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Abstract Transactionalmemory is a programmingmodel that attempts tomake paral-
lel programming easier. Transactional memory uses either eager (at encounter time) or
lazy (at commit time) validation to check for conflicting accesses between concurrent
transactions, and researchers have been divided over which approach is best. Despite
this, there is little work in the literature evaluating their comparative performance. One
exploration of this topic usingmicrobenchmarks found that lazy outperforms eager and
increases its advantage as contention rises. Furthermore, eager was prone to livelock
when accesses were irregular, which resulted in starvation and low throughput. We
revisit the comparative performance of eager and lazy under contention using a larger
set of microbenchmarks, more complex benchmarks from STAMP, and against multi-
ple state-of-the-art STMs: word-based RSTM, TinySTM and SwissTM. We validate
earlier findings that eager suffers from livelock, especially when accesses are irregu-
lar. This inspired Purge-Rehab: a lightweight mechanism for controlling transaction
restarts in eager validation to reduce livelock and thus improve throughput and reduce
starvation. Compared to lazy validation, Purge-Rehab achieves higher performance in
five benchmarks, similar in four, and is lower in only one, showing that eager valida-
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tion can achieve high performance under contention. Purge-Rehab is implemented in
word-based RSTM, but is applicable to any eager STM.

Keywords Software transactional memory · Eager validation · Lazy validation ·
Conflict detection · Contention management · Livelock · Starvation

1 Introduction

Themany-core revolution challenges programmers to exploit concurrency if theywant
higher performance. Traditional concurrent programming utilizes locks for synchro-
nization and a programmer must explicitly acquire and release locks to safeguard
accesses to shared variables. Explicit synchronization is known to be challenging and
may lead to race conditions, livelock, starvation, or priority inversion, which are diffi-
cult to reproduce and thus difficult to fix. TransactionalMemory (TM) attempts to ease
this challenge by making it easier to develop robust concurrent programs. Sections of
code that access shared variables are marked as transactions, and a runtime automat-
ically checks for conflicts between concurrently executing transactions. If a conflict
is found, one of the transactions is automatically aborted and restarted to resolve the
conflict.

TMs need to validate executing transactions to check if a transaction has a conflict
with any concurrently executing or recently committed transactions. Validation can
be achieved eagerly (at encounter time) or lazily (at commit time). Researchers have
traditionally been divided over which one gives better throughput. For example, some
have contended that eager validation increases transaction throughput as contention
rises because it aborts a transaction upon conflict, whereas lazy validation wastes
work by continuing to execute a doomed transaction until its commit stage and only
then aborts [5,7]. Others have argued the opposite; lazy exploits potential parallelism
more effectively, and that eager’s early aborts lead to livelock between conflicting
transactions rather than higher throughput [21–23]. However, the performance of eager
and lazy are seldom directly contrasted in the literature.

Spear et al. [23] performed a comparative analysis of eager and lazy validation in
Software TM (STM). They found that a carefully designed lazy (i) outperforms eager
under contention, (ii) has the propensity to avoid pathologies that decrease throughput,
and (iii) can avoid starvation through priority scheduling of transactions. On the other
hand, they found that eager (iv) is prone to livelock under contention, which reduces
its throughput, (v) increases aborts, and (vi) benchmarks with irregular access patterns
(pathology benchmarks) encounter severe livelock that results in starvation and near-
zero throughput.

Eager validation monitors for transactional conflicts throughout each transaction’s
lifetime. This enables it to detect conflicts and abort transactions early, which should
reduce wasted work. However, the constant monitoring results in a large period of time
overwhich conflicts can be detected, which has several disadvantageswhen contention
occurs. First, the large period of time increases the opportunity for conflicts to be
detected in the first place, and thus aborts to occur. This may harm performance if
conflicts are detected late in a transaction’s lifetime, because it has already performed
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a significant amount of work that will be discarded if it is aborted. Second, it increases
the chance that an aborted transaction will restart and conflict with the same opponent
again. Many contention managers [8,9,18,19] only abort the opponent, and since the
restarted transaction is the one likely to re-detect the conflict, two transactions may
enter a cycle of conflicts and aborts between each other. Third, it raises the chance
for such conflict cycles amongst several transactions that access heavily contended
data. Together, these issues may induce livelock when an application experiences
contention.

This article presents a technique called Purge-Rehab to reduce livelock in eager by
addressing some of the issues above. In Purge-Rehab, each thread has a queue (called
a rehabQueue) for holding rehabilitation transactions. Livelock is reduced by placing
aborted transactions in the rehabQueue of the conflict-winning transaction’s thread
instead of restarting them immediately. These transactions are restarted sequentially
once the conflict-winning transaction commits, which eliminates the chance for the
two transactions to repeatedly abort one another. Purge-Rehab manages starvation by
processing any transactions in the rehabQueue first. The thread executing the aborted
transaction fetches a new transaction from the application, if available.

We evaluate the performance of eager and lazy using several modern word-based
STMs: RSTM [17], SwissTM [6,24] and TinySTM [25] across five microbenchmarks
and five STAMP benchmarks. Purge-Rehab is implemented on top of eager RSTM
to enable a direct comparison with the state-of-the-art lazy RSTM of Spear et al.
[23], as well as the other STMs. The results validate that eager does struggle when
there is heavy contention, but that Purge-Rehab (i) outperforms lazy in five cases by
1.5x−3x and is competitive in four cases, (ii) averts livelock in benchmarks with
irregular access patterns (pathology benchmarks), (iii) decreases wasted work, and
(iv) manages starvation better than lazy. Only in one case does lazy outperform the
eager STMs. This article shows that it is possible to design eager to be competitive
with lazy, but also that there is no outright winner.

Section 2 introduces TM and illustrates how it is used to parallelize applications.
Sect. 3 details Purge-Rehab’s implementation and design decisions in RSTM. Sec-
tion 4 presents the experimental evaluation, including empirical and statistical analysis,
throughput, wasted work and starvation. Sect. 5 discusses related work, and Sect. 6
concludes the article.

2 Parallelizing with Transactional Memory

TM is a concurrent programming model that eases the programmer burden of exploit-
ing parallelism. The rise of multi-cores has increased the need for software to be
parallelized, which has led to intensified research in TM. Based on database trans-
action theory, TM removes the difficulties in ensuring safe access to shared data by
automatically detecting and resolving concurrent accesses to them.

Herlihy and Moss proposed the idea of Transactional Memory (TM) as a hardware
mechanism [11]. However, its exploitation required hardware-level changes, and these
are typically expensive and time consuming to implement. Later, Shavit and Touitou
proposed Software Transactional Memory (STM) [20], and TM became available as

123



1362 Int J Parallel Prog (2016) 44:1359–1383

a library or language-level construct. This section briefly introduces TM, presents a
simple example that illustrates how TMmay be used, highlights the potential benefits
it offers over classic lock-based synchronization, and briefly covers implementation
details relevant to the contributions of this article.

2.1 Transactional Memory

Safe access to shared data in parallel programs has traditionally required lock-based
synchronization, which is challenging to employ. Lock-based applications may suffer
from race conditions, livelock, deadlock, and priority inversion. These are programmer
errors that may be difficult to reproduce and resolve. In addition, achieving balance
between high scalability and locking overhead through appropriate lock granularity
often requires an experienced hand.

Transactional memory (TM) is a programming model that aims to reduce the
challenges associated with constructing parallel programs using lock-based synchro-
nization. Lomet [14] presented the concept of atomic actions in 1977,which considered
using database transactions for concurrency-safe access to shared data. Database trans-
actions have ACID properties: atomicity, consistency, isolation, and durability. The
first three are desirable for thread-safe access to shared data.

TM introduces language constructs that enable a programmer to specify a section
of code as a transaction. The programmer simply marks as transactions those sec-
tions of code that access shared data, and a runtime layer manages the complexity
of achieving mutual exclusion between concurrent transactions automatically. Thus,
TM guarantees atomicity, consistency, and isolation among transactions, but abstracts
away the implementation of how these guarantees are achieved, which reduces the
effort involved in writing robust parallel programs.

The runtime layer is responsible for conflict detection, and monitors the read and
write accesses of transactions. If a read/write or write/write access to a shared vari-
able is performed by two concurrent transactions, the runtime layer is responsible for
conflict resolution, which typically involves aborting and restarting one of the trans-
actions. Deciding which transaction to abort is determined by a contention manager.
Changes made to shared variables by aborted transactions are reset to the original
values they had before the transaction had started. Transactions that complete their
execution commit and make their changes to shared variables permanent.

2.2 TM Versus Locks

As a small example of the simplicity offered by TM, consider a shared counter x that
should be incremented in a concurrency-safe way. Lock-based pseudo code is shown
in Listing 1, and TM-based pseudo code is shown in Listing 2.

Listing 1 Safe lock-based update of shared variable ’x’.

while (! have_lock(xlock) && numAttempts < maxAttempts )
{
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try_getlock(xlock , 10); // Timeout to avoid deadlock

if (have_lock(xlock)) {
x = x + 1;
release_lock(xlock);
break;

} else {
numAttempts ++;

}
}

if (numAttempts == maxAttempts) {
// Unable to acquire the lock; something went wrong.
// Do any detection , recovery and/or graceful

failure.
}

Listing 2 Safe TM-based update of shared variable ’x’.

atomic {
x = x + 1;

}

The lock-based code burdens the programmer to indicate the specific locks needed
(xlock), and specify a timeout to prevent deadlock. The programmer must then
check if the lock is acquired, and only then perform the update, and remember to
release the specific lock. Additionally, failing to acquire the lock may be indicative of
a failure elsewhere in the application due to a locking related programming error. For
example, another thread may have acquired several locks, including xlock, but then
deadlocked. Depending on the applications specification, the programmer may also
need to write additional code tomanage such a failure, which is not shown in Listing 1.
The challenge of keeping the code correct rises as the code becomes complex, and
accesses more shared data. For example, the programmer must also ensure locks are
acquired and released in the same order by all such critical sections of code.

In TM, the update is simplywrapped in a transaction, shown here using the keyword
atomic. Even this trivial example quickly reveals the simplicity afforded by TM.
The programmer does not have to indicate any specific locks, nor indicate timeouts
to prevent deadlock, nor remember to release the lock, nor write additional code to
handle locking failures. TM provides such safety implicitly.

2.3 Eager and Lazy Validation

Validating the reads andwrites of a transaction for the purpose of conflict detectionmay
be done eagerly or lazily. Eager validation checks accesses as they are encountered,
whereas lazy checks all accesses at the end. If no conflicts exist, then in practice eager
and lazy validation achieve similar performance, as shown in Fig. 4 by the lazy and
eager variants of word-based RSTM. If a conflict exists between two transactions,
then eager validation will detect it early, and abort one of the transactions before it
wastes processor time in executing the remainder of the transaction. However, the
victim transaction may have been aborted prematurely, because it may be the case
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that the opponent itself later aborts, which could have opened the way for the victim
to continue and commit. Lazy validation could waste processor time by executing a
transaction to the end before it detects a conflict, but may also improve performance
by avoiding premature aborts.

There is little work in the literature that attempts to determine whether eager or
lazy achieves higher performance when there is contention between transactions. The
work of Spear et al. [23] presented one of the first comprehensive evaluations, and
determined that while classic lazy STMs did perform poorly compared to eager STMs,
a tuned lazy STM could achieve significantly higher performance than an eager STM.
They motivated the work presented in this article to develop a tuned eager STM that
outperforms lazy STM.

3 Purge-Rehab

This section explains the design and implementation of Purge-Rehab in eager RSTM,
and how it attempts to reduce livelock and starvation. RSTM is used because it is
the only modern word-based, high performance STM that implements both eager and
lazy validation. Implementing Purge-Rehab on top of eager RSTM enables a direct
comparison with the tuned lazy RSTM of Spear et al. [23]. In Sect. 4.2 we show that
the performance of eager and lazy RSTM is very similar when there is no contention.

3.1 Reducing Livelock

Listing 3 Pseudocode of the default RSTM algorithm.

//Main transaction execution loop run by each thread
while (numTx < maxTx && execTime < timeLimit) {

tx = getTransaction ();

while (!tx.isCommitted ()) {

tx.execute ();

if (tx.isAborted ()) {
tx.doAbortProcessing ();

} else {
numTx ++;
tx.doCommitProcessing ();

}
}

}

//Code executed upon conflict detection
loserTx = contentionManager .resolveConflict(myTx ,

otherTx);
loserTx.setAborted(true);

Figure 1 and Listing 3 illustrate how transactions are executed by threads in eager
and lazy RSTM. By default, each thread executes transactions from the benchmark.
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Get transaction from benchmark

Execute transaction

Aborted?

Commit processing Abort processing

No Yes

Fig. 1 Simplified flow of the default RSTM algorithm

A transaction that detects a conflict with another may abort itself or its opponent
by updating a status flag from active to aborted. The thread executing the aborted
transaction observes the status change (not necessarily immediately), performs any
abort processing, and restarts the transaction immediately. If a transaction completes
without any conflicts, its thread performs any required commit processing, which
changes its status to committed. The thread then fetches a new transaction.

Listing 4 Pseudocode of Purge-Rehab in RSTM.

//Main transaction execution loop run by each thread
while (numTx < maxTx && execTime < timeLimit) {

tx = getTransaction ();
tx.rehabID = -1;

while (!tx.isCommitted ()) {

tx.execute ();

if (tx.isAborted ()) {
tx.doAbortProcessing ();
if (tx.rehabID != -1) {

rehabQueue[rehabID ].push(tx)

while (tx = rehabQueue[myThreadID ].pop()
) {
rehabQueue[rehabID ].push(tx)

}

break;
}
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} else {
numTx ++;
tx.doCommitProcessing ();
if (! rehabQueue.isEmpty ()) {

tx = rehabQueue.pop()
continue;

}
}

}
}

//Code executed upon conflict detection
loserTx = contentionManager .resolveConflict(myTx ,

otherTx);
if (loserTx != myTx) {

loserTx.rehabID = myThreadID //ID of winner tx
thread

}
loserTx.setAborted(true);

In eager, one of the reasons for livelock is that encounter time conflict detection
entails a large conflict detection window. Consequently, an aborted and restarted trans-
action may re-conflict with the same opponent if the latter is still active. As contention
increases, transactions may form clusters that repeatedly restart one another over
highly contended shared data. Additionally, several contention management policies
use back off upon detecting a conflict to give the opponent transaction a grace period
to commit before aborting it. However, this keeps the detecting transaction active for
longer, and increases the possibility for livelock further.

In lazy, the conflict detection window is small because it is only done at the end.
Even if a transaction restarts due to a conflict, it is unlikely to conflict with the same
opponent again. The opponent was either near the end of its own execution and aborted
the victim transaction shortly before committing, or had recently committed and made
conflicting changes to shared data that require the victim to restart itself. This implies
that lazy does not suffer from livelock in the same way that eager does.

Figure 2 and Listing 4 show how Purge-Rehab modifies the execution flow of eager
validation to reduce livelock due to repeat conflicts. In Purge-Rehab, each thread has
a rehabQueue for storing conflict-losing (rehabilitation) transactions, and this is
implemented by an Intel Thread Building Blocks [13] concurrent queue. The concur-
rent queues are stored in a global dynamic array, and each thread’s rehabQueue is
indexed by its unique thread ID. Additionally, each transaction’s metadata is expanded
with a field called rehabID to store the index of a rehabQueue, and its default
value is −1.

Upon conflict the winning thread sets its own thread ID in the rehabID field of
the losing transaction, and then aborts it. Once the losing transaction’s thread notices
the status change and completes any abort processing, it uses the rehabID to insert
the aborted transaction in the rehabQueue of the winning thread, and acquires a
new transaction from the benchmark. This prevents two transactions that have already
conflicted with each other from being executed concurrently, and reduces livelock.
Eager RSTM uses invisible reads so a transaction may abort itself at the end of its
executionwhen validating its reads. In this case, if the opponent transaction has already
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Get transaction from benchmark

Execute transaction

Commit processing Abort processing
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Transactions in
rehabQueue? rehabID set? No
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Push aborted transaction
to rehabQueue at rehabID

Move transactions from own 
rehabQueue to rehabQueue 

at rehabID

No

Yes

Pop transaction from
rehabQueue

Fig. 2 Simplified flow of Purge-Rehab in RSTM

committed then the self-aborting transaction does not set its rehabID and restarts as
usual.

3.2 Reducing Starvation

The scheme described above may increase starvation if transactions are left in
rehabQueues for extended periods of time. Purge-Rehab uses two strategies to address
such starvation. First, once a thread commits a transaction, it executes any transactions
in its own rehabQueue before attempting to get a new transaction from the benchmark.
Second, suppose thread 0 executing T1 wins one or more conflicts, aborting oppo-
nents, which are now queued in rehabQueue 0. It then conflicts with transaction T2,
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executed by thread 1, and loses. Transaction T1 will be queued in rehabQueue 1. At
this stage, thread 0 still has rehabilitation transactions in its rehabQueue that lost to
T1. Their execution is delayed while they are in the queue, which increases starvation.
Three approaches are discussed below, which trade-off starvation and livelock, for
executing rehabilitation transactions.

The first approach (not shown) is for thread 0 to immediately pop rehabilitation
transactions from its rehabQueue and execute them until none are left. Intuitively, this
seems to increase starvation the least, because transactions held in a rehabQueue start
executing as soon as the thread commits or aborts its current transaction. However,
this may increase livelock (and thus, starvation) if thread 1 starts executing T1 while
thread 0 concurrently executes rehabilitation transactions (as they had conflicted with
T1 in the past). The second approach (shown) is for thread 0 to move all transactions
in its rehabQueue to the rehabQueue of thread 1 at the same time that it places T1
in that rehabQueue. This prevents livelock from increasing as T1 will not re-conflict
with transactions it has aborted in the past, but at the cost of increasing starvation
for those transactions. However, there may be transactions in the rehabQueue that
were not aborted by T1, and moving them may unnecessarily delay them. The third
approach (not shown) extends the second approach and requires thread 0 to search
through its rehabQueue and move only those transactions that were aborted by T1 to
the rehabQueue of thread 1. As with the second approach, this prevents livelock from
increasing, but only increases starvation for those transactions that were aborted by
T1. The remaining transactions in the rehabQueue of thread 0 will likely be executed
sooner than those aborted by T1, and thus be less starved. However, searching the
rehabQueue makes moving rehabilitation transactions an O(n) operation, whereas it
is O(1) in the second approach as the head of one queue is linked to the tail of other.

All three approaches were implemented and evaluated, and exhibited similar
throughput and starvation results in low contention scenarios since transactions rarely
moved between rehabQueues when using the second or third approaches. Under
high contention however, the second approach achieved noticeably higher through-
put. Analysis showed that rehabilitation transactions re-executed in the first approach
conflicted and aborted several times, while the overhead of the third approach’s
rehabQueue search and pop/push of individual transactions between the concurrent
queues was high. Consequently, the first and third approaches did not reduce starva-
tion noticeably over the second approach, but did reduce throughput. The evaluation
section only presents results from the second approach.

3.3 Cache Locality

It may seem that Purge-Rehab gives away performance by retrying an aborted transac-
tion on a different thread and not exploiting cache locality by retrying on the original
thread. However, in practice there is little cache locality to be exploited: in the ten
benchmarks used in the evaluation , there was a 2% increase in L1 Data misses in the
worst case according to perf. Theoretically, aborted short transactions often have lit-
tle L1 cache locality since the conflicting data invalidates a cache line that may contain
most of the data accessed by the transaction. Retrying such transactions on the same
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thread leads to an L1 cache miss anyway. Longer transactions that use multiple cache
lines often write several times. If contention is high, then it is likely that multiple cache
lines will be invalidated and need refetching, again giving limited L1 cache locality.
In STMs that use undo logs, such as RSTM, cache locality is reduced further upon
abort. Finally, executing a transaction on a different thread means that data will likely
be found in the L2 cache, and the cost of fetching data from there is more than offset
by the reduction in livelock as evidenced by the increase in throughput in the Sect. 4.

3.4 Example Execution

Figure 3 illustrates Purge-Rehab by way of example. Suppose that we have three
threads with IDs 0, 1, and 2. These threads execute three transactions T1, T2 and
T3 respectively. Suppose transaction T2 conflicts with T1 and T3 at different stages
of its execution. Suppose that these conflicts are resolved in favor of T2. Thread 1
sets the rehabID for T1 and T3 to 1, and then aborts them. Threads 0 and 2 notice
the status change, perform abort processing, and insert their transactions (T1 and T3,
respectively) into the rehabQueue at index 1. They then get new transactions from
the benchmark. Once thread 1 commits T2, it checks its rehabQueue at index 1, and
proceeds to pop and execute any transactions found there.

4 Evaluation

This section evaluates the impact of Purge-Rehabon throughput,wastedwork, and star-
vation in ten benchmarks with varying levels of contention. The evaluation compares
eager RSTM, eager RSTM with Purge-Rehab, lazy RSTM, SwissTM, and TinySTM.
All these STMs are considered high-performance.

4.1 Configuration and Benchmarks

RSTM [17] implements object-based and word-based transactional memory. Word-
based RSTM is performance-tuned and consistently outperforms the object-based
implementation by several fold. Purge-Rehab has been implemented and evaluated
in both, but this article presents only the more relevant word-based results. Note that
object-based results favor Purge-Rehab more than the word-based results presented
here, because the object-based lazy is not as tuned as the word-based lazy.

We use the best-performing variants of word-based eager and lazy in RSTM,
which utilize invisible reads, extendable-timestamps and the Patient and Passive con-
tention managers. Four variants are presented: lazy with both contention managers
(Lazy-Patient, and Lazy-Passive), eager with Passive (Eager-PRDisabled), and eager
with Passive and Purge-Rehab (Eager-PREnabled). The Patient contention manager
is designed for lazy, and is not conducive to high performance when used with eager.

Eager RSTM variants (including Purge-Rehab), TinySTM [25], and SwissTM [24]
share similarities in that they are all word-based, lock-based, weakly atomic STMs that
use eager validation, invisible reads, and extendable timestamps. RSTMand TinySTM
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rehabQueue for thread 0 

Transaction T2 conflicts with T1 and T3 and wins in both 
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and themselves go for new transactions.

1         -1        T2-ACTIVE 

2         -1        T3-ACTIVE

threadID     rehabID                  Transaction Status 

    0         -1        T1-ACTIVE 

    1         -1       T2-ACTIVE 

2          1       T3-ABORTED 
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rehabQueue for thread 1 

rehabQueue for thread 2 

rehabQueue for thread 3 

rehabQueue for thread 4 
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2
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4 

n-1 

Fig. 3 Example flow of Purge-Rehab execution

both use a passive contention manager that always aborts the transaction that detects
the conflict. SwissTM uses a two-phase contention manager [6] that uses the same
strategy as RSTMand TinySTMwhen transactions are short (abort the detecting trans-
action), but uses the Greedy strategy [8] for long transactions, which aborts younger
transactions. SwissTM determines transaction length based on the number of writes
performed by a transaction, which is ten by default. Livelock is possible when the pas-
sive contention manager is used since multiple transactions may repeatedly attempt
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Table 1 Microbenchmark parameters

Benchmark Duration (S) Range Modify Lookup

LLThread 10 1024 67 33

RBTree 10 1024 67 33

ListOverwriter 10 1024 67 33

RandomGraph 10 1024 100 0

StridePathology 10 1024 12 88

WWPathology 10 1024 100 0

Table 2 STAMP parameters
Benchmark Arguments

Genome -g16384 -s64 -n16777216

Intruder -a10 -l128 -n262144 -s1

Kmeans -m15 -n15 -t0.00001 -i random-n65536-d32-c16

Labyrinth -i random-x512-y512-z7-n512

Vacation -n50 -q40 -u40 -r128 -t83886

to write to hot data and abort themselves. SwissTM utilzes random back off when a
transaction restarts, and increases the back off period based on the number of times
the transaction has aborted. All RSTM variants including Purge-Rehab utilize undo
logs while SwissTM and TinySTM use redo logs.

The configuration of the ListOverwriter, RandomGraph, RBTree, StridePathology,
and WWPathology (write-write pathology) microbenchmarks are detailed in Table 1,
and are identical to those used by Spear et al. [23]. Genome, Intruder, Kmeans,
Labyrinth, and Vacation from the STAMP benchmark suite [16] are used with the
default ’++’ parameters as shown in Table 2. Only Vacation’s parameters were mod-
ified because (1) less than 0.5% of transactions abort using the default parameters
which is not useful for evaluating performance under contention, and (2) it is simple
to induce higher contention in Vacation by modifying the parameters, which is not
the case for all STAMP benchmarks. Some STAMP benchmarks were not used due to
compilation errors. The experiments are performed on a 2 × 16-core Intel Xeon-E5
system with 64GB RAM, running CentOS 6.3, and compiled with gcc 4.4.6. The
results presented are averaged over ten runs and experiments go up to 32 threads.

4.2 Empirical Study

We first examine the performance of all STMs when there are no conflicts to ascer-
tain if they offer similar throughput and scalability. Figure 4 shows the results from
LLThread, which is a synthetic linked list benchmark where each thread operates on
its own private linked list. There is a marginal difference (3.4%) between RSTM vari-
ants including Purge-Rehab, which suggests that they are all optimized similarly, and
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Fig. 4 LLThread: Each thread has a private linked list in this benchmark so that there are no conflicts, to
show that eager and lazy empirically offer similar throughput

any significant performance difference between them in benchmarks with contention
is likely due to the validation scheme used (eager or lazy). TinySTM outperforms all
RSTM variants by about 33% at all thread counts, and SwissTM does so by about
12%. Consequently, when performance between the STMs varies by these amounts
it could be attributed to the implementation rather than the validation scheme.

Figure 5 presents the speedup of all STMs as contention steadily increases using
the EigenBench [12] contention test. EigenBench can isolate various application
characteristics to test the performance impact of varying a single application char-
acteristic such as contention. Ordinarily, one might choose to increase the work done
by transactions in a benchmark to increase contention. However, it is then unclear how
much performance variation is attributable to increased contention, and how much to
increased transaction length. It can also be complex to determine howmuch extra work
per transaction is needed to increase contention by regular intervals. The EigenBench
contention test enables contention to be varied in isolation, and predictably. It uses
an equation to determine the probability of contention based on certain EigenBench
parameters.

Table 3 shows the parameters used to obtain these results. TheEigenBench approach
to the contention test was to use all the cores on the experimental platform, thus our test
uses 32 threads. Purge-Rehab has a clear advantage over all the other STM variants
that remains consistent across a wide range of contention values. The advantage is
impressive because EigenBench transactions write to random locations in an array,
and the ccNUMA architecture of the experimental platform implies the application is
largely memory-bound. Purge-Rehab’s advantage might increase in compute-bound
applications, or those with better cache locality characteristics, provided there is a
similar probability for conflict as shown in this test. Note that all the STM variants
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Fig. 5 EigenBench contention test to evaluate the performance of STM variants as contention increases.
Contention is the probability of conflict and ranges from 0 to 1.0. Speedup versus a maximum of 32 threads

Table 3 EigenBench
contention test parameters

Pconf is the calculated
probability of conflict using
these parameters, which is
labelled contention in Fig. 5

N lct R1 W1 A1 Pconf

32 0 5 45 256k 0.23

32 0 5 45 196k 0.29

32 0 5 45 128k 0.41

32 0 5 45 96k 0.51

32 0 5 45 64k 0.65

32 0 5 45 48k 0.76

perform similarly as contention reaches its limits of 0 or 1.0, as they represent no
conflicts and all conflicts, respectively.

4.3 Throughput

Figure 6a–e show the throughput results for the microbenchmarks. In combination
with Fig. 7a–e, the microbenchmarks can be divided into three relative groups: high
contention (WWPathology, StridePathology), medium contention (RandomGraph,
ListOverWriter), and low contention (RBTree). The throughput of Eager-PREnabled
degrades comparatively similarly to the other variants when threads are increased
beyond the available 16 cores.

Figure 6a shows results for WWPathology, which contains a doubly-linked list,
and half the transactions start from each end of the list concurrently, writing to each
element until they havewritten to all elements in the list. This benchmark has been used
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(a) WWPathology (b) StridePathology

(c) ListOverwriter (d) RandomGraph

(e) RBTree (f) Genome

(g) Intruder (h) Kmeans

(i) Labyrinth (j) Vacation

Fig. 6 Throughput for microbenchmarks and speedup for STAMP benchmarks. Numbers of threads on
x-axis. Higher is better
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(a) WWPathology (b) StridePathology

(c) ListOverwriter (d) RandomGraph

(e) RBTree (f) Genome

(g) Intruder (h) Kmeans

(i) Labyrinth (j) Vacation

Fig. 7 Abort to commit ratio for all benchmarks under RSTM variants. Numbers of threads on x-axis.
Lower is better
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to show that eager livelocks under high contention and irregular access patterns. Eager
cannot detect all conflicts early since half the transactions start from each end of the list.
Rather, many transactions will abort near the start of their work as they detect conflicts
with other transaction starting at the same side of the list, and then further aborts after
50% of the list has been traversed by a transaction. Lazy RSTM variants outperform
Eager-PRDisabled and TinySTM, with the latter livelocking. Eager-PRDisabled does
not livelock entirely because its undo logs have the impact of backing off on abort.
In SwissTM most transactions switch to the Greedy contention manager because
they are write-heavy, and Greedy’s timestamp-based contention management reduces
livelock caused by the irregular accesses. Disabling the second phase and back-off-on-
abort in SwissTM verified that it exhibited livelock similar to TinySTM (not shown).
However, SwissTM still encounters some livelock due to transactions that detect a
conflict before they can switch to the Greedy contention manager. These transactions
abort and restart, possibly repeatedly. Eager-PREnabled reduces livelockmost because
it rehabilitates aborted transactions immediately, regardless of their length. It offers
the best throughput that is around 2.5× better than lazy RSTM variants, and 5× better
than Eager-PRDisabled.

Figure 6b shows results for StridePathology, which is identical to WWPathology
except that transactions read all elements in the linked list and write to every 8th
element starting from the nth element, which is randomly selected. StridePathology
has a larger proportion of read-write conflicts compared to WWPathology, which are
detected at the end of the transaction due to invisible reads. Write-write conflicts
still exist and the irregular access pattern leads to Eager-PRDisabled having lower
throughput than the lazy RSTM variants. As in WWPathology, TinySTM livelocks,
Eager-PRDisabled undo logs act as backoff on abort to soften livelock, and SwissTM
reduces it further with its two-phase contention manager and randomized back off
upon abort. Eager-PREnabled has a smaller advantage over SwissTM since the use of
invisible reads means that, for many transactions, conflicts are detected later than in
WWPathology, which prevents doomed transactions from being aborted sooner.

Figure 6c shows results for ListOverwriter, where transactionswrite to each element
they encounter in a linked list until they reach a random target element. Although con-
tention is high due to write-write conflicts, the access pattern is regular, and eager can
detect conflicts very early. This is reflected in the results as lazy RSTM variants have
the lowest throughput due to detecting conflicts too late and executing doomed trans-
actions to completion. Throughput differences between the eager STM variants are
similar to those seen in LLThread in Fig. 4. except for Eager-PREnabled which almost
doubles throughput over Eager-PRDisabled. Figure 7c shows that Eager-PREnabled
has far fewer aborts, thus its performance boost is likely a result of reducing the livelock
caused by transactions repeatedly conflicting and aborting.

Figure 6d shows results forRandomGraph,which is anundirectedgraph represented
by adjacency lists (each node has a sorted linked list of its neighbors). Nodes are
stored in a global sorted linked list. Insert operations add a new node to the global
linked list, and connect it to four randomly chosen neighbors by modifying the source
and target nodes’ adjacency lists (the new neighbors are located by re-traversing the
global linked list). Remove operations similarly modify the global linked list and
neighbors’ adjacency lists. Contention in this benchmark is due to the relatively long
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transactions accessing multiple linked lists, and re-traversing the global linked list in
the add operation. Eager-PRDisabled, TinySTM, and the lazy RSTM variants perform
within 20% of each other. The lazy STMs underperform by completely executing
long transactions that are doomed. Eager-PRDisabled and TinySTM restart aborted
transactions, but the likelihood of re-conflicting and re-aborting is high since most
transactions have a long duration. SwissTM is 15–30% higher because its two-phase
manager prevents long running transactions from self-aborting due to conflict with
younger transactions, particularly add operations that re-traverse the global linked
list. Eager-PREnabled improves throughput by about 250% because it is efficient
at reducing wasted work from doomed transactions, and because threads fetch new
transactions upon abort, and it is less likely that the new transactions will access the
same nodes as concurrent transactions.

Figure 6e shows results for RBTree1, in which transactions search down a red-black
tree for a target node, and insert/remove operations additionally modify the tree back
upwards. The downward read-only search phase employs pointer dereferencing,which
consumes a large portion of each transaction’s time. Updates to nodes back up the tree
are faster, since most nodes are in cache. This behavior disadvantages eager STMs
since transactions will perform the time-consuming search using invisible reads, but
then conflict and self-abort while writing during the final stages of the transaction.
Consequently, Lazy-Patient outperforms all eager STMs by around 85%, and Lazy-
Passive by 45%. Eager STMs perform similarly, with TinySTM degrading more than
the others when the number of threads rises beyond the number of cores. Eager-
PREnabled provides little benefit over Eager-PRDisabled since a transaction’s conflict
is detected near the end of the its work, and the opponent will have finished by the
time the conflicting access is retried. This is the only benchmark in which eager is not
competitive with lazy, and is an opportunity for further exploration.

Figure 6f–j show speedup results for the STAMP benchmarks used2. These
benchmarks generally have less contention compared to some of the previous
microbenchmarks so there is less opportunity for Purge-Rehab to have an impact, and
differences between eager and lazy are less prominent. In combination with Figure 7f–
j, the benchmarks can be divided into three relative groups: high contention (Vacation),
medium contention (Kmeans, Intruder), and low contention (Genome, Labyrinth).
Overall an eager STM is always among the top performers, Eager-PREnabled is simi-
lar to or better than lazy RSTM variants in four benchmarks, and has a worst-case drop
of 10% in one benchmark (Intruder–8 threads). In Genome, Intruder, and Kmeans,
SwissTM and TinySTM improve over eager RSTM variants similar to their advantage
in LLThread.

Genome scales to 16 threads and the RSTM variants, including Purge-Rehab, have
almost identical results. Labyrinth is similar with results in a tighter range since the
benchmark is more memory bound. Results for Intruder also follow a similar pat-
tern, with all STMs within 20% of each other, but scaling stops at 8 threads due
to contention. Eager-PREnabled has no advantage over Eager-PRDisabled because

1 SwissTM is missing from RBTree because its results were odd, and it seems to be an implementation
issue.
2 Note to reviewers:Wewere not able to get all STAMP benchmarks to run successfully in our environment.
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transactions write to data at the end, like in RBTree. Additionally, this benchmark has
the shortest transactions [15], and the overhead of Eager-PREnabled rehabilitating
transactions causes a 5% drop in performance compared to Eager-PRDisabled.

Kmeans has small transactions like Intruder so it also scales only to 8 cores, but the
performance difference between the STMs is a little more prominent at 8 threads than
in Intruder due to higher contention in this benchmark. Eager-PREnabled achieves the
highest speedup because transactions write early and regularly, and the accesses are
regular, similar to the situation in ListOverwriter. Eager-PREnabled is 55% higher
than Eager-PRDisabled at 8 threads.

Vacation’s input parameters were changed so that transactionsmodify a larger num-
ber of variables, because this was a simple way to significantly increase contention.
Transactions imitate customers booking cars, flights, and hotels atomically, and effec-
tively read and write random data, so accesses are irregular like WWPathology and
StridePathology, but transactions are shorter and scalability is possible since accesses
are not as pathological. Nevertheless, there are similar trends: TinySTM and Eager-
PRDisabled perform worse than lazy RSTM variants because self-aborting increases
livelock in irregular accesses. SwissTM is better than those eager STMs, again because
its two-phase contention manager prioritizes transactions that write a few locations
without conflicting. However, it drops below lazy at 32 threads because more conflicts
are detected early and fewer transactions get to the second phase of the contention
manager. Eager-PREnabled’s rehabilitation scheme has a significant impact in this
benchmark because, like in RandomGraph, the aborting thread fetches a new transac-
tion, and that has less likelihood of conflicting with concurrent transactions.

4.4 Aborts and Wasted Work

Figure 7 shows the abort to commit ratios in the RSTM variants for the benchmarks.
These are presented to evaluate the impact of Purge-Rehab on wasted work. Only
RSTM variants are presented here to see the direct impact of using Purge-Rehab on
eager RSTM, and how that compares to lazy RSTM. In benchmarks with contention
such asFigure 7a–d, themajor portionofwastedworkperformedbyEager-PRDisabled
is from transactions that repeatedly conflict and abort, whereas by lazy RSTM variants
it is due to executing doomed transactions. Purge-Rehab reduces repeat conflicts in
eagerRSTMto remove livelock, and these results show that the gains in throughput pre-
sented earlier are matched by reductions in wasted work. For example, Fig. 6a showed
Eager-PREnabled outperformed lazy RSTM variants by almost 3x in WWPathology,
and in Fig. 7a there is a matching reduction in wasted work to one-third.

4.5 Starvation

We consider starvation to be any delay experienced by a transaction between its start
and its commit due to repeatedly aborting, backing off on abort, or waiting in a
rehabQueue when Purge-Rehab is used. However, sampling the exact start and end
times of transactions adds considerable overhead, and may be inaccurate for small
transactions. Instead, the percentage of transactions committed by each thread (out of
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100) may be used as a measure of starvation, because any thread with a proportionally
lower commit percentage likely executed transactions that aborted several times before
finally committing. As in the previous section, only RSTM variants are presented here
to see the direct impact of using Purge-Rehab on eager RSTM, and how that compares
to lazy RSTM.

Figure 8 shows the percentage of transactions committed by each thread in a 16-
thread run. In the microbenchmark results eager RSTM variants exhibit less variance
in commit percentages than lazy RSTM variants, and consequently starvation is less
severe. For example, in StridePathology the lazy RSTM variants’ threads commit
percentages range between 0.2 and 15.2%, whereas the eager RSTM variants range
between 5 and 8%. Variance also drops as contention drops, but remains high in lazy
RSTM variants in all benchmarks, except in the low contention benchmark RBTree
where Lazy-Passive has similar variance to the eager RSTMvariants, and Lazy-Patient
has slightly higher variance.

Eager RSTM variants continue to do well across most STAMP benchmarks. Low
contention benchmarks Genome and Labyrinth exhibit little difference in variance,
and Eager RSTM variants have lower variance in Kmeans. Eager-PREnabled seems
to increase variance in Vacation, but this is because the benchmark is designed to
make each thread commit a specific number of transactions, thus it appears all the
other RSTM variants have no variance at all. Since Eager-PREnabled rehabilitates
transactions, some threads execute more transactions than others, which misleadingly
appears as starvation in this case. Intruder is the only benchmark where eager RSTM
variants have visiblyworse starvation than lazyRSTMvariants. Intruder’s transactions
are similar to RBTree’s, and eager RSTM variants also had relatively larger variance
in that benchmark. Variance increases in Intruder because it has higher contention
than RBTree (see Figs. 7e and 7g). Still, this variance is not as pronounced as lazy’s
variance in the higher contention microbenchmarks.

Eager-PREnabled reduces variance in commit percentages over Eager-PRDisabled,
which indicates that it reduces starvation. The rehabQueue was never longer than 20
transactions, which occurred in WWPathology. A fair variant of lazy exists that uses
dynamically increasing transaction priorities to reduce variance in commit percent-
ages. In practice it reduces variance, achieving results slightly worse than the eager
RSTM variants. However, it requires read visibility and experimental results showed
the overhead reduces throughput significantly, making any comparison on starvation
less meaningful.

5 Related Work

Spear et al. [23] consider lazy as the higher performing strategywhen contention occurs
because it avoids pathologies that decrease throughput. They introduce optimizations
to reduce overhead in lazy, and priority scheduling to reduce starvation in lazy. This
article shows that it is possible to tune eager such that it outperforms lazy in a number
of contention cases while maintaining low starvation.

Titos-Gil et al. [26] improve the performance of eager hardware transactional mem-
ory (HTM)under contention, and show that an optimized eagerHTMcould outperform
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Fig. 8 Percentage of transactions committed by each thread in a 16-thread run to analyze starvation
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a lazy HTM. Their approach to optimizing was very different to ours since it was in
HTM. We have shown that an eager STM can be improved to outperform lazy STM
in many cases under contention as well.

Harris et al. [10] introduced a retry mechanism where a programmer may define
a condition for which an aborted transaction must wait before restarting. The thread
executing the transaction blocks waiting for the condition. In contrast, Purge-Rehab is
an automatic scheduling technique that does not require programmer input, and does
not incur the high overheads of blocking and resuming threads.

Bai et al. [3] proposed a key-based technique to put transactions that are likely
to conflict in a single queue for sequential execution. The key calculation requires
application specific information, which may be complex or impossible for several
applications, as well as an overhead on the programmer. Purge-Rehab queues trans-
actions without requiring any application-specific information or programmer input.

Dolev et al. [4] presented CAR-STM, which also maintains per-core queues of
transactions, and enqueues transactions when they conflict, similar to Purge-Rehab.
However, CAR-STMwas not implemented in a state-of-the-art word-based STM, and
its overhead may degrade throughput in such a setting. CAR-STM was only evalu-
ated against eager implementations, and its starvation properties were not considered.
Purge-Rehab has been shown to have lower starvation and higher throughput compared
to lazy, even in cases where lazy previously outperformed eager.

Ansari et al. [1] presented Steal-on-Abort, where transactional jobs are submitted
to thread pools by application threads and are executed asynchronously. Transactions
steal opponents that they abort in order to avoid repeat conflicts. Like CAR-STM,
the thread pool framework may have high overhead when implemented in a high
performance STM, and it was only evaluated against eager implementations.

Wang et al. [27] presented a machine learning derived framework for adapting TM
variables (including validation strategy) at runtime based on offline and online learning
to achieve high performance. Their work is orthogonal to ours, and could be extended
to enable or disable Purge-Rehab.

Yoo and Lee [28] presented Adaptive Transaction Scheduling which sleeps threads
that have been aborting transactions above a user-defined threshold. The threads are
enqueued in a global queue, and threads are resumed sequentially.Atoofian [2] presents
another scheme to sleep/resume threads. LikeHarris’ retrymechanism, the overhead of
sleeping/resuming threads is likely to be too high in performance STMs. Additionally,
neither explore performance with respect to lazy, nor investigate starvation.

6 Conclusion

The performance of transactional memory implementations is constantly being
improved. Towards this end, this article focuses on improving eager validation soft-
ware transactional memory, and shows that eager can be competitive with lazy. Eager’s
large window for detecting conflicts can lead to repeated aborts between transactions,
and this in turn can lead to livelock that degrades throughput. We design Purge-Rehab
to reduce livelock by rehabilitating transactions so that they do not repeatedly abort
each other, and discussed how design alternatives affected starvation.
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We implemented Purge-Rehab in eager RSTM and shown that empirically both
eager and lazyRSTMare implemented to have high throughput and scalability, and that
Purge-Rehab scales better under contention. We reconfirm that pathological bench-
marks do cause livelock in eager STMs, and that Purge-Rehab is efficient at reducing
livelock. Its overhead is low enough for eager to achieve higher throughput than lazy
in several high contention benchmarks, including those that have irregular access pat-
terns. Analysis shows that this is a result of reducing wasted work in repeated aborts.
However, lazy stays on top in the red-black tree benchmark, which is pathological for
any eager STM with invisible reads due to a long read phase followed by a short write
phase in each transaction. Additionally, Purge-Rehab shows resilience to starvation,
whereas lazy is more prone to it.

To the best of our knowledge, this article presents one of the few comparisons
between eager and lazy using modern word-based STMs, and where eager is shown to
outperform lazy in several benchmarks. We hope it encourages further study of how
both eager and lazy validation may be tuned in the pursuit of performance.
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