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Abstract We study stationary incompressible fluid flow in a thin periodic porous medium.
The medium under consideration is a bounded perforated 3D-domain confined between
two parallel plates. The distance between the plates is δ, and the perforation consists of ε-
periodically distributed solid cylinders which connect the plates in perpendicular direction.
Both parameters ε, δ are assumed to be small in comparison with the planar dimensions of
the plates. By constructing asymptotic expansions, three cases are analysed: (1) ε � δ, (2)
δ/ε ∼ constant and (3) ε � δ. For each case, a permeability tensor is obtained by solving
local problems. In the intermediate case, the cell problems are 3D, whereas they are 2D in the
other cases, which is a considerable simplification. The dimensional reduction can be used
for a wide range of ε and δ with maintained accuracy. This is illustrated by some numerical
examples.

Keywords Thin porous media · Asymptotic analysis · Homogenization · Darcy’s law ·
Mixed boundary condition · Stress boundary condition · Permeability

Introduction

There exist several mathematical approaches, collectively referred to as homogenization
theory, for deriving Darcy’s law (see e.g. Allaire 1989; Hornung 1997; Lions 1981; Sanchez-
Palencia 1980; Tartar 1980 and the references therein), as well as methods based on phase
averaging (Whitaker 1986). The present paper is devoted to deriving Darcy’s law corre-
sponding to incompressible viscous flow in a thin porous medium (TPM) by the multiscale
expansion method which is a formal but powerful tool to analyse homogenization problems.
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The TPM considered involves two small parameters: the interspatial distance between
obstacles ε and the thickness of the domain δ. More precisely, we consider pressure-driven
flow through a periodic array of vertical cylinders confined between two parallel plates. The
parallel plates make the geometry different from those studied in Chen and Papathanasiou
(2008), Gebart (1992), Hellström et al. (2010), Hwang and Advani (2010), Jourak et al.
(2013), Koch and Ladd (1997), Hellström et al. (2010), Lundström and Gebart (1995), San-
gani and Yao (1988). A representative elementary volume for such TPM is a cube of lateral
length ε and vertical length δ. The cube is repeated periodically in the space between the
plates. Each cube can be divided into a fluid part and a solid part, where the solid part has
the shape of a vertical cylinder (of length δ). Hence the permeability of this TPM, denoted
by K εδ, depends on both ε and δ as well as the geometry of the inclusions.

Pressure-driven flow within the plane of a confined thin porous medium takes place in
a number of natural and industrial processes. This includes flow during manufacturing of
fibre reinforced polymer composites with liquid moulding processes (Frishfelds et al. 2011;
Nordlund and Lundström 2008; Tan and Pillai 2012), passive mixing in microfluidic systems
(Jeon and Shin 2009) and paper making (Lundström et al. 2002; Singh et al. 2015).

Boundary value problems involving several small parameters are delicate to analyse as
letting the parameters tend to zero at different rates may cause different asymptotic behaviour
of the solutions. Therefore, one must distinguish three kinds of TPM whether ε tends to zero
slower, faster or at the same rate as δ:

VTPM The very thin porous medium is characterized by δ(ε) � ε, i.e. the cylinder height
is much smaller than the interspatial distance. The permeability tensor of VTPM
satisfies K εδ ∼ δ2(ε)K 0 as ε → 0, where K 0 depends only on the microgeometry.

PTPM The proportionally thin porous medium is characterized by δ(ε)/ε ∼ λ, where
λ is a positive constant. For example, this is the case when the cylinder height is
proportional to the interspatial distancewithλ denoting the proportionality constant.
The permeability tensor of PTPM satisfies K εδ ∼ δ2(ε)K λ as ε → 0, where K λ

depends on both λ and the microgeometry.
HTPM The homogeneously thin porous medium is characterized by δ(ε) � ε, i.e. the

cylinder height is much larger than interspatial distance. The permeability tensor
of HTPM satisfies K εδ ∼ ε2K∞ as ε → 0, where K∞ depends only on the
microgeometry.

In all three cases, the asymptotic (or homogenized) pressure pλ is governed by a 2D Darcy
equation

∇ · (K λ∇ pλ) = 0 (0 ≤ λ ≤ ∞) (1)

satisfying a Dirichlet condition. The permeability tensor K λ is found by solving local bound-
ary value problems, so-called cell problems, that involve neither ε nor δ. However, the local
problems are different in each case. In the intermediate case (PTPM), the cell problems
are three-dimensional and the coefficient of proportionality λ appears as a parameter in the
equations. In the extreme cases (VTPM and HTPM), the cell problems are two-dimensional,
which is a considerable simplification compared with the intermediate case. VTPM and
HTPM can also be considered as limiting cases of the intermediate case. Indeed, if (scaled)
permeability K λ is regarded as a function of λ and

K 0 = lim
λ→0

K λ, K∞ = lim
λ→∞ λ2K λ
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Darcy’s Law for Flow in Periodic Thin Porous Media… 475

then K 0 and K∞ are the permeabilities corresponding to VTPM and HTPM, respectively.
This relation is confirmed theoretically both by constructing asymptotic expansions in λ and
by solving the cell problems numerically.

Mathematically the VTPM regime is analogous to flow in a Hele-Shaw cell. But this
approximation is only valid for λ � 1, i.e. when the distance between the plates is much
smaller than the interspatial distance between the obstacles.Asλ increases this approximation
deviates more and more from the generic PTPM regime. Hele-Shaw flows have been studied
by many authors, see e.g. Batchelor (1967), Saffman and Taylor (1958), Sherman (1990),
Taylor (1967). For beautiful pictures of streamlines around obstacles between parallell plates,
see the book Van Dyke (1982).

Flow past an array of circular cylindrical fibres confined between two parallel walls has
been studied by Tsay andWeinbaum (1991), who extended a result obtained by Lee and Fung
(1969). Their analysis is based on an approximate series solution of the Stokes equation.
They claim that this solution describes the transition from the Hele-Shaw potential flow
limit (corresponding to VTPM) to the viscous two-dimensional limiting case (corresponding
to HTPM). However, their analysis does not give a distinct characterization of the PTPM
regime, which is rigorously defined here.Moreover, their method is restricted to the particular
geometry of circular cylinders, whereas our method can be applied to other geometries as
well (see Remark 1).

1 Preliminaries

1.1 Geometry of Media

We consider flow in a thin domain which is perforated by periodically distributed vertical
cylinders. In order to describe the geometry, precisely we introduce the following notation
(which should be read together with Figs. 1, 2, 3). All 3D geometrical objects are denoted
by bold font letters, whereas regular font letters are used for 2D objects (Table 1).

1.2 Differential Operators

We consider fluid flow in the domain Ωεδ. To have a domain that depends on neither ε

nor δ, we shall reformulate the problem in the domain Ω × Q f by a change of variables.

Fig. 1 Thin and perforated 3D domain Ωεδ . a Ωεδ . b Representative elementary volume
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Fig. 2 Boundary ∂Ωεδ = Sεδ ∪ Γ εδ . a Sεδ . b Γ εδ

Fig. 3 3D and 2D unit cells. a Q f . b Q f

By convention, a point in Ω × Q f is denoted by (x1, x2, y1, y2, z), where (x1, x2) ∈ Ω,

(y1, y2, z) ∈ Q f . For the subsequent analysis, it is convenient to introduce abbreviations for
various differential operators involving these variables.

Remark 1 The present analysis also holds true for any periodic arrangement of axial fibres of
arbitrary cross-sectional shape.We have considered a square array of perpendicular cylinders
for the sake of simplicity. However, it is possible to extend the analysis to inclined, curved
or even crossing fibres. The main restriction is the assumption of periodicity (Tables 2, 3).

Remark 2 The superscript notation for domains and other variables should not be confused
with exponents.

1.3 Mathematical Model and Scaling of Ωεδ into Ωε

An incompressible viscous fluid is well known to be described by the Navier–Stokes equa-
tions, coupled with boundary conditions of various types. We assume no-slip (Dirichlet)
boundary condition on the solid boundary Sεδ and a prescribed stress (Neumann) boundary
condition on the lateral boundaryΓ εδ . More precisely, we consider the Navier–Stokes system
with a mixed boundary condition:

⎧
⎪⎪⎨

⎪⎪⎩

−∇Pεδ + νΔU εδ = (
U εδ · ∇)

U εδ in Ωεδ,

∇ ·U εδ = 0 in Ωεδ,( − Pεδ I + ν
(∇U εδ + (∇U εδ)t

) )
n = −pbn on Γ εδ,

U εδ = 0 on Sεδ,

(2)
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Table 1 Geometrical notation

ε Dimensionless small parameter related to the interspatial distance between the cylinders

δ Dimensionless small parameter related to the thickness of the porous medium

λ Dimensionless parameter, 0 < λ < ∞, ratio between δ and ε in PTPM

Ωεδ Fluid domain of thin porous medium, see Fig. 1a

Ωε Rescaled fluid domain of thin porous medium, Ωε = Ωε1

Ω 2D unperforated fluid domain (independent of ε and δ)

∂Ωεδ Boundary of fluid domain, ∂Ωεδ = Sεδ ∪ Γ εδ

∂Ωε Boundary of rescaled fluid domain, ∂Ωε = Sε ∪ Γ ε

Sεδ Solid boundary of Ωεδ , see Fig. 2a

Sε Solid boundary of Ωε

Γ εδ Lateral boundary of Ωεδ , see Fig. 2b

Γ ε Lateral boundary of Ωε

n Outward unit normal to boundary of fluid domain (Ωεδ, Q f etc.)

Q (0, 1)3, unit cube in R
3 corresponding to representative elementary volume of TPM, see Fig. 1b

Q f Fluid part of unit cube, see Fig. 3a

S Solid boundary of Q f

Q (0, 1)2, unit square in R
2

Q f Fluid part of unit square, see Fig. 3b

S Solid boundary of Q f

R Radius of solid cylinders, 0 < R < 0.5

Table 2 Differential operators

∇δ, Δδ

(
∂

∂x1
, ∂

∂x2
, 1

δ
∂
∂z

)
, ∂2

∂x21
+ ∂2

∂x22
+ 1

δ2
∂2

∂z2

∇x , Δx

(
∂

∂x1
, ∂

∂x2
, 0

)
, ∂2

∂x21
+ ∂2

∂x22

∇y , Δy

(
∂

∂y1
, ∂

∂y2
, 0

)
, ∂2

∂y21
+ ∂2

∂y22

Δxy
∂2

∂x1∂y1
+ ∂2

∂x2∂y2

∇z , Δz

(
0, 0, ∂

∂z

)
, ∂2

∂z2

∇λ, Δλ ∇y + 1
λ
∇z , Δy + 1

λ2
Δz

where ν > 0 is a kinematic viscosity coefficient, pb : Γ εδ → R is an external kinematic
pressure which drives the flow in Ωεδ , Pεδ : Ωεδ → R is the fluid kinematic pressure and
U εδ : Ωεδ → R

3 is the fluid velocity (unknown functions). The function pb is also assumed
to depend only on global variables x1, x2,; hence, it is a macro characteristic of the flow.

As it mentioned before, the first step for studying (2) is to replace the domainΩεδ with one
that is independent of δ. It can be easily done by changing variables x3 → x3/δ. Under such
rescaling, the domain Ωεδ is transformed into the domain Ωε that has the same periodical
structure in x1, x2-directions but with the unit length in z = x3/δ-direction. The boundary
value problem (2) turns to the following one
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Table 3 Other symbols

Pεδ, pεδ (Kinematic) pressure of incompressible fluid (see (2) and (3), respectively)

pλ Homogenized pressure, 0 ≤ λ ≤ ∞
pb Pressure on the lateral boundary

Uεδ, uεδ Velocity field of incompressible fluid (see (2) and (3), respectively)

uλ Homogenized velocity, 0 ≤ λ ≤ ∞
ν Kinematic viscosity of incompressible fluid

Kλ, K 0, K∞ Scaled permeability of PTPM (0 < λ < ∞), VTPM, HTPM, respectively

kλ, k0, k∞ Diagonal elements of Kλ, K 0, K∞ in the case of isotropic permeability

K εδ Permeability of TPM

(Wi , qi ) Solutions of cell problems, i = 1, 2

⎧
⎪⎪⎨

⎪⎪⎩

−∇δ pεδ + νΔδuεδ = (
uεδ · ∇δ

)
uεδ in Ωε,

∇δ · uεδ = 0 in Ωε,( − pεδ I + ν
(∇δuεδ + (∇δuεδ)t

) )
n = −pbn on Γ ε,

uεδ = 0 on Sε,

(3)

where

pεδ(x1, x2, z) = Pεδ(x1, x2, δz),
uεδ(x1, x2, z) = U εδ(x1, x2, δz),

(x1, x2, z) ∈ Ωε.

Remark 3 As one can see, the flow in (2) is driven by the external pressure pb only. We
would like to mention that it is also possible to include the force term in the first equation in
(2), i.e. to consider

−∇Pεδ + νΔU εδ + f = (
U εδ · ∇)

U εδ in Ωεδ,

where f : Ωεδ → R
3 as an external force acting on the unit mass of fluid, e.g. gravitational

force.

2 The Multiscale Asymptotic Expansion Method

We seek a solution (uεδ, pεδ) of (3) in the form of asymptotic expansions. The general idea of
asymptotic expansions is to consider macro- and micro-behaviour of the solution separately,
i.e. to suppose x and y = x/ε to be independent variables. Under such assumptions on x and
y, the unknown functions uεδ , pεδ are presented as series with respect to small parameters δ

and ε.
As it was shown in many classical papers (see e.g. Allaire 1989; Hornung 1997; Tartar

1980), if the velocity of flow is of 0 order (with respect to some small parameter of the domain
geometry), then one should expect an extremely high fluid pressure, and on the contrary, for
0 order fluid pressure the corresponding flow is very slow. Since in our problem (2) the flow
in governed by an external pressure pb which is independent of ε and δ (in other words of 0
order), we assume the same order behaviour for unknown fluid pressure pεδ . This allows us to
start pressure series from 0-order terms for both ε and δ parameters and velocity series—from
higher order terms.
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As announced in the introduction, three different flow regimes can be reached depending
on the relation between ε and δ.

2.1 Proportionally Thin Porous Medium (PTPM)

Suppose that the thickness δ of the original domainΩεδ is proportional to the size of inclusions
ε: δ = λε. Then we are looking for uεδ , pεδ in the following form:

uεδ(x, z) =
∞∑
i=2

εiλi ui
(
x1, x2,

x1
ε

, x2
ε

, z
)
,

pεδ(x, z) =
∞∑
j=0

ε jλ j p j
(
x1, x2,

x1
ε

, x2
ε

, z
)
,

(4)

where (x1, x2) ∈ Ωε, (x1/ε, x2/ε, z) = (y1, y2, z) ∈ Q f and functions ui , p j , i = 2, 3, . . .,
j = 0, 1, . . . are assumed to be the solution of the “extended” system (3) defined on the
domain Ω × Q f :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∞∑
i=0

εiλi
(∇x + 1

ε
∇λ

)
pi

+ ν
∞∑
i=2

εiλi
(
Δx + 2

ε
Δxy + 1

ε2
Δλ

)
ui in Ω × Q f ,

=
∞∑
i=2

εiλi
(
ui · (∇x + 1

ε
∇λ

) ) ∞∑
j=2

ε jλ j u j

∞∑
i=2

εiλi
(∇x + 1

ε
∇λ

) · ui = 0 in Ω × Q f ,

∞∑
i=2

εiλi ui = 0 on Ω × S,

ν
∞∑
i=2

εiλi
((∇xui + (∇xui )t

) + 1
ε

(∇λui + (∇λui )t
))

−
∞∑
i=0

εiλi pi I = −pb I on ∂Ω × Q f .

(5)

Due to periodicity of ω, another natural assumption on ui , p j , i = 2, 3, . . ., j = 0, 1, . . ., is
to suppose them to be 1-periodic with respect to y.

All further results are based on collecting terms in (5) with equal powers of ε. For the
momentum equation, we have

ε−1 : ∇λ p
0 = 0, (6a)

ε0 : − (∇x p
0 + λ∇λ p

1) + νλ2Δλ(u
2) = 0, (6b)

...

and

ε1 : ∇λ · u2 = 0, (7a)

ε2 : ∇x · u2 + λ∇λ · u3 = 0, (7b)

...
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for the conservation of mass (here we have divided equations by λ2). Boundary conditions
provide the following

ui = 0 on Ω × S, i = 0, 1, . . . (8)

for the boundary on micro-scale and

p0 = pb on ∂Ω × Q f , (9a)

−p1 I + νλ
(∇λu

2 + (∇λu
2)t

) = 0 on ∂Ω × Q f , (9b)

...

for the global boundary.

Remark 4 Note that the inertial term does not appear in Eqs. (6a–9b). Inertial effects may
be included by taking higher order terms into account or by choosing a different scaling of
the problem.

Thus (6a) implies that p0 is a function of x alone, i.e. p0 = p0(x), and satisfies (9a) on
∂Ω . From (6b), (7a), (8) and (9b), we get the next system:

⎧
⎪⎪⎨

⎪⎪⎩

− 1
λ2

∇x p0 − 1
λ
∇λ p1 + νΔλ(u2) = 0 in Ω × Q f ,

∇λ · u2 = 0 in Ω × Q f ,

u2 = 0 on Ω × S,

−p1 I + νλ
(∇λu2 + (∇λu2)t

) = 0 on ∂Ω × Q f .

(10)

Taking into account that p0 does not depend on (y, z) ∈ Q f , we can write u2, p1 as a
linear combinations

u2(x, y, z) = 1

ν

2∑

i=1

∂p0(x)

∂xi
W i (y, z),

p1(x, y, z) =
2∑

i=1

∂p0(x)

∂xi
qi (y, z),

(x, y, z) ∈ Ω × Q f , (11)

where (Wi , qi ), i = 1, 2, 3, are 1-periodic (in Q f ) solutions of the following cell problems:
⎧
⎨

⎩

− 1
λ
∇λqi + ΔλWi − 1

λ2
ei = 0 in Q f ,

∇λ · Wi = 0 in Q f ,

Wi = 0 on S.

(12)

Here ei = (δ1i , δ2i , 0), i = 1, 2, 3, and δ j i is the Kronecker delta. One can see that W 3 = 0,
q3 = const since for i = 3 the force term is absent.

Substitution of (11) into (7b) and integration of it with respect to (y, z) over Q f (with
additional factor 1/|Q|) provide Darcy’s law (the term with ∇λ · u3 vanishes because of
periodicity of u3 with respect to y and since u3 = 0 on S):

1

|Q|
∫

Q f

(∇x · u2 + λ∇λ · u3)dydz = 1

|Q|
∫

Q f

∇x · u2dydz

= 1

ν

1

|Q|
∫

Q f

∇x ·
(

2∑

i=1

∂p0(x)

∂xi
W i (y, z)

)

dydz

= 1

ν
∇x · (

K λ(∇x p
0)

) = 0, (13)
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where K λ is the permeability matrix 3 × 3 with components given by the expression

K λ
i j = 1

|Q|
∫

Q f

W i
jdydz, Wi = (Wi

1,W
i
2,W

i
3), i, j = 1, 2, 3. (14)

By multiplying (12) withW j and integrating by parts, one deduces the equivalent expres-
sion for the permeability:

K λ
i j = − λ2

|Q|
∫

Q f

∇λW
i: ∇λW

jdydz, i, j = 1, 2, 3. (15)

In particular, this implies that K λ

K λ =
⎛

⎝
kλ 0 0
0 kλ 0
0 0 0

⎞

⎠ (16)

In further asymptotic analysis, we will concentrate on the form of the permeability matrix
K λ. This is due to the fact that the values for elements of K λ are verified by numerical
calculations in Sect. 3.

2.2 Limit Cases

In this section, two different approaches for analysing VTPM and HTPM are presented.

2.2.1 Asymptotic λ-Analysis (λ → 0)

To pass to the limit λ → 0, we start from (12)
⎧
⎨

⎩

− 1
λ
∇λqi + ΔλWi − 1

λ2
ei = 0 in Q f ,

∇λ · Wi = 0 in Q f ,

Wi = 0 on S,

i = 1, 2, 3. (17)

By changing a variable z → λz, z ∈ (0, 1), one can see that the unit domain Q f is transferred
to the thin cell Q f × (0, λ) with λ → 0 and for Q f × (0, λ) the corresponding momentum
equation has the following form

− 1

λ
∇qi + ΔWi − 1

λ2
ei = 0. (18)

So in fact we deal now with a thin domain and because of it in this section we will use lower
limits different from previous. As one can see from (18), the magnitude of viscous forces
λ−2ei is proportional to λ−2, then the fluid pressure is assumed to balance viscous force, and
now we are looking for the solutions in the following form

Wi (y, z) =
∞∑
j=0

λ jwi, j (y1, y2, z),

qi (y, z) =
∞∑

j=−2
λ j qi, j (y1, y2, z),

(y, z) ∈ Q f . (19)
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As before all functions wi, j , qi, j are assumed to be 1-periodic in the y-directions and to
satisfy the next problem (we multiply the momentum equation with λ2 for the simplicity):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
∞∑

j=−2
λ j+1

(∇y + 1
λ
∇z

)
qi, j+ in Q f ,

+
∞∑
j=0

λ j+2
(
Δy + 1

λ2
Δz

)
wi, j − ei = 0

∞∑
j=0

λ j
(∇y + 1

λ
∇z

) · wi, j = 0 in Q f ,

∞∑
j=0

λ jwi, j = 0 on S,

i = 1, 2, 3. (20)

Recall that q3 and W 3 vanish in Q f . Then expansions for i = 3 in (19) are trivial, and all
termsw3, j , q3, j are also assumed to be zero. So further analysis should be considered mostly
for i = 1, 2 (for i = 3 it is also valid, but all solutions are trivial again).

For different powers of λ in the momentum equation, we get

λ−2 : ∇zq
i,−2 = 0, (21a)

λ−1 : ∇yq
i,−2 + ∇zq

i,−1 = 0, (21b)

λ0 : −
(
∇yq

i,−1 + ∇zq
i,0

)
+ Δz(w

i,0) − ei = 0, (21c)

...

and

λ−1 : ∇z · wi,0 = 0, (22a)

λ0 : ∇y · wi,0 + ∇z · wi,1 = 0, (22b)

...

for the conservation of mass. The last equation in (20) implies

wi, j = 0 on Ω × S, j = 0, 1, . . . (23)

Such collecting terms with equal powers of λ provide the following results:

– w
i,0
3 = 0 (from (22a) and (23)).

– qi,−2 = const and qi,−1 = qi,−1(y), (from (21a) and (21b)).

For the third component in (21c), we have qi,0 = qi,0(y), (since w
i,0
3 = 0). Taking these

facts and boundary condition for wi,0 into account, by integration of (21c) we get

wi,0(y, z) = z(z − 1)

2

(
∇yq

i,−1(y) + ei
)

, (y, z) ∈ Q f . (24)

Integrating (22b) over (0, 1), we also obtain

∫

(0,1)

∇y ·
2∑

j=1

(
∇yq

i,−1(y) + ei
) z(z − 1)

2
dz = 1

12

2∑

j=1

∇y ·
(
∇yq

i,−1(y) + ei
)

= 1

12
∇y ·

(
ei + ∇yq

i,−1
)

= 1

12
Δyq

i,−1 = 0.
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To “extract” boundary conditions, we multiply ∇y · (
ei + ∇yqi,−1

) = 0 by an arbitrary
periodic divergence-free vector function ϕ : Q f → R

3 vanishing on S and integrate over
Q f :

0 =
∫

Q f

∇y ·
(
ei + ∇yq

i,−1
)

ϕdy =
∫

S

(
ei + ∇yq

i,−1
)

ϕndS

−
∫

Q f

(
∇yq

i,−1 + ei
)

∇y · ϕdy = 0,

due to periodicity of ϕ we get
(
ei + ∇yq

i,−1
)

· n = 0 on S.

Returning to (15) and using (24), we obtain the final expression for the permeabilitymatrix
K 0

K 0
i j = 1

|Q|
∫

Q f

w
i,0
j dydz = 1

12|Q|
∫

Q f

(∇yq
i,−1 + ei ) · e jdy, i = 1, 2, 3, (25)

where qi,−1, i = 1, 2, are the 1-periodic solutions of the problem
{

Δyqi,−1 = 0 in Q f ,

(∇yqi,−1 + ei ) · n = 0 on S.
(26)

We recall again that q3,−1 = 0.

Remark 5 Taking into account that the first non-vanishing term in the asymptotic expansion
for the velocity Wi in (19) is of the order λ0, we can conclude from comparison of (15) and
(25) that

K λ ∼ K 0 as λ → 0, (27)

where

K 0 =
⎛

⎝
k0 0 0
0 k0 0
0 0 0

⎞

⎠ . (28)

2.2.2 Asymptotic λ-Analysis (λ → ∞)

For this case, we have 1/λ tending to zero. To use the same technique with respect to a small
parameter, let us introduce σ = 1/λ → 0. After such changes for (12), we obtain

⎧
⎨

⎩

− 1
σ
(∇y + σ∇z)qi + 1

σ 2 (Δy + σ 2Δz)Wi − ei = 0 in Q f ,

(∇y + σ∇z) · Wi = 0 in Q f ,

Wi = 0 on S,

(29)

We use the following 1-periodic (in y-directions) series for qi and Wi , i = 1, 2:

Wi (y, z) =
∞∑
j=2

σ jwi, j (y1, y2, z),

qi (y, z) =
∞∑
j=0

σ j qi, j (y1, y2, z),
(y, z) ∈ Q f . (30)
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As it was mentioned in previous section, all corresponding terms w3, j , q3, j are trivial.
By substituting (30) into (29), we obtain

σ−1 : ∇yq
i,0 = 0, (31a)

σ 0 : − (∇yq
i,1 + ∇zq

i,0) + Δyw
i,2 − ei = 0, (31b)

...

and

σ 1 : ∇y · wi,2 = 0, (32a)

σ 3 : ∇y · wi,2 + ∇z · wi,3 = 0, (32b)

...

for the first and second equations in (29). Boundary conditions are

wi, j = 0 on S ∀ j = 2, . . . (33)

From (31a), we have that qi,0 does not depend on y ∈ Q f .

By integration of (32b) over Q f , we get ∂
∂z

∫

Q f

w
i,2
3 dy = ∫

Q f

∂w
i,2
3

∂z dy = 0, but we can also

integrate with respect to z:

z∫

0

∫

Q f

∂w
i,2
3

∂z
dydz =

∫

Q f

w
i,2
3 dy = 0.

So, wi,2
3 has zero mean value.

Write (31b) in componentwise form:

−

⎛

⎜
⎜
⎝

∂qi,1

∂y1
∂qi,1

∂y2
∂qi,0

∂z

⎞

⎟
⎟
⎠ +

⎛

⎜
⎜
⎜
⎜
⎝

∂2w
i,2
1

∂y21
+ ∂2w

i,2
1

∂y22
∂2w

i,2
2

∂y21
+ ∂2w

i,2
2

∂y22
∂2w

i,2
3

∂y21
+ ∂2w

i,2
3

∂y22

⎞

⎟
⎟
⎟
⎟
⎠

− ei =
⎛

⎝
0
0
0

⎞

⎠ .

Regarding the third component, we multiply it by an arbitrary periodic (with respect to y)
function φ which has zero mean value and integrate with respect to y by parts. It provides us

∫

Q f

(
−∇zq

i,0 + Δyw
i,2
3

)
φdy = −

∫

Q f

∇yw
i,2
3 : ∇yφdy = 0,

since qi,0 = qi,0(z). By substituting φ = w
i,2
3 and using boundary condition for wi,2 on S,

we get

w
i,2
3 = 0.

For the first two components, we have
⎧
⎨

⎩

−∇yqi,1 + Δyw
i,2 − ei = 0 in Q f

∇y · wi,2 = 0 in Q f ,

wi,2 = 0 on S.

(34)
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Also there is no z-dependence in the system above, then it is correct to consider all equations
in 2D-domain Q f (instead of Q f ). Finally for the permeability (15) we have

K∞
i j = 1

|Q|
∫

Q f

wi,2 · e jdy, i, j = 1, 2, 3, (35)

where wi,2, i = 1, 2, are the solutions of
⎧
⎨

⎩

−∇yqi,1 + Δyw
i,2 − ei = 0 in Q f

∇y · wi,2 = 0 in Q f ,

wi,2 = 0 on S
(36)

and w3,2 = 0 again.

Remark 6 Since the first non-vanishing term in σ -expansions for the velocityWi in (30) is of
the order σ 2 = λ−2, from the corresponding expressions (15) and (35) for the permeability
we obtain

K λ ∼ 1

λ2
K∞ as λ → ∞, (37)

where

K∞ =
⎛

⎝
k∞ 0 0
0 k∞ 0
0 0 0

⎞

⎠ . (38)

2.2.3 Very Thin Porous Medium (VTPM)

The case δ � ε can be modelled e.g. by the relation δ = ε2. Since δ is a function of ε, we
simply write uε = uεδ and pε = pεδ. We choose the following series representation for the
solution of (3)

uε(x, z) =
∞∑
i=4

εi ui
(
x1, x2,

x1
ε

, x2
ε

, z
)
,

pε(x, z) =
∞∑
i=0

εi pi
(
x1, x2,

x1
ε

, x2
ε

, z
)
,

(39)

where (x1, x2) ∈ Ωε ,
( x1

ε
, x2

ε
, z

) = (y, z) ∈ Q f .
By the same method as before, we come to the following conclusions:

– p0 = p0(x), p1,2 = p1,2(x, y), u43 = 0;

– u41,2(x, y, z) = z(z−1)
2ν

2∑

i=1
∇x p0(x)

(∇yqi + ei
)
, (x, y, z) ∈ Ω × Q f , where

{
Δyqi,2 = 0 in Q f ,

(∇yqi,2 + ei ) · n = 0 on S.
(40)

– Darcy’s law has the following form:

∇x · (K 0(∇x p
0)) = 0, (41)

where

K 0 = 1

12|Q|
∫

Q f

⎛

⎜
⎝

1 + ∂q1

∂y1
∂q2

∂y1
0

∂q1

∂y2
1 + ∂q2

∂y2
0

0 0 0

⎞

⎟
⎠ dy
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is the permeability matrix.

Remark 7 One can see that the difference between the lowest ε limits for pressure and
velocity series in (39) is of four orders instead of two (compare with (4), (19), (30)). But let
us note that in this case ε is not the smallest parameter. In terms of δ (now the smallest one),
the difference is still of two orders (since ε4 = δ2).

Remark 8 Another important moment is the scale of real permeability. Since in (39) the
lowest term in the velocity expansions is of the order ε4 = δ2, then to obtain the real value
of permeability, the matrix K 0 should be scaled by factor δ2.

2.2.4 Homogeneously Thin Porous Medium (HTPM)

To model case δ � ε, we can suppose e.g. that the square of the thickness δ of Ωεδ is
proportional to ε: ε = δ2. Since ε is a function of δ, we simply write uδ = uεδ and pδ = pεδ.

We consider the following series:

uδ(x, z) =
∞∑
i=4

δi ui
(
x1, x2,

x1
δ2

, x2
δ2

, z
)

, pδ(x, z) =
∞∑
i=0

δi pi
(
x1, x2,

x1
δ2

, x2
δ2

, z
)

, (42)

where (x1, x2) ∈ Ωε ,
(
x1/δ2, x2/δ2, z

) = (y, z) ∈ Q f .
All further manipulations are similar to those which were done in Sect. 2.2.2. Finally, we

obtain

– p0,1 = p0,1(x), u43 = 0;
– u41,2 = u41,2(x, y), p

2 = p2(x, y);
– u4(x, y) = 1

ν

2∑

i=1
∇x p0Wi (y), p2(x, y) =

2∑

i=1
∇x p0qi (y) in Ω × Q f , where (Wi , qi ),

i = 1, 2 are solutions of cell problem
⎧
⎨

⎩

−ei − ∇yqi + ΔyW i = 0 in Q f ,

∇y · Wi = 0 in Q f ,

Wi = 0 on S
(43)

and (W 3, q3) = (0, 0). Originally system (43) was defined in Q f , but one can easy see
that equations above do not depend on z. It means that their solutions are independent
of z also and problem (43) can be considered only for the flat domain Q f without any
contradiction.

– the Darcy’s law can be written in the next form

1

ν
∇x · (K∞∇x p

0) = 0, (44)

where

K∞
i j = 1

|Q|
∫

Q f

W i
jdy, i, j = 1, 2, 3.

By using the similar argumentation as it was presented in previous section (see Remarks 7,
8), we would like to mention that the difference between the lowest terms for pressure and
velocity in (42) is still of two orders with respect to the smallest parameter (which is ε now)
and that the permeability for the real problem is ε2K∞.
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Fig. 4 λ2kλ versus k∞

3 Numerics

In this section, we present some numerical results which illustrate the asymptotic rela-
tions between the intermediate case (PTPM) and the limiting cases (VTPM and HTPM).
All numerical computations were done in COMSOL multiphysics (‘creeping flow’ mod-
ule) which is a software based on the finite element method. The geometries Q f and
Q f (see Fig. 3) are divided into triangular mesh elements of variable size. The mesh was
refined successively until we obtain the required convergence. In the computations presented
below, we used 12,570 elements for the 3D cell problems and 762 elements for the 2D
problems.

In particular, it is shown that K λ ∼ K 0 for small values of λ and that K λ ∼ λ−2K∞
for large values of λ. Recall that cell problems to compute permeability depend only on the
dimensionless parameter λ and the radius R of the cylinder inclusions. Thus we can regard
K 0 and K∞ as functions of R only. For this particular geometry, the permeability tensors
are described by single scalars kλ, k0 and k∞ (see (16), (28) and (38)) in all three cases,
respectively.

Solving the PTPM cell problem (12) in the domain Q f for different radii R =
0.1, 0, 2, 0.3, 0.4 and different λ ∈ [2−8, 24] allows us to compute permeability as a func-
tion of R and λ. In order to compare kλ with the limit cases (k0 and k∞), we also solve the
problems (43) and (26).

In view of (37) kλ ∼ k∞/λ2, for the HTPM-case. Figure 4 shows λ2kλ as a function
of λ for various fixed R, where the dotted lines correspond to k∞ which is a function of
R alone. This suggests that k∞ may be used as a good approximation for λ2kλ for large
values of λ as shown in the above analysis. The relative error in this HTPM-approximation
is displayed in Table 4. It can be observed that the convergence seems faster for larger values
of R.
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Table 4 k∞ versus λ2kλ

R 0.1 0.2 0.3 0.4
λ (k∞ − λ2kλ)/k∞ (relative error, %)

2 30.9 22.3 15.4 8.2

4 15.6 11.2 7.7 4.4

6 10.4 7.6 5.1 2.7

8 7.8 5.6 3.8 2.2

10 6.3 4.5 3.1 1.6

12 5.3 3.8 2.6 1.6

14 4.5 3.3 2.3 1.6

16 4.0 2.9 2.0 1.0
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Fig. 5 kλ versus k0

In view of (27) kλ ∼ k0, for the VTPM-case. Figure 5 shows kλ as a function of λ

for various fixed R, where the dotted lines correspond to k0 which is a function of R
alone. Here a logarithmical scale is used for the λ-axis. This suggests that k0 may be
used as a good approximation for kλ for small values of λ as shown in the above analy-
sis. The relative error in this VTPM-approximation is displayed in Table 5. Here it can
be observed that the convergence seems faster for smaller values of R, as opposed to the
HTPM-case.

In the limit cases, k∞ and k0 are functions that only depend on R (the micro geometry).
These dependencies are shown in Figs. 6 and 7, respectively.
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Table 5 k0 versus kλ

R 0.1 0.2 0.3 0.4
λ (k0 − kλ)/k0 (relative error, %)

2−2 12.5 21.6 32.6 56.1

2−3 6.0 10.5 16.4 30.1

2−4 2.7 5.1 8.2 15.0

2−5 1.3 2.5 4.1 7.5

2−6 0.6 1.3 2.0 3.7

2−7 0.3 0.6 1.0 1.9

2−8 0.2 0.3 0.5 0.9
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Fig. 6 λ2kλ(R) versus k∞(R)

4 Conclusions

Summing up, we have considered flow in a thin porous medium with two small parameters
ε and δ, related to the microstructure and the thickness of the domain. Letting ε and δ tend
to zero at different rates, asymptotic analysis leads to the following results.

For PTPM, VTPM and HTPM, the flow is governed by equations (13), (41) and (44)
correspondingly. These equations are two-dimensional versions of Darcy’s law (third compo-
nents in all equations vanish).We therefore regard K λ, K 0 and K∞ as 2D tensors throughout
this section. The asymptotic behaviour of the flow can be described by the diagrams shown
in Figs. 8, 9, 10. In Fig. 9, pλ, 0 ≤ λ ≤ ∞, is the solution of the well-known 2D Darcy
equation
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Fig. 8 Asymptotic behaviour of Uεδ

{ ∇ · (K λ∇ pλ) = 0 in Ω

pλ = pb on ∂Ω.
(45)

Observe that the Dirichlet boundary condition on ∂Ω in (45) corresponds to the Neumann
boundary condition on Γ εδ in (2). The reverse also holds, i.e. a Dirichlet boundary condition
on Γ εδ in the original problem would imply a Neumann boundary condition in the Darcy
law. Although (45) holds in all three cases, the permeability is fundamentally different in
the limiting cases λ = 0 and λ = ∞ compared to the intermediate case 0 < λ < ∞. More
precisely,
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Fig. 9 Asymptotic behaviour of Pεδ

Fig. 10 Asymptotic behaviour of K εδ

– Darcy’s law for VTPM can be obtained as an asymptotic limit in two different ways
(see flow diagram). This is because the local problems (26) and (40) to compute K 0 are
identical. Here, the permeability is given by

K 0 = − 1

12|Q|
∫

Q f

(
∂q1

∂y1
+ 1 ∂q2

∂y1
∂q1

∂y2
∂q2

∂y2
+ 1

)

dy, (46)

where qi are solutions of the Hele-Shaw type 2D cell problems
⎧
⎨

⎩

Δqi = 0 in Q f

(∇qi + ei ) · n = 0 on S
qi Q-periodic,

(i = 1, 2) (47)
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where e1 = (1, 0) and e2 = (0, 1).
– Darcy’s law for PTPM is obtained by assuming δ = λε (see flow diagram). Here, the

permeability is given by

K λ = 1

|Q|
∫

Q f

(
W 1

1 W 2
1

W 1
2 W 2

2

)

dydz, (48)

where (Wi , qi ) are solutions of the 3D Stokes cell problems
⎧
⎪⎪⎨

⎪⎪⎩

− 1
λ
∇λqi + ΔλWi − 1

λ2
ei = 0 in Q f

∇λ · Wi = 0 in Q f

W i = 0 on S
Wi , qi Q-periodic,

(i = 1, 2) (49)

where e1 = (1, 0, 0) and e2 = (0, 1, 0).
– Darcy’s law for HTPM can also be obtained as an asymptotic limit in two different ways,

as the local problems (36) and (43) to compute K∞ are identical. Here, the permeability
is given by

K∞ = 1

|Q|
∫

Q f

(
W 1

1 W 2
1

W 1
2 W 2

2

)

dy, (50)

where (Wi , qi ) are solutions of the 2D Stokes cell problems
⎧
⎪⎪⎨

⎪⎪⎩

−∇qi + ΔWi − ei = 0 in Q f

∇ · Wi = 0 in Q f

Wi = 0 on S
Wi , qi Q-periodic,

(i = 1, 2) (51)

where e1 = (1, 0) and e2 = (0, 1).

From an engineering point of view, the present analysis shows that the two-dimensional
approaches to computing the permeability of thin porous media must be used carefully. As
given in Tables 4 and 5, the error can be substantial if one uses the 2D cell problems (47)
or (51) instead of (49). Hence it is important to distinguish between three kinds of porous
media, namely VTPM, PTPM and HTPM.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
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