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Abstract Significant amounts of oil and gas are trapped in

naturally fractured reservoirs, a phenomenon which has

attracted growing attention as production from unconven-

tional reservoirs starts to outpace production from conven-

tional sources. Traditionally, the dual-porosity model has

been used in modeling naturally fractured reservoirs. In a

dual-porosity model, fluid flows through the fracture system

in the reservoir, while matrix blocks are segregated by the

fractures and act as fluid sources for them. This model was

originally developed for liquid flow in naturally fractured

systems and it is therefore inadequate for capturing pressure-

dependent effects such as viscosity–compressibility changes

in gas systems in its original form. This study presents a

rigorous derivation of a gas interporosity flow equation that

accounts for the effects of such pressure-sensitive properties.

A numerical simulator using the gas interporosity flow

equation is built and demonstrates a significant difference in

system response from that of a simulator implementing a

liquid-form interporosity flow equation. For this reason,

rigorous modeling of interporosity flow is considered

essential to decline curve analysis for naturally fractured gas

reservoirs. In this study, we also show that the use of the

proposed gas interporosity flow equation eliminates late-

time decline discrepancies and enables rigorous decline

curve analysis. The applicability of density-based approach

in dual-porosity gas systems is investigated, and the

approach reveals that gas production can be forecast in terms

of a rescaled liquid solution that uses depletion-driven

parameters, k and b. Application of this approach demon-

strated that, at the second decline stage, gas production

profile shifted from its liquid counterpart is identical to gas

numerical responses with gas interporosity flow equation in

effects. The production rates from the pseudo-function

approach and those from simulations implementing the gas

interporosity flow equation for the synthetic reservoirs are

compared against each other, which demonstrated good

matches during decline.

Keywords Gas � Naturally fractured reservoir � Dual-
porosity system � Decline curve analysis � Density-based
approach � Pseudo-functions

List of symbols

Roman

am Radius of spherical matrix (ft)

bD,PSS 1
2
ln 4

ec
A

CAr02w

� �
, pseudo-steady component,

dimensionless

c Compressibility (1/psi)

cf Fracture compressibility plus liquid

compressibility (1/psi)

CA Dietz’s reservoir shape factor, dimensionless

Gi Original gas in place (Mscf)

Gp Cumulative gas production (Mscf)

h Thickness (ft)

k Permeability (md)

m(p) Pseudo-pressure (psia2/cp)

�mðpÞ Average pseudo-pressure in a reservoir (psia2/cp)

MW Molecular weight of gas (lbm/lbmol)

OGIP Original gas in place (Mscf)

p Pressure (psia)

qD Dimensionless flow rate, dimensionless
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qgi
e Initial decline rate for density-based model under

full potential drawdown (Mscf/D)

r Radius (ft)

re External radius (ft)

rw Wellbore radius (ft)

rq Wellbore-to-initial density ratio, dimensionless

R Molar gas constant, 10:73 psia�ft3

lbmol��R

s Laplace variable, dimensionless

SG Specific gravity, dimensionless

t Time, days

ta Normalized pseudo-time, days

T Temperature (�R)
u qmr ð lbcf�ftÞ
Z Compressibility factor, dimensionless

Greek

a Shape factor (1=ft2)

b Time-averaged k, dimensionless
�b Time-averaged �k, dimensionless
�bm Time-averaged �km, dimensionless

bm
*

Time-averaged �k�m, dimensionless

c Euler’s constant, 0.5772156649

h RT
MW

k Viscosity–compressibility dimensionless ratio,

dimensionless
�k Space-averaged viscosity–compressibility ratio for

single-porosity system, dimensionless
�km Average viscosity–compressibility ratio between

average matrix pressure and bottom-hole pressure,

dimensionless

km
* Viscosity–compressibility ratio for matrix fluid,

dimensionless

l Viscosity (cp)

n Interporosity flow coefficient, dimensionless

q Density of fluids, lb/cf

/ Porosity, dimensionless

x Storativity ratio, dimensionless

Subscript

avg Average value in the matrix

D Dimensionless

f Fracture

g Gas

i Initial

l Liquid

m Matrix

sc Standard condition

wf Wellbore condition

Superscript

gas Gas

liq Liquid

Introduction

Naturally fractured reservoirs are widely distributed around

the world. A considerable number of natural gas reservoirs,

both conventional and unconventional, are naturally frac-

tured. As a result of the recent rapid development of

unconventional resources, naturally fractured reservoirs are

supplying increasing amount of oil and gas to the world

markets. Natural fractures result from various reasons such

as tectonic movement, lithostatic pressure changes, thermal

stress, and high fluid pressure. The fractures are either

connected or discrete. Good interconnectivity between

fractures yields fracture network dividing matrix into

individual blocks, which is found in many reservoirs. Fluid

flow in fractures is treated as Darcy flow in these models.

The fractures have large flow capacity, but small storage

capacity. On the contrary, matrix is characterized by small

flow capacity, but large storage capacity. In such a system,

flow throughout the reservoir occurs in fracture system, and

matrix blocks act as source of fluids. Barenblatt et al.

(1960) first proposed a dual-porosity model for liquid flow

in naturally fractured reservoirs. Warren and Root (1963)

subsequently applied Barenblatt’s et al. (1960) theory to

well testing using a pseudo-steady-state interporosity flow

equation, given as follows:

o /mqmð Þ
ot

¼ qm
akm
l

pf � pmð Þ ð1Þ

where /m is matrix porosity, qm is fluid density in the

matrix, a is the shape factor, km is matrix permeability, l is

liquid viscosity, pm is matrix fluid pressure, and pf is

fracture fluid pressure. In this interporosity equation, a is a

constant in Warren and Root’s model, but differs with the

changes in matrix blocks’ shapes. Zimmerman et al. (1993)

demonstrated the rigorous derivation of Eq. 1 and the

shape factor for a slab-like matrix blocks. Lim and Aziz

(1995) used the same approach to generate shape factors

for different matrix shapes.

Equation 1 assumes liquid flow, i.e., a fluid with con-

stant viscosity and constant compressibility, in its devel-

opment. Yet due to the drastic pressure changes that occur

as fluid flows from the matrix to the fractures, Eq. 1 can

prove to be inadequate for modeling interporosity gas flow

in naturally fractured gas systems. A rigorous interporosity

flow equation for gas needs to be in place for the reliable

production data analysis in such systems. Though Eq. 1

does not account for viscosity–compressibility changes in

the fluid, it remains widely applied. For example, a number

of reservoir simulators utilize this equation for reservoir

modeling with viscosity and compressibility evaluated at

the pressure of the upstream one between matrix and

fracture when modeling dual-porosity gas systems.
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Azom and Javadpour (2012) used a modified pseudo-

pressure approach and obtained an adequate matrix–frac-

ture shape factor for interporosity gas flow. They presented

a two-dimensional implicit dual-continuum reservoir sim-

ulator for naturally fractured reservoirs with single-phase

compositional setting. However, implementing the model

required implementing a numerical simulation. Sureshjani

et al. (2012) derived explicit rate-time solution of single-

phase interporosity gas flow assuming quasi-steady-state

flow for dual-porosity system. In the derivation, they

approximated pseudo-time to time when integrating out-

flow from matrix block, and moreover,
lici
lc � p

Z

� ��
p
Z

� �
i
is

assumed. Ranjbar and Hassanzadeh (2011) developed

semi-analytical solutions for nonlinear diffusion equation

in gas-bearing reservoir before back-calculating matrix–

fracture shape factor with the developed solution. How-

ever, the solutions contain two unknown parameters

determined by matching data generated by numerical

simulator for corresponding matrix and fluid type.

Incorporation of the aforementioned interporosity

equation for gas in decline curve analysis needs to be

investigated more thoroughly. State-of-the-art methodolo-

gies of decline curve analysis for naturally fractured gas

reservoirs have been using the liquid-form interporosity

flow equation for development or validation purposes.

Spivey and Semmelbeck (1995), for example, combined

transient radial model, adjusted pressure, and desorption

term together and developed a production-prediction

method for shale gas and dewatered coal seams producing

at constant bottom-hole pressure. Adjusted pseudo-time

and adjusted pseudo-pressure were used instead of real

time and real pressure in the analytical solution for Warren

and Root’s model. This approach produces error less than

10 % when nreD � 1 with a slab-like dual-porosity model.

The study did not specify details on the interporosity flow

equation implemented in the simulator. In addition, a direct

substitution of pseudo-pressure and pseudo-time into the

liquid analytical solution seems not to be supported by the

governing equations.

Gerami et al. (2007) applied pseudo-time and pseudo-

pressure to dual-porosity reservoirs, and, without deriva-

tion, they proposed a pseudo-pressure-based interporosity

flow equation for gas. However, their model verification

did not use a numerical simulator that accounted for an

appropriate gas interporosity flow equation. As a result,

their prediction error increased with increased production

when their semi-analytical results were compared against

results from a commercial simulator.

In this study, a pseudo-steady-state interporosity flow

equation for single-phase gas is rigorously derived. Appli-

cation of the new model is found to enable pseudo-func-

tions-based decline curve analysis in dual-porosity gas

systems. For the case of single-porosity systems, Ye and

Ayala (2012, 2013), and Ayala and Ye (2012, 2013) had

proposed a density-based approach for decline curve anal-

ysis. With depletion-driven dimensionless variables k and b,
Ye and Ayala (2012) was able to rescale dimensionless gas

rate solution under constant bottom-hole pressure from their

liquid counterparts, which thereupon facilitates the decline

curve analysis based on density. Zhang and Ayala (2014a)

provided rigorous derivation for the density-based approach

and improved the methods for analyzing data at variable

pressure drawdown/rate at decline stage (Ayala and Zhang

2013; Zhang and Ayala 2014b). In our study, the applica-

bility of the density-based approach to naturally fractured

systems is investigated and a match is found between den-

sity-based prediction and gas numerical responses with the

application of gas interporosity flow equation.

Pseudo-steady-state interporosity flow equation
for gas

The interporosity flow equation in Barenblatt et al. (1960)

and Warren and Root (1963) was proposed for pseudo-

steady-state liquid flow from matrix blocks to fracture

system. Starting from physical principles, Zimmerman

et al. (1993) derived this interporosity flow equation for

liquid using a spherical matrix shape. The development

procedure assumes the quasi-steady-state approximation,

which treats fracture pressure on the outer boundary, pf, as

constant throughout the derivation. Developed for liquid

flow, the interporosity equation can prove largely inade-

quate for gas flow. Since gas compressibility and viscosity

are pressure-dependent, the gas flow out of the matrix

gridlock experiences large changes in pressure-dependent

properties and presents a markedly different behavior from

that of liquid flow. This difference could be drastic as the

contrast between fracture pressure and matrix pressure

increases. In this study, we develop a different inter-

porosity equation for gas with quasi-steady-state assump-

tion. Following Zimmerman et al. (1993), a spherical

matrix block is assumed throughout the derivation, as

illustrated in Fig. 1.

Pressure on the surface of the sphere is fracture fluid

pressure, pf, and pressure inside the sphere is denoted by pm,

which is a function of the radius and time. The sphere’s

radius is am. Initial pressure throughout the sphere is denoted

as initial reservoir pressure, pi. The diffusivity equation of

gas flow in the matrix block is as follows:

�r � qmumð Þ ¼ o /mqmð Þ
ot

ð2Þ

where um is the Darcy velocity of fluid flow. Substituting

Darcy’s law into Eq. 2 gives:
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r � qm
km

lgm
rpm

 !
¼ o /mqmð Þ

ot
ð3Þ

Assuming an incompressible matrix rock, multiplying

both sides by h, adding the term lgmcgm=ðlgmcgmÞ on the

RHS and substituting dmðpmÞ ¼ 2hdqm=ðlgmcgmÞ gives:

r � kmrm pmð Þð Þ ¼ /mlgmcgm
om pmð Þ

ot
ð4Þ

For a homogeneous and isotropic matrix (constant km),

dividing both sides by /mlgmcgm, and substituting k�m ¼
lgicgi=ðlgmcgmÞ into Eq. 4 gives:

omðpmÞ
k�mot

¼ km

/mlgicgi
r2mðpmÞ ð5Þ

Denoting �k�m as the k�m evaluated average pressure in the

matrix block and substitute b�m ¼ r �k�mdt=t into Eq. 5. This

yields:

omðpmÞ
o b�mt
� � ¼ km

/mlgicgi
r2mðpmÞ ð6Þ

where b�mt is a term equivalent to normalized pseudo-time.

For gas reservoirs, the average reservoir pressure is utilized

to evaluate pseudo-time, which has been proven to work

well during boundary dominated period. Expanding Eq. 6

to spherical coordinates and taking u (r, t) = m (pm) r

gives:

ou

o b�mt
� � ¼ km

/mlgicgi

o2u

or2
ð7Þ

We then take the spherical matrix shape with radius am.

With the fracture surrounding the matrix, the pressure at

the matrix surface is the same as the fracture pressure. The

boundary conditions are written as:

u 0; b�mt
� �

¼ 0 ð8Þ

u am; b
�
mt

� �
¼ ammðpfÞ ð9Þ

uðr; 0Þ ¼ rmðpiÞ ð10Þ

Solving Eqs. 8–10 for mðpmÞ distribution and

calculating the average pseudo-pressure gives (Crank

1975):

mavgðpmÞ � mðpiÞ
mðpfÞ � mðpiÞ

¼ 1� 6

p2
X1
n¼1

1

n2
exp � p2kmn2b

�
mt

lgicgi/ma
2
m

 !

ð11Þ

where mavg(pm) is the average pseudo-pressure throughout

the matrix block. The long-term approximation truncates to

the first term of the infinite series, giving:

mavg pmð Þ � m pið Þ
m pfð Þ � m pið Þ ¼ 1� 6

p2
exp � p2kmb

�
mt

lgicgi/ma
2
m

 !
ð12Þ

Lim and Aziz (1995) validated the long-term

approximation in their derivation for a liquid system.

This approximation is accurate for

p2kmb
�
mt=lgicgi/ma

2
m [ 0:5 as shown in Fig. 8 of their

work. For a wide variety of cases, the approximation is

valid at the decline stage. Rearranging terms in Eq. 12

gives:

6

p2
exp � p2kmb

�
mt

lgicgi/ma
2
m

 !
¼ mðpfÞ � mavgðpmÞ

mðpfÞ � mðpiÞ
ð13Þ

Taking the derivatives of Eq. 13with respect tob�mt gives:

1

mðpfÞ � mðpiÞ
dðmavgðpmÞÞ

d b�mt
� �

¼ 6

p2
exp � p2kmb

�
mt

lgicgi/ma
2
m

 !
p2km

lgicgi/ma
2
m

ð14Þ

Writing dðmavgðpmÞÞ=d b�mt
� �

in Eq. 14 as
dðmavgðpmÞÞ

dt
dt

d b�mtð Þ and substituting d b�mt
� �

¼ �k�mdt into the

resulting equation gives:

1

mðpfÞ � m pið Þ
d mavg pmð Þ
� �

dt

¼ 6

p2
exp � p2kmb

�
mt

lgicgi/ma
2
m

 !
p2km

lgicgi/ma
2
m

�k�m

ð15Þ

Substituting Eq. 13 into Eq. 15 gives:

dðmavgðpmÞÞ
�k�mdt

¼ p2km
lgicgi/ma

2
m

ðmðpfÞ � mavgðpmÞÞ ð16Þ

p2

a2m
is a constant known as shape factor, a, that changes with

the geometry of matrix. Moreover, replacing average

pseudo-pressure in matrix volume, mavg(pm), with point-

Fig. 1 Schematics of a spherical matrix block
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specific matrix pseudo-pressure and substituting �k�m with

k�m since matrix is point-specific as represented by the

governing equations gives:

/m

dðmðpmÞÞ
k�mdt

¼ akm
lgicgi

m pfð Þ � m pmð Þð Þ ð17Þ

The application of the definition of k�m and dðmðpmÞÞ ¼
2hdqm=lgmcgm to Eq. 17 gives:

/m

dqm
dt

¼ akm
2h

ðmðpfÞ � mðpmÞÞ ð18Þ

This interporosity flow equation is rigorously derived for

gas, incorporating the viscosity–compressibility effects. An

important characteristic of this model is the same shape

factor as that in Lim and Aziz (1995) for Warren and Root’s

model. For the slab-like matrix, the shape factor is p2=4L2,
where L denotes fracture half-spacing. Equation 18 is in the

same form as the interporosity flow equation written by

Gerami et al. (2007) without derivation—1 if we consider an

incompressible matrix and fracture and no connate water.

Sureshjani et al. (2012) proposed the same interporosity flow

equation in a different form with a different approach

utilizing two approximations in a different derivation:

lgicgi
lgcg

� p=Z

ðp=ZÞi
ð19Þ

t � ta ð20Þ

This study shows that this pseudo-steady-state

interporosity flow equation is valid without invoking such

approximations. Sureshjani et al. (2012) built a fine grid

single-porosity numerical simulator to model flow between

slab-shaped matrix and fracture. Both the matrix and the

fracture are represented by fine gridblocks. The shape

factor is back-calculated and compared against p2=4L2,
demonstrating a close match at the decline stage. The

results of the comparison validate the pseudo-steady-state

interporosity flow equation for gas. The back calculation is

thus rewritten as follows:

a ¼ 2h/m

km m pfð Þ � m pmð Þð Þ
dqm
dt

ð21Þ

Substituting dm pmð Þ ¼ 2hdqm=lgmcgm into Eq. 18 and

canceling 2h, Eq. 18 can be rewritten as:

/m

dqm
dt

¼ akm

Zqf

0

1

lgfcgf
dqf �

Zqm

0

1

lgmcgm
dqm

0
@

1
A ð22Þ

If a constant viscosity and compressibility is assumed,

Eq. 22 would collapse to the interporosity flow equation in

the Warren and Root’s model, which was developed for

liquid. Replacing lgfcgf and lgmcgm with the constant lc in
Eq. 22 gives:

/m

dqm
dt

¼ akm
lc

ðqf � qmÞ ð23Þ

The liquid systems have similar qf and qm due to small

compressibility. Thus, by substituting pf � pm ¼
ln qf=qmð Þ=cl and ln(qf=qmÞ � ðqf � qmÞ=qm into Eq. 22,

the interporosity flow equation in Warren and Root’s

model is produced:

/m

1

qm

oqm
ot

¼ akm
l

pf � pmð Þ ð24Þ

The biggest obstacle to using the Warren and Root’s

model in gas scenarios is the difference between viscosity

and compressibility in the fracture systems and the matrix

systems for gas. The derived interporosity flow equation

for gas incorporates effects of pressure-dependent

properties by invoking pseudo-functions. The

development embraces pseudo-steady-state interporosity

flow and long-term approximation that requires p2kmbm
* t/

lgicgi/mam
2 [ 0.5 for the spherical matrix block.

Rate-time forecast of naturally fractured gas
reservoirs

An in-house dual-porosity reservoir simulator, in-house

simulator 1, was developed for modeling dual-porosity gas

reservoirs using the appropriate pseudo-steady-state inter-

porosity flow equation for gas derived above. This is an

important undertaking because commercial simulators use

the liquid-form interporosity flow equation in Warren and

Root’s model with fluid properties evaluated at the pressure

of the upstream one between fracture and matrix instead.

As shown above, such liquid-version of the interporosity

equation is written as follows:

/m

oðpmÞ
ot

¼ akm
ctlg

ðpf � pmÞ ð25Þ

For comparison purposes, this study also developed the

‘in-house simulator 2’, which solves all the dual-porosity

gas reservoir equations but forces the use of the liquid-

version of the interporosity equation above—as done by

commercial simulators. Our numerical simulator

implementation follows Abou-Kassem et al. (2006). A

circular reservoir is considered with a well fully penetrating

with no skin at the center. The reservoir is homogeneous and

isotropic. Logarithmic discretization is taken owing to its

radial nature. Equation discretization is implicit, and simple-

iteration method (SIM) acts as pressure advancing

algorithm. Viscosity is calculated with method by Lee

1 Per personal communication with Dr. Pooladi-Darvish where he

indicated that and they wrote it using an analogy with the liquid

formulation.
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et al. (1966). The Abou-Kassem et al. (1990) is used for

determining compressibility, and compressibility factor

calculation follows Dranchuk and Abou-Kassem (1975).

For testing purposes, a synthetic case was analyzed as

described in Tables 1 and 2. The specific gravity of natural

gas, rg, is 0.55. Matrix porosity and fracture porosity are

taken as 0.15 and 0.01, respectively. The permeability

values in the matrix and fractures are changed to 0.005 and

50 md, respectively, to guarantee apparent dual-porosity

behavior. The shape factor is assumed to be

9:98959� 10�05 1=ft2. A summary of the relevant

properties is provided in Table 1. Three scenarios with

different reservoir sizes are used for generating production

data and are presented in Table 2.

When it comes to a dual-porosity reservoirs, two sys-

tems—the fracture system and the matrix system—overlap

with each other, and the two systems communicate through

an interporosity flow described by the interporosity flow

equation. The behavior of production rate, when producing

from a dual-porosity system at constant bottom-hole pres-

sure, is different from that in a single-porosity system. As

has been pointed out by Moench (1984), in the first decline

stage, the production is primarily from fracture storage, and

matrix storage does not begin to significantly contribute to

production until the end of this stage. At the end of the first

decline stage, fluids originally in the fracture system are

depleted compared to those in the matrix system. There-

fore, with decreasing fracture fluid pressure, interporosity

flow develops and becomes dominant in the second decline

stage. That is, flow out of the matrix into the fracture makes

the dominant contribution to gas production. The matrix

blocks are therefore treated as the only storage sites at the

second decline stage, and the matrix blocks’ pressures are

representative pressure in the reservoir for evaluating

pressure-dependent effects.

For decline analysis of single-porosity gas reservoirs, Ye

and Ayala (2012, 2013) and Ayala and Ye (2012, 2013)

proposed a density-based approach. Using depletion-driven

dimensionless variables k and b, they successfully decou-

pled pressure-dependent effects from pressure depletion.

Ye and Ayala (2012) were accordingly able to show that

the dimensionless gas rate solutions under constant bottom-

hole pressure can be rescaled from their liquid counterparts

with depletion-driven dimensionless variables k and b.
Zhang and Ayala (2014a) subsequently provided rigorous

derivation for the rescaling approach. The relationship is

written by Zhang and Ayala (2014a) as follows:

q
gas
D tDð Þ ¼ �k � qliqD �btD

� �
ð26Þ

where q
gas
D is the dimensionless gas flow rate, q

liq
D is the

liquid counterpart, and �k and �b are depletion-driven

dimensionless variables defined as follows:

�k ¼
lgicgi

2h �q�qwfð Þ
�m pð Þ�m pwfð Þ

ð27Þ

where �q is the average reservoir gas density, qwf is the gas
density at the bottom-hole condition, �mðpÞ is the average

pseudo-pressure of reservoir fluids, m(pwf) is the pseudo-

pressure of gas at the bottom-hole condition, lgi and cgi are

the initial gas viscosity and initial gas compressibility,

h = RT/MW, T is temperature, and MW is molecular

weight.

b ¼
R t
0
kdt

t
ð28Þ

�q could be obtained from a material balance equation

assuming a tank model for the reservoir, �m pð Þ is evaluated
at the pressure corresponding to �q. It was demonstrated that
�k and �b are able to capture the effects of pressure-sensitive

properties on a single-porosity system’s behavior.

For dual-porosity reservoirs, following Moench (1984),

it would be reasonable to speculate that �k and �b could

capture the response of a dual-porosity system in the sec-

ond decline stage since the pressure-sensitive effects are

controlled by matrix pressure only. From this perspective,

the �k and �b for a dual-porosity systems could be written as
�km and �bm. Considering that matrix fluids account for the

vast majority of reservoir fluids, the fracture pressure’s

influence on the average reservoir pressure is negligible.

Thus, a simple material balance equation for a single-

porosity system is able to predict the average pressure,

from which �km and �bm are then calculated.

The proposed �k and �b rescaling approach can be

validated for a variety of scenarios that exhibit dual-

porosity behaviors. First, we test the rescaling approach

against the three scenarios described by Tables 1 and 2.

The in-house simulator 1 is used to generate production

data. The rate-time production data are then transformed

into a dimensionless form and compared against rescaled

dimensionless gas production rates from analytical

dimensionless liquid flow rates.

The dimensionless flow rate produced at constant bottom-

hole pressure in a bounded circular reservoir in Laplace

space is given as follows (Da Prat et al. 1981):

~qD ¼
ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p
I1

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p
reD

� �
K1

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p� �
� K1

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p
reD

� �
I1

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p� �� �

s I0
ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p� �
K1

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p
reD

� �
þ K0

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p� �
I1

ffiffiffiffiffiffiffiffiffiffi
sf sð Þ

p
reD

� �� �

ð29Þ

By numerical inversion such as the Stehfest algorithm

(Stehfest 1970) from Laplace space to real space, the

dimensionless liquid flow rate is obtained. Similar to its

counterpart in a single-porosity system (Ye and Ayala

2012), the definition of q
gas
D is:
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q
gas
D ¼

qsclgicgiqgsc
2pkfh qi � qwfð Þ ð30Þ

where qsc is gas density under standard conditions and kf is

fracture permeability.

Figure 2 presents the well-known constant-pressure

liquid solutions of a dual-porosity system in terms of

qD ¼ qDðrD; tDÞ with Eq. 29 for the three different reser-

voir sizes under consideration in Tables 1 and 2 and the

rescaled liquid solutions using �km and �bm. The curves and

the dots are dimensionless liquid rates and rescaled

dimensionless liquid rates, respectively. Figure 3 presents

a comparison between rescaled dimensionless liquid pro-

duction rates and dimensionless production rates using

data generated by the in-house simulator 1. The curves

and the dots are rescaled dimensionless liquid rates and

dimensionless gas rates using results from the in-house

simulator 1, respectively.

Figures 2 and 3 reveal that a liquid analytical solution

for a dual-porosity reservoir can be used to accurately

predict the long-term behavior of the corresponding dual-

porosity gas reservoirs by rescaling from the dual-porosity

liquid solution using �km and �bm. A close match between

the rescaled qD
liq and qD

gas from the in-house simulator

leads to the conclusion that the depletion-driven dimen-

sionless variables k and b could successfully decouple

pressure-dependent effects from pressure/density deple-

tion for a dual-porosity system at the second decline

stage. The liquid analytical solution for a dual-porosity

system as described by Eq. 29 could be readily used to

accurately predict the corresponding natural gas reservoir

analytical responses by transforming the liquid traces

based on the depletion-driven dimensionless parameters
�km and �bm. This implies the possible applicability of the

production data analysis developed previously by Zhang

and Ayala (2014b) based on density.

Spivey and Semmelbeck (1995) and Gerami et al.

(2007) studied the applicability of pseudo-pressure and

pseudo-time in dual-porosity systems, but their results

show deviations, which are extreme in certain cases,

between proposed methods and gas numerical responses.

Spivey and Semmelbeck (1995) used the liquid-form

interporosity flow equation, and Gerami et al. (2007) pro-

posed the gas interporosity flow equation but did not

implement it in the numerical model. We reexamine the

applicability of pseudo-pressure and pseudo-time using the

in-house simulator, which uses the derived gas inter-

porosity flow equation. Three scenarios, as described by

Tables 1 and 2, are used for validation purposes. Figure 4

plots the gas numerical response in terms of qD ¼
qDðrD; tDÞ for the three scenarios as described by Tables 1

and 2. Figure 4 presents the comparisons between such

numerical gas responses and the gas response using Gerami

et al.’s (2007) method, both in dimensionless terms. �x is a

constant in this case, and no iteration for an analytical

solution is needed.

Figure 4 demonstrates that pseudo-time and pseudo-

pressure could effectively linearize the governing equa-

tions of dual-porosity gas systems, especially in the second

decline stage during the production period. Therefore,

applying pseudo-time and pseudo-pressure, the liquid

analytical solution to a dual-porosity system could accu-

rately describe the behavior of its gas counterpart at the

second decline stage. The pseudo-time evaluated at aver-

age reservoir pressure successfully linearizes the governing

equations, provided that the proposed interporosity gas

Table 1 Reservoir and fluid properties

Properties Units Values

Matrix permeability, km md 0.005

Fracture permeability, kf md 50

Matrix porosity, /m 0.15

Fracture porosity, /f 0.01

Pay zone thickness, h ft 300

Gas specific gravity, SG (air = 1) 0.55

Wellbore radius, rw ft 0.25

Initial pressure, pi psia 5000

Initial temperature, T �F 200

Specified wellbore flowing pressure, pwf psia 100

Shape factor, a 1=ft2 9.98959 9 10-5

Storativity ratio, x 0.0625

Interporosity flow coefficient, n 6.2435 9 10-10

Table 2 Reservoir Size and OGIP for three Scenarios

Units Values

Scenario 1

Reservoir outer radius, re ft 175

Dimensionless outer radius, reD 700

Drainage area acres 2.21

OGIP, Gi Bscf 1.199

Scenario 2

Reservoir outer radius, re ft 350

Dimensionless outer radius, reD 1400

Drainage area acres 8.84

OGIP, Gi Bscf 4.796

Scenario 3

Reservoir outer radius, re ft 700

Dimensionless outer radius, reD 2800

Drainage area acres 35.34

OGIP, Gi Bscf 19.184
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flow equation is applied to modeling fluid transfer between

the matrix and fracture. However, production profiles

generated using k and b rescaling approach and pseudo-

function approach fail to strike match with production data

from the in-house simulator 2 which utilizes the liquid-

form interporosity flow equation, as demonstrated in

Figs. 5 and 6. The deviation decreases and then increases,

which ranges from 0 percent to 100 percent based on

results from Gerami’s method and the rescaled dimen-

sionless rates throughout the second decline stage.

Modeling interporosity flow in naturally fractured gas

reservoirs using the liquid-form interporosity flow with

fluid properties evaluated at the pressure of the upstream

one between matrix and fracture bring should be replaced

with more appropriate interporosity flow model such as the

derived gas interporosity flow equation.

It is reiterated that commercial simulators (CMG-IMEX

in this case study, for example) utilize the liquid-form

interporosity flow equation with gas viscosity and com-

pressibility evaluated at matrix pressure or fracture pres-

sure depending on which is upstream. Therefore, the

production profiles behave the same as the in-house sim-

ulator 2 utilizing the liquid-form interporosity flow equa-

tion, which can significantly deviate from the production

behavior of the in-house simulator utilizing gas inter-

porosity flow equation. We illustrate the relationship

among three production profiles by plotting the gas

numerical profiles from the two in-house simulators and

production profiles from CMG-IMEX. Figure 7 shows, for

instance, Scenario 1’s gas numerical responses in terms of

qsc versus t from the three simulators under the consider-

ation in Tables 1 and 2. No difference is observed among

three production profiles at the first decline stage in Fig. 7

as the production is primarily from fracture storage at this

stage.

Figures 8, 9, 10 plot gas numerical responses in terms of

qsc versus t from the two in-house simulators and CMG-

IMEX in Scenarios 1, 2, and 3, as described in Tables 1

and 2, respectively. They show, more clearly, the differ-

ence in qsc versus t brought about by applying different

interporosity flow equations by looking at the second

decline stages in the three scenarios. The solid curve rep-

resents results from CMG-IMEX; the dashed line corre-

sponds to results from the in-house simulator 1; and the red

circles represent results from the in-house simulator 2. The

comparisons shown in Figs. 8, 9, 10 demonstrate that the

in-house simulator 2, which employs the liquid-form

interporosity flow equation, and CMG-IMEX show similar

production behaviors for the same scenarios. On the other
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hand, the in-house simulator 1, which uses the gas inter-

porosity flow equation, demonstrates very different pro-

duction behaviors from CMG-IMEX at the second stage.

The major difference between our gas interporosity flow

equation and the liquid-form equation in Warren and

Root’s model is that we have considered the viscosity–

compressibility change as gas flows from matrix to frac-

ture. Behaviors of the two systems are similar when

interporosity flow is not significant in its contribution to

production. With the depletion of the fracture system,

however, interporosity flow becomes dominant in its con-

tribution to the gas production rate and the consideration of

viscosity–compressibility change from matrix to fracture in

the interporosity flow equation brings about a major

change. The relative difference between production rates of

the two systems becomes apparent at the end of the first

decline stage at which point the production rate from in-

house simulator 2 higher than that from the in-house sim-

ulator 1. The difference increases and then decreases before

the two production rates meet each other early in the sec-

ond decline stage. Late in the second decline stage, pro-

duction rate from the in-house simulator 1 surpasses that of

the in-house simulator 2, and the relative difference grows

with time. Notably, the gas production rates from the in-

house simulator 1 may increase to nearly twice those of the

in-house simulator 2 during the late stage. The inter-

porosity flow equation in the in-house simulator 2 is

derived only for liquid and assumes constant viscosity and

compressibility in the derivation thereby misrepresents gas

flow from matrix blocks to fracture. The gas interporosity

flow equation, derived rigorously based on physical prin-

ciples as shown above, is a better representation for the

flow exchange between matrix and fracture system for the

gas case. Using the liquid-form interporosity flow equation

in Warren and Root’s model can thus lead to significant

error and distort the production behavior. Thus, using the

liquid-form interporosity flow equation for dual-porosity

gas systems is not recommended.

Reserve prediction for naturally fractured gas
reservoirs

Zhang and Ayala (2014a, b) and Ayala and Zhang (2013)

demonstrated that single-porosity gas reservoirs can be

analyzed using straight-line analysis and harmonic decline

equations for the prediction of original gas in place (Gi).

The two methods are based on the same principles but are

written in different forms. The governing equation for the

straight-line analysis is:
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�k
rq

qgsc
¼ 1

OGIP
�k
Gp

qgsc
þ 1

qegi
ð31Þ

where rq ¼ 1� qwf
qi
, Gp is cumulative gas production, and

qegi is a constant defined as follows:

qegi ¼
2pqikh

bD;PSSqsclgicgi
ð32Þ

The method originates from a gas rate equation

essential for the rigorous proof of k and b rescaling.

Therefore, it is reasonable to speculate, based on the

results discussed in the preceding section, that dual-

porosity systems should satisfy a similar equation at the

second decline stage, in which case �km would replace �k.
In such a case, the same steps for Gi prediction for a

single-porosity system utilizing Eq. 31 would need to be

taken except for replacing �k with �km. Steps are detailed in

Zhang and Ayala (2014b).

Data provided in Scenarios 1 through 3 have been used

for validating the Gi prediction methods for dual-porosity

reservoirs. With Gi derived by plotting rq=qgsc versus

Gp=qgsc, we here plot �kmrq=qgsc versus �kmGp=qgsc and

obtain the best-fit straight line through the points in the

second decline stage, thereby revealing the gradient 1/Gi

hence Gi. If the difference is large, we replot �kmrq=qgsc
versus �kmGp=qgsc with the new Gi. The resulting plot after

four iterations of Gi prediction is shown in Figs. 11-13

corresponding to the three scenarios. For Scenario 1, the

fitted straight lines for the second decline stage yield a

slope of 8:2214� 10�7 Mscf�1, which corresponds to a Gi

estimation of 1.2162 Bscf with a relative error of 1.430 %

with respect to the actual Gi. The slope of the straight line

for Scenarios 2 and 3 is 2:0567� 10�7 Mscf�1 and

5:1415� 10�8 Mscf�1, respectively, yielding Gi estimation

of 4.8621 and 19.458 Bscf with relative errors of 1.380 and

1.384 %, respectively. The intercepts for Figs. 11, 12, 13

are 1:4101� 10�6 Mscf

D

� ��1

, 4:96� 10�7 Mscf

D

� ��1

, and

2:7862� 10�7 Mscf

D

� ��1

, respectively.

A notable feature of Figs. 11, 12, 13 is how readily the

production data fall along a straight line. We also observe

negligible deviation between the derived Gi and the actual

Gi in the three scenarios after four rounds of iterations. This
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observation implies that the gas production from the

dual-porosity system at the second decline stage is as

follows:

�km
rq

qgsc
¼ 1

OGIP
�km

Gp

qgsc
þ 1

qe�gi
ð33Þ

where qe�gi is constant. q
e
gi is not used because the theoretical

qegi is different from the inverse of the intercepts, which

could be due to fitting errors. Significantly, this correlation

could be readily used for predicting the Gi of dual-porosity

systems without any calculation of pseudo-pressure or

pseudo-time variables. Moreover, with predicted Gi and q
e�
gi

known from the intercept, the production rate at the second

decline stage can then be predicted based on Eq. 33 fol-

lowing the procedure below:

1. Knowing �kmGp=qgsc at the last time step, increase
�kmGp=qgsc by a small value and calculate the corre-

sponding �kmrq=qgsc.

2. Calculate rq/Gp with �km
rq
qgsc

=�km
Gp

qgsc
and then calculate

Gp knowing rq.
�p
�Z
is then calculated using material

balance equation:

�p
�Z
¼ pi

Zi
1� Gp

OGIP

� 	
ð34Þ

3. Calculate the pressure corresponding to �p=�Z at each

time point by interpolating �p=�Z in the �p=�Z versus �p

table. Then we calculate �km and qgsc knowing
�kmrq=qgsc and rq.

4. Calculate time using

tð Þi¼ tð Þi�1þ 2
Gp

� �i � Gp

� �i�1

qgsc
� �i þ qgsc

� �i�1
ð35Þ

where i denotes time level.

5. Repeat steps 1 to 4 until final target time is attained.

Concluding remarks

This study presents the derivation of the appropriate

pseudo-steady-state interporosity flow equation for single-

phase gas starting from physical principles. The resultant

model incorporates viscosity–compressibility changes as

fluids flow from matrix to fracture compared to its coun-

terpart in Warren and Root’s model (1963) that holds liquid

assumptions (constant viscosity and fluid compressibility).

We show that the liquid-form interporosity flow model

employed by Warren and Root is a special case of the new

interporosity flow equation to be used when liquid

assumptions hold. Comparisons between production

behaviors from two simulators with the gas interporosity

flow equation and the liquid-form interporosity flow

equation reveal significant differences at the second decline

stage, which suggests the impropriety of using the liquid-

form interporosity flow equation for naturally fractured gas

reservoirs. The gas interporosity flow equation encom-

passes the pressure-dependent effects of gas, which is a

more reasonable approximation. Investigation of a density-

based approach found it applicable to dual-porosity sys-

tems, provided that the gas interporosity flow equation is

implemented. Shifting the liquid traces with the depletion-

driven dimensionless parameters �km and �bm, the liquid

analytical solution could rigorously predict the responses
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of natural gas reservoirs at the second decline stage.

Notably, �km and �bm, two depletion-driven parameters, are

simply dependent on average pressure and bottom-hole

pressure and do not require pseudo-time, making this

method easier to implement than the pseudo-functions-

based approach. Furthermore, density-based decline curve

analysis, which was originally derived for the single-

porosity systems, is able to accurately predict the Gi of

dual-porosity systems. The applicability of pseudo-pressure

and pseudo-time for decline curve analysis with the sim-

ulator using the gas interporosity flow equation is found

successful. Applying the pseudo-functions to the liquid

analytical solution captures the behavior of its gas coun-

terpart at the second decline stage. Importantly, this lin-

earization is contingent on the gas interporosity flow

equation. A reason for the deviation in the constant-pres-

sure production in Gerami et al. (2007) is due to the use of

data generated by CMG-IMEX that applies the liquid-form

interporosity flow equation. Our results thus prove suc-

cessful in extending the density-based method and the

pseudo-functions-based linearization of governing equa-

tions to dual-porosity gas systems.
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