
ate number of functional β-cells is generated and maintained
shall help develop strategies for diabetic treatment. Three
major approaches for increasing β-cell mass involve induction
ofβ-cell proliferation, enhancement ofβ-cell viability andβ-cell
reprogramming (Vetere et al., 2014). This review intends to
focus on regulation of β-cell proliferation. While some studies

indicate that adultβ-cell replication or neogenerationwas hard
to detect (Gunasekaran et al., 2012; Guardado-Mendoza
et al., 2012; Cavelti-Weder et al., 2013; Xiao et al., 2013a, b),
an increase of β-cell mass has been reported under a non-
diabetic obesity condition (Klöppel et al., 1985), and in other
studies in animals (Hull et al., 2005; Bock et al., 2003) and in
humans (Heit et al., 2006; Rahier et al., 2008; Hanley et al.,
2010; Saisho et al., 2013). During pregnancy, an increase of
β-cell mass was also observed, which produced more insulin
to set off insulin resistance (Sorenson andBrelje, 1997; Toselli
et al., 2014). Moreover, adult β-cell proliferation was found in
pancreas impaired through pancreatectomy and partial duct
ligation (Dor et al., 2004; Peshavaria et al., 2006; Nir et al.,
2007; Xiao et al. 2013a, b). Therefore, adult β-cells appear to
be still capable of proliferation. Finding ways to enhance such
capacity to expand β-cell mass shall provide important strat-
egies for diabetic treatment.

Previous studies have led to the identification of many
chemical compounds and biological factors that can
increase β-cell mass and some recent reviews have looked
into β-cell proliferation control through intracellular signaling
(e.g. Kulkarni et al., 2012; Bernal-Mizrachi et al., 2014). This
review focuses on small molecules and protein factors that
are known to have an effect on the induction of β-cell
expansion but their mechanisms of action still require further
investigations (Fig. 1).

γ-AMINOBUTYRIC ACID

The γ-aminobutyric acid (GABA) is a product derived from the
amino acid glutamate (Fenalti et al., 2007). Extracellular
glutamate enters β-cells through the glutamate transporter-1
(GLT-1), and is then converted to GABA (Adeghate and Po-
nery, 2002). GABA can be secreted by β-cells and acts as an
autocrine through a positive feedback loop in pancreatic
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β-cells (Braun et al., 2010). It is reported that inflammation
can increase β-cell proliferation (Sherry et al., 2006), andGABA
could inhibit inflammation which probably partially counter-
acted its ability to induce proliferation (Song and Park, 2014).
However, Tian et al. (2013) observed that GABA increased
β-cell mass through enhanced survival and proliferation of
β-cells. In rodents, GABA increased β-cell proliferation and
suppressed apoptosis through up-regulated BCL-XL and
dampened Caspase-3 (Ligon et al., 2007). Excitingly, it has
been reported that GABA restores β-cell mass and reverse
diabetes in GABA-injected mice (Soltani et al., 2011).

THYROID HORMONE

The relationship between iodothyronine and diabetes has
been studied since 1980’s. Decreased serum T3 was
observed after insulin was withdrawn in juvenile type diabetic
patients (Madsbad et al., 1981). It was reported that thyroid
hormones reduce glucose tolerance both in animals and in
humans (Lenzen and Bailey, 1984). To determine whether
thyroid hormones play a role in β-cell proliferation, Ximenes
etal. (2007) reported thathighconcentrationofT3 (>250µmol/L)
attenuated β-cell proliferation, increased apoptosis and
decreased the secretion of insulin, while physiological con-
centrations of T3 have no negative effects on the function and
survival of β-cells. However, more studies have shown that
thyroid hormone plays a positive role in regulating β-cells
mass. T3 has been shown to reduce the risk of type 1 diabetes
in autoimmune prone BB rats (Hartoft-Nielsen et al., 2009).
Furthermore, T3 treatment increased β-cell mass in Wistar
rats. T3 has also been shown to induce the proliferation of

β-cell through the MAPK pathway and enhance the secretion
of insulin (Kim et al., 2014). Aguayo-Mazzucato et al. (2013)
reported that thyroid hormone promotes β-cell development
through Mafa, which is a key transcription factor of β-cell dif-
ferentiation (Kaneto et al., 2008; 2009). Rat pancreatic β-cell
lines (RIN5F) treated with T3 induced cell proliferation, and
further research shows the Cyclin D1/CDK/Rb/E2F pathway
was involved in the process of β-cell replication. Furthermore,
intra pancreatic injection of TRα led to an expansion of the
β-cell mass in diabetic mice (Furuya et al., 2013). Moreover,
ligand-bound thyroid hormone receptor TRα is involved in the
reprogramming of pancreatic acinar cells into insulin-produc-
ing cells via activation of PI3K signaling (Furuya et al., 2013).

TREFOIL FACTORS

Trefoil factors 2/3 (TFF2 and TFF3) are members of the
trefoil family which are expressed in gastrointestinal mucosa.
TFF3 is expressed in fetal human and newborn rat pancreas.
Strong expression of TFF3 was found in islets and some
pancreatic duct cells. There was significant expression of
TFF3 mRNA in human islet samples examined. Exogenous
TFF3 promoted islet cell attachment and migration, but had
no effect on proliferation (Jackerott et al., 2006). However,
over-expression of TFF3 in a RIN cell line and rat islets using
recombinant adenovirus lead to an increased proliferation
which can be arrested by knockdown of TFF3 using siRNA.
Mediated by SDF-1α/CXCR4 signaling, another family
member TFF2 promotes cell proliferation through increasing
ERK1/2 phosphorylation in rat INS-1 cells, mouse MIN6
cells, and mouse islets (Orime et al., 2013). As TFF2 is not
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Figure 1. Several factors summarized in this review act through intracellular pathways to elicit β-cell expansion by

enhancing cell proliferation and/or reducing cell death. In the case of FTY720, its effect on β-cells appears to be mediated

through activation of immune cells in the lymph nodes. For the most part, molecular mechanisms of these pathways remain to be fully

elucidated. GABA: γ-aminobutyric acid; OC: osteocalcin; OEA: oleoylethanolamide; S1P: sphingosine-1-phosphate; TEF: trefoil

factor; TH: thyroid hormone; GPCR: G protein-coupled receptor. Gprc6a: the G protein-coupled receptor family C group 6 protein; GK:

glucokinase. GK activators are small chemical compounds.
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expressed in pancreatic islets (Jackerott et al., 2006), cir-
culating TFF2 may enhance pancreatic β-cell expansion by
interacting with its receptor. The serum TFF2 levels are
reportedly increased during pregnancy (Samson et al., 2008;
2011). Thus, TFF2 might contribute to pancreatic β-cell
expansion during pregnancy.

OSTEOCALCIN

Osteocalcin (OC) is a Vitamin K-dependent protein secreted
in the late differentiation stage of osteoblasts. It has been
considered as an endocrine hormone because of its ability to
reduce insulin sensitivity, decrease fat mass, and induce
release of glucagon-like peptide-1 and thereby stimulate
insulin secretion (Lee et al., 2007; Ferron et al., 2008;
Mizokami et al., 2013). Through a molecular genetic
approach, Wei et al (2014) have recently found that osteo-
calcin stimulates β-cell proliferation in the pancreas via a
Cyclin D1-dependent mechanism utilizing the G protein-
coupled receptor family C group 6 protein (Gprc6a). This
stimulation occurs during the peak of β-cell proliferation,
which occurs in the perinatal period, and in adult mice.
Moreover, they described the effects of daily osteocalcin
injections in obese type 2 diabetic mice, reporting an
increase in the number of mitochondria in skeletal muscles
and an increase in energy expenditure. It indicates that
osteocalcin can increase muscle work by increasing insulin
sensitivity. Elucidation of how OC/Gprc6a signaling pro-
motes β-cell proliferation may provide a novel approach for
diabetes treatment (Wei et al., 2014).

GPR119 AND S1P RECEPTOR

G protein-coupled receptor 119 (GPR119) is expressed in the
pancreas in rodents and humans. A selective small molecular
GPR-119 agonist, PSN632408, can reduce food intake and
body weight gain in rodents through increasing intracellular
cAMP levels (Overton et al., 2006). PSN632408 and an
endogenous ligand of GPR119, oleoylethanolamide (OEA),
can stimulate β-cell replication in mouse islets in vitro. OEA
and PSN632408 improved mouse islet graft function in dia-
betic mouse insulin-positive/BrdU-positive β-cells. OEA and
PSN632408 treatment increased active GLP-1 levels in mice
plasma (Gao et al., 2011). The ability of PSN632408 to
stimulate β-cell replication in cultured mouse islets and in vivo
has been recently demonstrated (Ansarullah et al. 2013).

Many of the immune suppressive drugs are toxic to
β-cells. Because of this, their clinical administration after islet
transplantation for type 1 diabetes was limited. However,
Truong and collegues found that FTY720, an immune sup-
pressor that modulates sphingosine-1-phosphate receptor
(S1PR, a G protein-coupled receptor) activity, did not impair
human islet function in vitro or in vivo (Truong et al., 2007).
Interestingly, treatment with FTY720 can prevent the onset of
diabetes in an animal model of human type 1 diabetes by
activating immune cells in the lymph nodes (Jörns et al.,

2010). Moreover, oral administration of FTY720 to obese
mice can increase β-cell mass and blood insulin levels. This
function is mediated by decreasing the cyclin-dependent
kinase inhibitor p57 (KIP2) level, and at the same time,
increasing the cyclin D3 level (Zhao et al., 2012). By inhib-
iting β-cell apoptosis, FTY720 can retain β-cell mass and
prevent damage of pancreatic islet (Moon et al., 2013).
Through finding ultra-structural changes in pancreatic β-cells
after treatment with anti-TCR and FTY720 in type 1 diabetic
rats, a similar improvement of β-cell viability has been
observed (Jörns et al., 2014).

GLUCOKINASE ACTIVATORS

Glucokinase (GK) activator is effective in lowering blood
glucose concentration not only by the enhancement of glu-
cose uptake in the liver but also by the secretion of insulin
from pancreatic β-cell (Park, 2012). Activation of glucokinase
by small chemical compound promotes pancreatic β-cell
proliferation. When treated with GKA50, a GK agonist, INS-1
β-cell proliferation increased at basal levels of glucose. This
effect is mediated by the IRS-2/PI3K/PKB pathway. More-
over, GKA50 was found to prevent INS-1 cell apoptosis under
the impairment of chronic high glucose conditions (Wei et al.,
2009). YH-GKA, another GK activator, also increased the
INS-1 β-cell number by up-regulating IRS-2 and subse-
quently activating AKT/PKB. IRS-2 down-regulation can
decrease the proliferation effect of YH-GKA. YH-GKA indu-
ces ATP content and citrate synthase activity which blocks
β-cell apoptosis (Oh et al., 2014). Importantly, GKA was
shown to be sufficient and effective in promoting β-cell pro-
liferation in mice (Salpeter et al., 2010). Positive impact of GK
agonists on promoting β-cell proliferation and preserving
β-cell mass has been shown in aging mice and diabetic rat
models (Stolovich-Rain et al., 2012; Futamura et al., 2012).

OTHER FACTORS

Betatrophin has been shown to induce β-cell proliferation in
a mouse model of insulin resistance on the basis of gain-of-
function evidence derived from over-expression of betatro-
phin in the mouse liver (Yi et al., 2013). Betatrophin is mainly
expressed in the liver and fat and its plasma level is asso-
ciated with β-cell proliferation in insulin resistance mice and
the mouse model during gestation. Treatment with an insulin
receptor antagonist S961 elicited insulin resistance and led
to an incremental quantity of betatrophin. Blocking the insulin
receptor with a high dose of S961 led to the mice glucose
intolerant and an increase in β-cell replication. However, a
recent study using both betatrophin knockout and over-
expression approaches indicate that betatrophin does not
control β-cell expansion (Gusarova et al., 2014). β-Cells from
individual mice appear to have a broad range of responses
to betatrophin and redundancy may exist that could com-
pensate for the loss of betatrophin function (Yi et al., 2014).
In any event, further investigation is needed to clarify
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whether betatrophin can indeed play a role in regulating
β-cell expansion together with other factors.

Some other factors have been reported to be able to
induce β-cell proliferation. Early studies revealed that a lectin
from Agaricus bisporus (mushroom) (ABL) causes a dose-
dependent inhibition of tumor cell proliferation (Yu et al.,
1993; 1999). Surprisingly, a recent research found that ABL
administration promoted β-cell proliferation (Wang et al.,
2012). It is unclear how ABL has opposite effects on tumor
cell and β-cell proliferation.

The IGF-1 receptor (IGF1R) has become a therapeutic
target for cancer treatment. The efficacy of OSI-906, a dual
inhibitor of IGF1R and insulin receptor, was found to elicit
β-cell proliferation to increase β-cell mass in male mice
(Shirakawa et al., 2014). While insulin signaling in β-cells
was not affected by OSI-906, how OSI-906 treatment leads
to β-cell expansion needs to be further investigated.

Using a high throughput primary β-cell replication assay,
two adenosine kinase (ADK) inhibitors, 5-Iodotubercidin and
ABT-702, have been identified and shown to increase β-cell
mass (Annes et al., 2012).

Finally, a unique compound epoxypukalide was reported
to induce a 2.5-fold increase in β-cell proliferation, through
activation of the ERK1/2 signaling pathway and up-regula-
tion of Cyclin D2/Cyclin E. Epoxypukalide did not attenuate
glucose-stimulated insulin secretion in rat islets (López-Ac-
osta et al., 2013). The mechanism of epoxypukalide action
remains to be elucidated.

CONCLUDING REMARKS

Until now, there is no promising medication for expanding
β-cell mass for diabetic treatment. However, strong evidence
has been accumulated to support that β-cell proliferation
could be enhanced by small chemical compounds or extra-
cellular factors in animal models (Fig. 1). As β-cell prolifer-
ation was detected in a surgically resected pancreas from an
89-year-old with recent-onset diabetes (Meier et al., 2006),
this observation encourages further exploration of strategies
to promote adult β-cell expansion as a therapeutic approach
for treatment of diabetes.

Clearly much more efforts are needed to identify small
molecules and protein factors that can explicitly elicit
human pancreatic β-cell regeneration. Along this line, it is
important to keep in mind that significant differences exist
between human and other animals such as mice and rat.
Therefore, tests must be further conducted with β-cells in
cultured human pancreatic cell lines or islet tissues if a
factor is initially discovered and studied in animals. More-
over, any potential therapeutic factors should be able to
effectively target β-cells in vivo to minimize possible side
effects.

Because cell proliferation is typically regulated through
intercellular signaling, many growth factors and hormones
have been tested for their ability to influence β-cell prolifer-
ation. For example, osteocalcin produced by osteoblasts in

the bone acts as a hormone to stimulate β-cell proliferation in
the pancreas (Wei et al., 2014). Similarly, there are other
hormones such as prolactin and thyroid hormone increased
in gestation, and leptin increased in adiposity to elicit β-cell
proliferation.

While it is challenging to identify novel substances that
increase β-cell mass, efforts have been made to test some
existing medications such as antioxidants, immune-sup-
pressants, and even anti-cancer drugs, for their effect on
β-cell expansion. Interestingly, an inhibitor for both IGF
receptor and insulin receptor can effectively expand β-cell
mass (Shirakawa et al., 2014). It remains to be clarified as
to how this inhibitor of IGF/insulin signaling, a potent
growth-promoting pathway, acts to enhance β-cell prolifer-
ation and survival. Not surprisingly, most of these drugs
exhibited shortcomings with regards to their specificity and
efficiency.

Currently, most of the β-cell research focuses on indi-
vidual factors for their effect on β-cell expansion. However,
β-cell expansion occurs in a complex patho-physiological
background and therefore, multiple factors should be
considered to simultaneously interfere with several steps
or pathways to enhance β-cell proliferation. For example, a
recently discovered novel hormone, irisin, was deemed to
cross-talk with betatrophin in the process of β-cell regen-
eration and dedifferentiation (Boström et al., 2012; San-
chis-Gomar and Perez-Quilis, 2014; Zhang et al., 2014). It
would be interesting to learn how such inter-molecular and
inter-pathway interactions affect β-cell expansion.

Notably, β-cells can proliferate while retaining their dif-
ferentiated phenotypes in vivo. This fact provides another
facet to reflect the complexity of β-cell proliferation in vivo.
Given all that, in the future we might need a “cocktail” pro-
gram to realize the efficiency and safety of β-cell regenera-
tion for dealing with diabetes. Although we are facing a hard
situation, obviously, we are on the right path.
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